1
|
Swoboda S, Krumpen T, Nöthig EM, Metfies K, Ramondenc S, Wollenburg J, Fahl K, Peeken I, Iversen M. Release of ballast material during sea-ice melt enhances carbon export in the Arctic Ocean. PNAS NEXUS 2024; 3:pgae081. [PMID: 38560528 PMCID: PMC10978062 DOI: 10.1093/pnasnexus/pgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
Globally, the most intense uptake of anthropogenic carbon dioxide (CO2) occurs in the Atlantic north of 50°N, and it has been predicted that atmospheric CO2 sequestration in the Arctic Ocean will increase as a result of ice-melt and increased primary production. However, little is known about the impact of pan-Arctic sea-ice decline on carbon export processes. We investigated the potential ballasting effect of sea-ice derived material on settling aggregates and carbon export in the Fram Strait by combining 13 years of vertical flux measurements with benthic eDNA analysis, laboratory experiments, and tracked sea-ice distributions. We show that melting sea-ice in the Fram Strait releases cryogenic gypsum and terrigenous material, which ballasts sinking organic aggregates. As a result, settling velocities of aggregates increased ≤10-fold, resulting in ≤30% higher carbon export in the vicinity of the melting ice-edge. Cryogenic gypsum is formed in first-year sea-ice, which is predicted to increase as the Arctic is warming. Simultaneously, less sea-ice forms over the Arctic shelves, which is where terrigenous material is incorporated into sea-ice. Supporting this, we found that terrigenous fluxes from melting sea-ice in the Fram Strait decreased by >80% during our time-series. Our study suggests that terrigenous flux will eventually cease when enhanced sea-ice melt disrupts trans-Arctic sea-ice transport and thus, limit terrigenous-ballasted carbon flux. However, the predicted increase in Arctic primary production and gypsum formation may enhance gypsum-ballasted carbon flux and compensate for lowered terrigenous fluxes. It is thus unclear if sea-ice loss will reduce carbon export in the Arctic Ocean.
Collapse
Affiliation(s)
- Steffen Swoboda
- MARUM—Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Thomas Krumpen
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Eva-Maria Nöthig
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Katja Metfies
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Simon Ramondenc
- MARUM—Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Jutta Wollenburg
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Kirsten Fahl
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Ilka Peeken
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Morten Iversen
- MARUM—Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
- Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
2
|
Arnone V, Santana-Casiano JM, González-Dávila M, Sarthou G, Krisch S, Lodeiro P, Achterberg EP, González AG. Distribution of copper-binding ligands in Fram Strait and influences from the Greenland Shelf (GEOTRACES GN05). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168162. [PMID: 37952666 DOI: 10.1016/j.scitotenv.2023.168162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
The Fram Strait represents the major gateway of Arctic Ocean waters towards the Nordic Seas and North Atlantic Ocean and is a key region to study the impact of climate change on biogeochemical cycles. In the region, information about trace metal speciation, such as copper, is scarce. This manuscript presents the concentrations and conditional stability constants of copper-binding ligands (LCu and log KcondCu2+L) in the water column of Fram Strait and the Greenland shelf (GEOTRACES cruise GN05). Cu-binding ligands were analysed by Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) using salicylaldoxime (SA) as competitive ligand. Based on water masses and the hydrodynamic influences, three provinces were considered (coast, shelf, and Fram Strait) and differences were observed between regions and water masses. The strongest variability was observed in surface waters, with increasing LCu concentrations (mean values: Fram Strait = 2.6 ± 1.0 nM; shelf = 5.2 ± 1.3 nM; coast = 6.4 ± 0.8 nM) and decreasing log KcondCu2+L values (mean values: Fram Strait = 15.7 ± 0.3; shelf = 15.2 ± 0.3; coast = 14.8 ± 0.3) towards the west. The surface LCu concentrations obtained above the Greenland shelf indicate a supply from the coastal environment to the Polar Surface Water (PSW) which is an addition to the ligand exported from the central Arctic to Fram Strait. The significant differences (in terms of LCu and log KcondCu2+L) between shelf and coastal samples were explained considering the processes which modify ligand concentrations and binding strengths, such as biological activity in sea-ice, phytoplankton bloom in surface waters, bacterial degradation, and meltwater discharge from 79NG glacier terminus. Overall, the ligand concentration exceeded those of dissolved Cu (dCu) and kept the free copper (Cu2+) concentrations at femtomolar levels (0.13-21.13 fM). This indicates that Cu2+ toxicity limits were not reached and dCu levels were stabilized in surface waters by organic complexes, which favoured its transport to the Nordic Seas and North Atlantic Ocean and the development of microorganism.
