1
|
Contente D, Díaz-Formoso L, Feito J, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Genomic and Functional Evaluation of Two Lacticaseibacillus paracasei and Two Lactiplantibacillus plantarum Strains, Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis), as Probiotics for Aquaculture. Genes (Basel) 2024; 15:64. [PMID: 38254954 PMCID: PMC10815930 DOI: 10.3390/genes15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aquaculture plays a crucial role in meeting the increasing global demand for food and protein sources. However, its expansion is followed by increasing challenges, such as infectious disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12 and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors. Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore, MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their application as probiotics in larviculture, which is a major bottleneck in aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.); (L.M.C.)
| |
Collapse
|
2
|
Nakano D, Machida S. Mitochondrial fusion- and fission-related protein expression in the regulation of skeletal muscle mass. Physiol Rep 2022; 10:e15281. [PMID: 35439362 PMCID: PMC9017976 DOI: 10.14814/phy2.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023] Open
Abstract
Mitochondria in the skeletal muscle are essential for maintaining metabolic plasticity and function. Mitochondrial quality control encompasses the dynamics of the biogenesis and remodeling of mitochondria, characterized by the constant fission and fusion of mitochondria in response to metabolic stressors. However, the roles of mitochondrial fission or fusion in muscle hypertrophy and atrophy remain unclear. The aim of this study was to determine whether mitochondrial fusion and fission events are influenced by muscle hypertrophy or atrophy stimulation. Twenty-six male F344 rats were randomly assigned to a control group or were subjected to up to 14 days of either plantaris overload (via tenotomy of the gastrocnemius and soleus muscles; hypertrophy group) or hindlimb cast immobilization (atrophy group). After 14 days of treatment, plantaris muscle samples were collected to determine the expression levels of mitochondrial fusion- and fission-related proteins. Muscle weight and total muscle protein content increased following plantaris overload in the hypertrophy group, but decreased following immobilization for 14 days in the atrophy group. In the hypertrophied muscle, the level of activated dynamin-related protein 1 (Drp1), phosphorylated at Ser616, significantly increased by 25.8% (p = 0.014). Moreover, the protein expression level of mitochondrial fission factor significantly decreased by 36.5% in the hypertrophy group compared with that of the control group (p = 0.017). In contrast, total Drp1 level significantly decreased in the atrophied plantaris muscle (p = 0.011). Our data suggest that mitochondrial fission events may be influenced by both muscle hypertrophy and atrophy stimulation, and that mitochondrial fission- related protein Drp1 plays an important role in the regulation of skeletal muscle in response to mechanical stimulation.
Collapse
Affiliation(s)
- Daiki Nakano
- Ritsumeikan UniversityKusatsuJapan
- Graduate School of Health and Sports ScienceJuntendo UniversityInzaiJapan
| | - Shuichi Machida
- Graduate School of Health and Sports ScienceJuntendo UniversityInzaiJapan
| |
Collapse
|
3
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
4
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
5
|
Li Y, Zhao J, Liu Z, Wang C, Wei L, Han S, Du W. De novo Prediction of Moonlighting Proteins Using Multimodal Deep Ensemble Learning. Front Genet 2021; 12:630379. [PMID: 33828582 PMCID: PMC8019903 DOI: 10.3389/fgene.2021.630379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
Moonlighting proteins (MPs) are a special type of protein with multiple independent functions. MPs play vital roles in cellular regulation, diseases, and biological pathways. At present, very few MPs have been discovered by biological experiments. Due to the lack of data sample, computation-based methods to identify MPs are limited. Currently, there is no de-novo prediction method for MPs. Therefore, systematic research and identification of MPs are urgently required. In this paper, we propose a multimodal deep ensemble learning architecture, named MEL-MP, which is the first de novo computation model for predicting MPs. First, we extract four sequence-based features: primary protein sequence information, evolutionary information, physical and chemical properties, and secondary protein structure information. Second, we select specific classifiers for each kind of feature. Finally, we apply the stacked ensemble to integrate the output of each classifier. Through comprehensive model selection and cross-validation experiments, it is shown that specific classifiers for specific feature types can achieve superior performance. For validating the effectiveness of the fusion-based stacked ensemble, different feature fusion strategies including direct combination and a multimodal deep auto-encoder are used for comparative purposes. MEL-MP is shown to exhibit superior prediction performance (F-score = 0.891), surpassing the existing machine learning model, MPFit (F-score = 0.784). In addition, MEL-MP is leveraged to predict the potential MPs among all human proteins. Furthermore, the distribution of predicted MPs on different chromosomes, the evolution of MPs, the association of MPs with diseases, and the functional enrichment of MPs are also explored. Finally, for maximum convenience, a user-friendly web server is available at: http://ml.csbg-jlu.site/mel-mp/.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jianing Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zhaoqian Liu
- Department of Biomedical Informatics, College of Medicine, Ohiostate University, Columbus, OH, United States
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, Ohiostate University, Columbus, OH, United States
| | - Lizheng Wei
- Department of Biomedical Informatics, College of Medicine, Ohiostate University, Columbus, OH, United States
| | - Siyu Han
- Department of Computer Science, Faculty of Engineering University of Bristol, Bristol, United Kingdom
| | - Wei Du
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Protective effect of necrosulfonamide on rat pulmonary ischemia-reperfusion injury via inhibition of necroptosis. J Thorac Cardiovasc Surg 2021; 163:e113-e122. [PMID: 33612303 DOI: 10.1016/j.jtcvs.2021.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Necroptosis plays an important role in cell death during pulmonary ischemia-reperfusion injury (IRI). We hypothesized that therapy with necrosulfonamide (NSA), a mixed-lineage kinase domain-like protein inhibitor, would attenuate lung IRI. METHODS Rats were assigned at random into the sham operation group (n = 6), vehicle group (n = 8), or NSA group (n = 8). In the NSA and vehicle groups, the animals were heparinized and underwent left thoracotomy, and the left hilum was clamped for 90 minutes, followed by reperfusion for 120 minutes. NSA (0.5 mg/body) and a solvent were administered i.p. in the NSA group and the vehicle group, respectively. The sham group underwent 210 minutes of perfusion without ischemia. After reperfusion, arterial blood gas analysis, physiologic data, lung wet-to-dry weight ratio, histologic changes, and cytokine levels were assessed. Fluorescence double immunostaining was performed to evaluate necroptosis and apoptosis. RESULTS Arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) was better, dynamic compliance was higher, and mean airway pressure and lung edema were lower in the NSA group compared with the vehicle group. Moreover, in the NSA group, lung injury was significantly alleviated, and the mean number of necroptotic cells (55.3 ± 4.06 vs 78.2 ± 6.87; P = .024), but not of apoptotic cells (P = .084), was significantly reduced compared with the vehicle group. Interleukin (IL)-1β and IL-6 levels were significantly lower with NSA administration. CONCLUSIONS In a rat model, our results suggest that NSA may have a potential protective role in lung IRI through the inhibition of necroptosis.
