1
|
Poding LH, Jägers P, Herlitze S, Huhn M. Diversity and function of fluorescent molecules in marine animals. Biol Rev Camb Philos Soc 2024; 99:1391-1410. [PMID: 38468189 DOI: 10.1111/brv.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.
Collapse
Affiliation(s)
- Lars H Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| |
Collapse
|
2
|
Nicolaï MPJ, Bok MJ, Abalos J, D'Alba L, Shawkey MD, Goldenberg J. The function and consequences of fluorescence in tetrapods. Proc Natl Acad Sci U S A 2024; 121:e2318189121. [PMID: 38814876 PMCID: PMC11181051 DOI: 10.1073/pnas.2318189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Fluorescence, the optical phenomenon whereby short-wavelength light is absorbed and emitted at longer wavelengths, has been widely described in aquatic habitats, in both invertebrates and fish. Recent years have seen a stream of articles reporting fluorescence, ranging from frogs, platypus, to even fully terrestrial organisms such as flying squirrels, often explicitly or implicitly linking the presence of fluorescence with sexual selection and communication. However, many of these studies fail to consider the physiological requirements of evolutionary stable signaling systems, the environmental dependence of perception, or the possible adaptive role of fluorescent coloration in a noncommunicative context. More importantly, the idea that fluorescence may simply constitute an indirect by-product of selection on other traits is often not explored. This is especially true for terrestrial systems where environmental light conditions are often not amenable for fluorescent signaling in contrast to, for example, aquatic habitats in which spectral properties of water promote functional roles for fluorescence. Despite the appeal of previously unknown ways in which coloration may drive evolution, the investigation of a putative role of fluorescence in communication must be tempered by a realistic understanding of its limitations. Here, we not only highlight and discuss the key body of literature but also address the potential pitfalls when reporting fluorescence and how to solve them. In addition, we propose exciting different research avenues to advance the field of tetrapod fluorescence.
Collapse
Affiliation(s)
- Michaël P. J. Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent9000, Belgium
- Museum of Comparative Zoology, Harvard University, Cambridge, MA
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, University of Lund, Lund22362, Sweden
| | - Javier Abalos
- Division of Biodiversity and Evolution, Department of Biology, Lund University, 223 62Lund, Sweden
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980Paterna, Spain
| | - Liliana D'Alba
- Naturalis Biodiversity Center, 2333 CRLeiden, The Netherlands
| | - Matthew D. Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent9000, Belgium
| | - Jonathan Goldenberg
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent9000, Belgium
- Division of Biodiversity and Evolution, Department of Biology, Lund University, 223 62Lund, Sweden
| |
Collapse
|
3
|
Zenchyzen B, Acorn JH, Merkosky K, Hall JC. Shining a light on UV-fluorescent floral nectar after 50 years. Sci Rep 2024; 14:11992. [PMID: 38796543 PMCID: PMC11128001 DOI: 10.1038/s41598-024-62626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Nature is aglow with numerous captivating examples of UV-fluorescence in the animal kingdom. Despite a putative role as a visual signal, exploration of UV-fluorescence in plants and its role in plant-animal interactions is lagging in comparison. Almost 50 years ago, UV-fluorescence of floral nectar, a crucial reward for pollinators, was reported for 23 flowering plant species. Since this intriguing discovery, UV-fluorescent nectar has only seldom been addressed in the scientific literature and has not been scrutinized in a phylogenetic or ecological context. Here, we report the prevalence of vibrant UV-fluorescent floral nectar across the family Cleomaceae, including the first photographic documentation in vivo colour for flowering plants. Though Cleomaceae flowers are morphologically diverse varying in colour, nectary prominence, and nectar volume, UV-fluorescent floral nectar may be a ubiquitous characteristic of the family. Fluorescence spectra show that the identity and number of fluorescent compounds in floral nectar may differ among Cleomaceae species. As Cleomaceae pollinators range from insects to bats and birds, we suggest that the UV-fluorescent floral nectar not only functions as a visual cue for the diurnal pollinators but also for the nocturnal/crepuscular pollinators in low light settings.