Collapse
Affiliation(s)
- Veronica Arnone
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | | | - Melchor González-Dávila
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | | | - Stephan Krisch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Pablo Lodeiro
- Department of Chemistry, Physics, Environmental and Soil sciences, University of Lleida-AGROTECNIO-CERCA Center, Rovira Roure 191, 25198, Lleida, Spain
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Aridane G González
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain.
| |
Collapse
|
3
|
von Friesen LW, Paulsen ML, Müller O, Gründger F, Riemann L. Glacial meltwater and seasonality influence community composition of diazotrophs in Arctic coastal and open waters. FEMS Microbiol Ecol 2023; 99:fiad067. [PMID: 37349965 DOI: 10.1093/femsec/fiad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
The Arctic Ocean is particularly affected by climate change with unknown consequences for primary productivity. Diazotrophs-prokaryotes capable of converting atmospheric nitrogen to ammonia-have been detected in the often nitrogen-limited Arctic Ocean but distribution and community composition dynamics are largely unknown. We performed amplicon sequencing of the diazotroph marker gene nifH from glacial rivers, coastal, and open ocean regions and identified regionally distinct Arctic communities. Proteobacterial diazotrophs dominated all seasons, epi- to mesopelagic depths and rivers to open waters and, surprisingly, Cyanobacteria were only sporadically identified in coastal and freshwaters. The upstream environment of glacial rivers influenced diazotroph diversity, and in marine samples putative anaerobic sulphate-reducers showed seasonal succession with highest prevalence in summer to polar night. Betaproteobacteria (Burkholderiales, Nitrosomonadales, and Rhodocyclales) were typically found in rivers and freshwater-influenced waters, and Delta- (Desulfuromonadales, Desulfobacterales, and Desulfovibrionales) and Gammaproteobacteria in marine waters. The identified community composition dynamics, likely driven by runoff, inorganic nutrients, particulate organic carbon, and seasonality, imply diazotrophy a phenotype of ecological relevance with expected responsiveness to ongoing climate change. Our study largely expands baseline knowledge of Arctic diazotrophs-a prerequisite to understand underpinning of nitrogen fixation-and supports nitrogen fixation as a contributor of new nitrogen in the rapidly changing Arctic Ocean.
Collapse
Affiliation(s)
- Lisa W von Friesen
- Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Maria L Paulsen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark
| | - Oliver Müller
- Department of Biological Sciences, University of Bergen, Thormøhlens gate 53A, NO-5006 Bergen, Norway
| | - Friederike Gründger
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus, Denmark
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| |
Collapse
|
4
|
Sumata H, de Steur L, Divine DV, Granskog MA, Gerland S. Regime shift in Arctic Ocean sea ice thickness. Nature 2023; 615:443-449. [PMID: 36922610 PMCID: PMC10017516 DOI: 10.1038/s41586-022-05686-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 03/17/2023]
Abstract
Manifestations of climate change are often shown as gradual changes in physical or biogeochemical properties1. Components of the climate system, however, can show stepwise shifts from one regime to another, as a nonlinear response of the system to a changing forcing2. Here we show that the Arctic sea ice regime shifted in 2007 from thicker and deformed to thinner and more uniform ice cover. Continuous sea ice monitoring in the Fram Strait over the last three decades revealed the shift. After the shift, the fraction of thick and deformed ice dropped by half and has not recovered to date. The timing of the shift was preceded by a two-step reduction in residence time of sea ice in the Arctic Basin, initiated first in 2005 and followed by 2007. We demonstrate that a simple model describing the stochastic process of dynamic sea ice thickening explains the observed ice thickness changes as a result of the reduced residence time. Our study highlights the long-lasting impact of climate change on the Arctic sea ice through reduced residence time and its connection to the coupled ocean-sea ice processes in the adjacent marginal seas and shelves of the Arctic Ocean.