Collapse
|
7
|
Extracellular Vesicles Produced by Bifidobacterium longum Export Mucin-Binding Proteins. Appl Environ Microbiol 2020; 86:AEM.01464-20. [PMID: 32737132 DOI: 10.1128/aem.01464-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Extracellular proteins are important factors in host-microbe interactions; however, the specific factors that enable bifidobacterial adhesion and survival in the gastrointestinal (GI) tract are not fully characterized. Here, we discovered that Bifidobacterium longum NCC2705 cultured in bacterium-free supernatants of human fecal fermentation broth released a myriad of particles into the extracellular environment. The aim of this study was to characterize the physiological properties of these extracellular particles. The particles, approximately 50 to 80 nm in diameter, had high protein and double-stranded DNA contents, suggesting that they were extracellular vesicles (EVs). A proteomic analysis showed that the EVs primarily consisted of cytoplasmic proteins with crucial functions in essential cellular processes. We identified several mucin-binding proteins by performing a biomolecular interaction analysis of phosphoketolase, GroEL, elongation factor Tu (EF-Tu), phosphoglycerate kinase, transaldolase (Tal), and heat shock protein 20 (Hsp20). The recombinant GroEL and Tal proteins showed high binding affinities to mucin. Furthermore, the immobilization of these proteins on microbeads affected the permanence of the microbeads in the murine GI tract. These results suggest that bifidobacterial exposure conditions that mimic the intestine stimulate B. longum EV production. The resulting EVs exported several cytoplasmic proteins that may have promoted B. longum adhesion. This study improved our understanding of the Bifidobacterium colonization strategy in the intestinal microbiome.IMPORTANCE Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. Morphological observations revealed that extracellular appendages of bifidobacteria in complex microbial communities are important for understanding its adaptations to the GI tract environment. We identified dynamic extracellular vesicle (EV) production by Bifidobacterium longum in bacterium-free fecal fermentation broth that was strongly suggestive of differing bifidobacterial extracellular appendages in the GI tract. In addition, export of the adhesive moonlighting proteins mediated by EVs may promote bifidobacterial colonization. This study provides new insight into the roles of EVs in bifidobacterial colonization processes as these bacteria adapt to the GI environment.
Collapse
|
8
|
Liu CY, Polk DB. Cellular maps of gastrointestinal organs: getting the most from tissue clearing. Am J Physiol Gastrointest Liver Physiol 2020; 319:G1-G10. [PMID: 32421359 PMCID: PMC7468759 DOI: 10.1152/ajpgi.00075.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of modern methods to induce optical transparency ("clearing") in biological tissues has enabled the three-dimensional (3D) reconstruction of intact organs at cellular resolution. New capabilities in visualization of rare cellular events, long-range interactions, and irregular structures will facilitate novel studies in the alimentary tract and gastrointestinal systems. The tubular geometry of the alimentary tract facilitates large-scale cellular reconstruction of cleared tissue without specialized microscopy setups. However, with the rapid pace of development of clearing agents and current relative paucity of research groups in the gastrointestinal field using these techniques, it can be daunting to incorporate tissue clearing into experimental workflows. Here, we give some advice and describe our own experience bringing tissue clearing and whole mount reconstruction into our laboratory's investigations. We present a brief overview of the chemical concepts that underpin tissue clearing, what sorts of questions whole mount imaging can answer, how to choose a clearing agent, an example of how to clear and image alimentary tissue, and what to do after obtaining the image. This short review will encourage other gastrointestinal researchers to consider how utilizing tissue clearing and creating 3D "maps" of tissue might deepen the impact of their studies.
Collapse
Affiliation(s)
- Cambrian Y. Liu
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saban Research Institute Children’s Hospital Los Angeles, Los Angeles, California
| | - D. Brent Polk
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saban Research Institute Children’s Hospital Los Angeles, Los Angeles, California,2Department of Pediatrics, Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California Los Angeles, California
| |
Collapse
|