Collapse
|
5
|
Horvath S, Boisvert L, Parker C, Webster M, Taylor P, Boeke R, Fons S, Stewart JS. Database of daily Lagrangian Arctic sea ice parcel drift tracks with coincident ice and atmospheric conditions. Sci Data 2023; 10:73. [PMID: 36739456 PMCID: PMC9899219 DOI: 10.1038/s41597-023-01987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
Since the early 2000s, sea ice has experienced an increased rate of decline in thickness, extent and age. This new regime, coined the 'New Arctic', is accompanied by a reshuffling of energy flows at the surface. Understanding of the magnitude and nature of this reshuffling and the feedbacks therein remains limited. A novel database is presented that combines satellite observations, model output, and reanalysis data with sea ice parcel drift tracks in a Lagrangian framework. This dataset consists of daily time series of sea ice parcel locations, sea ice and snow conditions, and atmospheric states, including remotely sensed surface energy budget terms. Additionally, flags indicate when sea ice parcels travel within cyclones, recording cyclone intensity and distance from the cyclone center. The quality of the ice parcel database was evaluated by comparison with sea ice mass balance buoys and correlations are high, which highlights the reliability of this database in capturing the seasonal changes and evolution of sea ice. This database has multiple applications for the scientific community; it can be used to study the processes that influence individual sea ice parcel time series, or to explore generalized summary statistics and trends across the Arctic.
Collapse
Affiliation(s)
- Sean Horvath
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD, 20771, USA
- Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court Suite 4001, College Park, MD, 20740, USA
| | - Linette Boisvert
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD, 20771, USA.
| | - Chelsea Parker
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD, 20771, USA
- Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court Suite 4001, College Park, MD, 20740, USA
| | - Melinda Webster
- University of Alaska Fairbanks, Geophysical Institute, 2156 Koyukuk Drive, Fairbanks, AK, 99775, USA
- Polar Science Center, University of Washington, Seattle, WA, 98105, USA
| | - Patrick Taylor
- NASA Langley Research Center, Climate Science Branch, Hampton, VA, 23681, USA
| | - Robyn Boeke
- Science Systems Applications Inc., Hampton, VA, 23666, USA
| | - Steven Fons
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD, 20771, USA
- Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Court Suite 4001, College Park, MD, 20740, USA
| | | |
Collapse
|
6
|
Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna. Sci Rep 2023; 13:1000. [PMID: 36653387 PMCID: PMC9849409 DOI: 10.1038/s41598-023-27957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The rapid ongoing changes in the Central Arctic Ocean call for baseline information on the pelagic fauna. However, sampling for motile organisms which easily escape vertically towed nets is challenging. Here, we report the species composition and catch weight of pelagic fishes and larger zooplankton from 12 trawl hauls conducted in ice covered waters in the Central Arctic Ocean beyond the continental slopes in late summer. Combined trawl catches with acoustics data revealed low amounts of fish and zooplankton from the advective influenced slope region in the Nansen Basin in the south to the ice-covered deep Amundsen Basin in the north. Both arctic and subarctic-boreal species, including the ones considered as Atlantic expatriate species were found all the way to 87.5o N. We found three fish species (Boreogadus saida, Benthosema glaciale and Reinhardtius hippoglossoides), but the catch was limited to only seven individuals. Euphausiids, amphipods and gelatinous zooplankton dominated the catch weight in the Nansen Basin in the mesopelagic communities. Euphausiids were almost absent in the Amundsen Basin with copepods, amphipods, chaetognaths and gelatinous zooplankton dominating. We postulate asymmetric conditions in the pelagic ecosystems of the western and eastern Eurasian Basin caused by ice and ocean circulation regimes.
Collapse
|
7
|
Rise and fall of sea ice production in the Arctic Ocean's ice factories. Nat Commun 2022; 13:7800. [PMID: 36528641 PMCID: PMC9759544 DOI: 10.1038/s41467-022-34785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
The volume, extent and age of Arctic sea ice is in decline, yet winter sea ice production appears to have been increasing, despite Arctic warming being most intense during winter. Previous work suggests that further warming will at some point lead to a decline in ice production, however a consistent explanation of both rise and fall is hitherto missing. Here, we investigate these driving factors through a simple linear model for ice production. We focus on the Kara and Laptev seas-sometimes referred to as Arctic "ice factories" for their outsized role in ice production, and train the model on internal variability across the Community Earth System Model's Large Ensemble (CESM-LE). The linear model is highly skilful at explaining internal variability and can also explain the forced rise-then-fall of ice production, providing insight into the competing drivers of change. We apply our linear model to the same climate variables from observation-based data; the resulting estimate of ice production over recent decades suggests that, just as in CESM-LE, we are currently passing the peak of ice production in the Kara and Laptev seas.
Collapse
|
8
|
A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS. REMOTE SENSING 2022. [DOI: 10.3390/rs14092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of the wintertime sea-ice production in Arctic polynyas is an important requirement for estimations of the dense water formation, which drives vertical mixing in the upper ocean. Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large influence on derived polynya characteristics due to their impact on the calculation of the heat loss to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus on the Laptev Sea region for detailed case studies on the developed algorithm and present time series of polynya characteristics in the winter season 2019/2020. It shows that the application of the empirically derived correction decreases the difference between different utilized atmospheric products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites. More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar vortex in early 2020.
Collapse
|
9
|
Unprecedented decline of Arctic sea ice outflow in 2018. Nat Commun 2022; 13:1747. [PMID: 35365660 PMCID: PMC8975830 DOI: 10.1038/s41467-022-29470-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Fram Strait is the major gateway connecting the Arctic Ocean and North Atlantic Ocean, where nearly 90% of the sea ice export from the Arctic Ocean takes place. The exported sea ice is a large source of freshwater to the Nordic Seas and Subpolar North Atlantic, thereby preconditioning European climate and deep water formation in the North Atlantic Ocean. Here we show that in 2018, the ice export through Fram Strait showed an unprecedented decline since the early 1990s. The 2018 ice export was reduced to less than 40% relative to that between 2000 and 2017. The minimum export is attributed to regional sea ice-ocean processes driven by an anomalous atmospheric circulation over the Atlantic sector of the Arctic. The result indicates that a drastic change of the Arctic sea ice outflow and its environmental consequences happen not only through Arctic-wide ice thinning, but also by regional scale atmospheric anomalies. Fram Strait is the major gateway connecting the Arctic Ocean and North Atlantic Ocean, where nearly 90% of the sea ice export from the Arctic Ocean takes place. Here, the authors show that in 2018, ice export showed an unprecedented decline since at least the 1990s, attributed to ongoing Arctic-wide ice thinning and regional-scale atmospheric anomalies.
Collapse
|
10
|
Huserbråten MBO, Hattermann T, Broms C, Albretsen J. Trans-polar drift-pathways of riverine European microplastic. Sci Rep 2022; 12:3016. [PMID: 35301340 PMCID: PMC8931020 DOI: 10.1038/s41598-022-07080-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 11/26/2022] Open
Abstract
High concentrations of microplastic particles are reported across the Arctic Ocean–yet no meaningful point sources, suspension timelines, or accumulation areas have been identified. Here we use Lagrangian particle advection simulations to model the transport of buoyant microplastic from northern European rivers to the high Arctic, and compare model results to the flux of sampled synthetic particles across the main entrance to the Arctic Ocean. We report widespread dispersal along the Eurasian continental shelf, across the North Pole, and back into the Nordic Seas; with accumulation zones over the Nansen basin, the Laptev Sea, and the ocean gyres of the Nordic Seas. The equal distribution of sampled synthetic particles across water masses covering a wide time frame of anthropogenic influence suggests a system in full saturation rather than pronounced injection from European sources, through a complex circulation scheme connecting the entire Arctic Mediterranean. This circulation of microplastic through Arctic ecosystems may have large consequences to natural ecosystem health, highlighting an ever-increasing need for better waste management.
Collapse
Affiliation(s)
- Mats B O Huserbråten
- Department of Oceanography and Climate, Institute of Marine Research, Box 1870, 5817, Bergen, Norway.
| | - Tore Hattermann
- Norwegian Polar Institute, Tromsø, Norway.,Energy and Climate Group, Department of Physics and Technology, The Arctic University - University of Tromsø, Tromsø, Norway
| | - Cecilie Broms
- Department of Oceanography and Climate, Institute of Marine Research, Box 1870, 5817, Bergen, Norway
| | - Jon Albretsen
- Department of Oceanography and Climate, Institute of Marine Research, Box 1870, 5817, Bergen, Norway
| |
Collapse
|
11
|
An Intercomparison of Satellite Derived Arctic Sea Ice Motion Products. REMOTE SENSING 2022. [DOI: 10.3390/rs14051261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arctic sea ice motion information provides an important scientific basis for revealing the changing mechanism of Arctic sea ice and assessing the navigational safety of Arctic waterways. For now, many satellite derived Arctic sea ice motion products have been released but few studies have conducted comparisons of these products. In this study, eleven satellite sea ice motion products from the Ocean and Sea Ice Satellite Application Facility (OSI SAF), the National Snow and Ice Data Center (NSIDC), and the French Research Institute for the Exploitation of the Seas (Ifremer) were systematically evaluated and compared based on buoys from the International Arctic Buoy Program (IABP) and the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) over 2018–2020. The results show that the mean absolute errors (MAEs) of ice speed for these products are 1.15–2.26 km/d and the MAEs of ice motion angle are 14.93–23.19°. Among all products, Ifremer_AMSR2 achieves the best accuracy in terms of speed error, NSIDC_Pathfinder shows the lowest angle error and OSI-405-c_Merged performs best in sea-ice drift trajectory reconstruction. Moreover, season, region, data source, ice drift tracking algorithm, and time interval all influence the accuracy of these products: (1) The sea ice motion bias in the freezing season (1.04–1.96 km/d and 11.93–22.41°) is smaller than that in the melting season (1.13–3.90 km/d and 14.41–27.41°) for most of the products. (2) Most products perform worst in East Greenland, where ice movements are fast and complex. (3) The accuracies of the products derived from AMSR-2 remotely sensed data are better than those from other data sources. (4) The continuous maximum cross-correlation (CMCC) algorithm outperforms the maximum cross-correlation (MCC) algorithm in sea ice drift retrieval. (5) The MAEs of sea ice motion with longer time interval are relatively smaller. Overall, the results indicate that the eleven remote sensing Arctic sea ice drift products are of practical use for data assimilation and model validation if uncertainties are appropriately considered. Furthermore, this study provides some improvement directions for sea ice drift retrieval from satellite data.
Collapse
|
12
|
von Appen WJ, Waite AM, Bergmann M, Bienhold C, Boebel O, Bracher A, Cisewski B, Hagemann J, Hoppema M, Iversen MH, Konrad C, Krumpen T, Lochthofen N, Metfies K, Niehoff B, Nöthig EM, Purser A, Salter I, Schaber M, Scholz D, Soltwedel T, Torres-Valdes S, Wekerle C, Wenzhöfer F, Wietz M, Boetius A. Sea-ice derived meltwater stratification slows the biological carbon pump: results from continuous observations. Nat Commun 2021; 12:7309. [PMID: 34911949 PMCID: PMC8674288 DOI: 10.1038/s41467-021-26943-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
The ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.
Collapse
Affiliation(s)
- Wilken-Jon von Appen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| | - Anya M Waite
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Department of Oceanography and the Ocean Frontier Institute, Dalhousie University, Halifax, NS, Canada
| | - Melanie Bergmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christina Bienhold
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Olaf Boebel
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Astrid Bracher
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | | | - Jonas Hagemann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Mario Hoppema
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Morten H Iversen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- MARUM, University of Bremen, Bremen, Germany
| | - Christian Konrad
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- MARUM, University of Bremen, Bremen, Germany
| | - Thomas Krumpen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Normen Lochthofen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Katja Metfies
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Barbara Niehoff
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Eva-Maria Nöthig
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Autun Purser
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Ian Salter
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | | | - Daniel Scholz
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Thomas Soltwedel
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Sinhue Torres-Valdes
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Claudia Wekerle
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Frank Wenzhöfer
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Matthias Wietz
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Fadeev E, Rogge A, Ramondenc S, Nöthig EM, Wekerle C, Bienhold C, Salter I, Waite AM, Hehemann L, Boetius A, Iversen MH. Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean. Commun Biol 2021; 4:1255. [PMID: 34732822 PMCID: PMC8566512 DOI: 10.1038/s42003-021-02776-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 10/09/2021] [Indexed: 01/04/2023] Open
Abstract
Arctic Ocean sea ice cover is shrinking due to warming. Long-term sediment trap data shows higher export efficiency of particulate organic carbon in regions with seasonal sea ice compared to regions without sea ice. To investigate this sea-ice enhanced export, we compared how different early summer phytoplankton communities in seasonally ice-free and ice-covered regions of the Fram Strait affect carbon export and vertical dispersal of microbes. In situ collected aggregates revealed two-fold higher carbon export of diatom-rich aggregates in ice-covered regions, compared to Phaeocystis aggregates in the ice-free region. Using microbial source tracking, we found that ice-covered regions were also associated with more surface-born microbial clades exported to the deep sea. Taken together, our results showed that ice-covered regions are responsible for high export efficiency and provide strong vertical microbial connectivity. Therefore, continuous sea-ice loss may decrease the vertical export efficiency, and thus the pelagic-benthic coupling, with potential repercussions for Arctic deep-sea ecosystems.
Collapse
Affiliation(s)
- Eduard Fadeev
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany ,grid.10420.370000 0001 2286 1424Present Address: Department of Functional and Evolutionary Ecology, University of Vienna, A-1090 Vienna, Austria
| | - Andreas Rogge
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,grid.9764.c0000 0001 2153 9986Institute for Ecosystem Research, Kiel University, D-24118 Kiel, Germany
| | - Simon Ramondenc
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany
| | - Eva-Maria Nöthig
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany
| | - Claudia Wekerle
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany
| | - Christina Bienhold
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
| | - Ian Salter
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,grid.424612.7Faroe Marine Research Institute, FO 100 Tórshavn, Faroe Islands
| | - Anya M. Waite
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,Ocean Frontier Institute, NS, B3H 4R2 Halifax, Canada
| | - Laura Hehemann
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany
| | - Antje Boetius
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany ,grid.7704.40000 0001 2297 4381MARUM and University of Bremen, D-28359 Bremen, Germany
| | - Morten H. Iversen
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, D-27570 Bremerhaven, Germany ,grid.7704.40000 0001 2297 4381MARUM and University of Bremen, D-28359 Bremen, Germany
| |
Collapse
|
14
|
Separating individual contributions of major Siberian rivers in the Transpolar Drift of the Arctic Ocean. Sci Rep 2021; 11:8216. [PMID: 33859225 PMCID: PMC8050230 DOI: 10.1038/s41598-021-86948-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
The Siberian rivers supply large amounts of freshwater and terrestrial derived material to the Arctic Ocean. Although riverine freshwater and constituents have been identified in the central Arctic Ocean, the individual contributions of the Siberian rivers to and their spatiotemporal distributions in the Transpolar Drift (TPD), the major wind-driven current in the Eurasian sector of the Arctic Ocean, are unknown. Determining the influence of individual Siberian rivers downstream the TPD, however, is critical to forecast responses in polar and sub-polar hydrography and biogeochemistry to the anticipated individual changes in river discharge and freshwater composition. Here, we identify the contributions from the largest Siberian river systems, the Lena and Yenisei/Ob, in the TPD using dissolved neodymium isotopes and rare earth element concentrations. We further demonstrate their vertical and lateral separation that is likely due to distinct temporal emplacements of Lena and Yenisei/Ob waters in the TPD as well as prior mixing of Yenisei/Ob water with ambient waters.
Collapse
|
15
|
Nöthig EM, Lalande C, Fahl K, Metfies K, Salter I, Bauerfeind E. Annual cycle of downward particle fluxes on each side of the Gakkel Ridge in the central Arctic Ocean. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190368. [PMID: 32862819 PMCID: PMC7481669 DOI: 10.1098/rsta.2019.0368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250 m) and approximately 150 m above seafloor at approximately 3500 and 4000 m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO3), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren Eurasian Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Collapse
Affiliation(s)
- Eva-Maria Nöthig
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven, Bremen 27570, Germany
- e-mail:
| | - Catherine Lalande
- Amundsen Science, Pavillon Alexandre-Vachon, Université Laval, Québec, Québec, CanadaG1 V 0A6
| | - Kirsten Fahl
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven, Bremen 27570, Germany
| | - Katja Metfies
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven, Bremen 27570, Germany
| | - Ian Salter
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven, Bremen 27570, Germany
- Faroe Marine Research Institute, Tørshaven, Faroe Islands
| | - Eduard Bauerfeind
- Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven, Bremen 27570, Germany
| |
Collapse
|
16
|
Orkney A, Platt T, Narayanaswamy BE, Kostakis I, Bouman HA. Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190357. [PMID: 32862820 PMCID: PMC7481673 DOI: 10.1098/rsta.2019.0357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Increasing contributions of prymnesiophytes such as Phaeocystis pouchetii and Emiliania huxleyi to Barents Sea (BS) phytoplankton production have been suggested based on in situ observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic in situ observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a (chl-a) concentration or indices of pigment packaging may, however, fail to distinguish Phaeocystis from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and Phaeocystis blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in chl-a concentrations, reported by previous researchers, may be partly explained by increasing frequencies of Phaeocystis blooms. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Collapse
Affiliation(s)
- A. Orkney
- Department of Earth Sciences, University of Oxford, 3 South Parks Road, Oxford OX1 3AN, UK
- e-mail:
| | - T. Platt
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | - B. E. Narayanaswamy
- Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK
| | - I. Kostakis
- School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK
- Physics Department, University of Strathclyde, Glasgow G4 ONG, UK
| | - H. A. Bouman
- Department of Earth Sciences, University of Oxford, 3 South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
17
|
Kanhai LDK, Gardfeldt K, Krumpen T, Thompson RC, O'Connor I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci Rep 2020; 10:5004. [PMID: 32193433 PMCID: PMC7081216 DOI: 10.1038/s41598-020-61948-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/26/2020] [Indexed: 01/23/2023] Open
Abstract
Within the past decade, an alarm was raised about microplastics in the remote and seemingly pristine Arctic Ocean. To gain further insight about the issue, microplastic abundance, distribution and composition in sea ice cores (n = 25) and waters underlying ice floes (n = 22) were assessed in the Arctic Central Basin (ACB). Potential microplastics were visually isolated and subsequently analysed using Fourier Transform Infrared (FT-IR) Spectroscopy. Microplastic abundance in surface waters underlying ice floes (0–18 particles m−3) were orders of magnitude lower than microplastic concentrations in sea ice cores (2–17 particles L−1). No consistent pattern was apparent in the vertical distribution of microplastics within sea ice cores. Backward drift trajectories estimated that cores possibly originated from the Siberian shelves, western Arctic and central Arctic. Knowledge about microplastics in environmental compartments of the Arctic Ocean is important in assessing the potential threats posed by microplastics to polar organisms.
Collapse
Affiliation(s)
- La Daana K Kanhai
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Galway, Ireland. .,Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, United Kingdom.
| | - Katarina Gardfeldt
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Thomas Krumpen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Richard C Thompson
- Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, United Kingdom
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Galway, Ireland
| |
Collapse
|