Collapse
Affiliation(s)
- Brandi Zenchyzen
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - John H Acorn
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Kian Merkosky
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
4
|
Wan YC, Navarrete Méndez MJ, O'Connell LA, Uricchio LH, Roland AB, Maan ME, Ron SR, Betancourth-Cundar M, Pie MR, Howell KA, Richards-Zawacki CL, Cummings ME, Cannatella DC, Santos JC, Tarvin RD. Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs. Mol Biol Evol 2023; 40:msad206. [PMID: 37791477 PMCID: PMC10548314 DOI: 10.1093/molbev/msad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.
Collapse
Affiliation(s)
- Yin Chen Wan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - María José Navarrete Méndez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Lawrence H Uricchio
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Biology, Tufts University, Medford, MA, USA
| | - Alexandre-Benoit Roland
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Santiago R Ron
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Marcio R Pie
- Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
- Biology Department, Edge Hill University, Ormskirk, United Kingdom
| | - Kimberly A Howell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Molly E Cummings
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - David C Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York City, NY, USA
| | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Nair SNA, Johnson AJ, Sabu T, Gokul BS, Yeshwanth HM, Sabulal B. 'Sharpshooter' in Botanic Garden: the tale of a rare plant-insect interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:603-611. [PMID: 36876401 DOI: 10.1111/plb.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Here we report a unique plant-insect interaction between the leafhopper Aloka depressa (tribe Phlogisini) and the host liana, Diploclisia glaucescens, from a Botanic Garden located at the southern edge of Western Ghats in India. Field observations and SEM micrographs were employed to derive evidences on this rare plant-insect interaction. 20-Hydroxyecdysone (20E), insect moulting hormone, was detected and quantified in the host plant D. glaucescens using HPTLC-densitometry. 20E was isolated and characterized from D. glaucescens using column chromatography, 1H-, 13C-NMR and HR-MS. 20E was also detected in A. depressa excrement using HPTLC-densitometry. The leafhopper A. depressa is functioning as a 'sharpshooter' drawing nutrients from the host liana, D. glaucescens, and flinging the waste fluid as droplets through their tail ends. SEM micrographs of A. depressa revealed its external morphological features, characteristic of a sharpshooter. We quantified 20E (0.44-1.44%, dry wt.) in various parts of D. glaucescens. 20E (1.47%, dry wt.) was also detected in the excrement of A. depressa. This plant (D. glaucescens)-insect (A. depressa) association crucially is not damaging the host liana. Considering the diseases caused by sharpshooting leafhoppers in the Americas, this association and the survival of the host plant (D. glaucescens) is illustrating a unique plant-insect interaction.
Collapse
Affiliation(s)
- S N A Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - A J Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - T Sabu
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - B S Gokul
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
- University of Kerala, Thiruvananthapuram, Kerala, India
| | - H M Yeshwanth
- National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - B Sabulal
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Toussaint SLD, Ponstein J, Thoury M, Métivier R, Kalthoff DC, Habermeyer B, Guilard R, Bock S, Mortensen P, Sandberg S, Gueriau P, Amson E. Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integr Zool 2023; 18:15-26. [PMID: 35500584 DOI: 10.1111/1749-4877.12655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.
Collapse
Affiliation(s)
- Séverine L D Toussaint
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Jasper Ponstein
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,AG Paläobiologie und Evolution, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, France
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Roger Guilard
- ICMUB, UMR CNRS 6302, Université de Bourgogne Franche-Comté, France
| | - Steffen Bock
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Haukeland University Hospital, Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), and Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Norway
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
Essner RL, Pereira REE, Blackburn DC, Singh AL, Stanley EL, Moura MO, Confetti AE, Pie MR. Semicircular canal size constrains vestibular function in miniaturized frogs. SCIENCE ADVANCES 2022; 8:eabn1104. [PMID: 35704574 PMCID: PMC9200278 DOI: 10.1126/sciadv.abn1104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Miniaturization has evolved repeatedly in frogs in the moist leaf litter environments of rainforests worldwide. Miniaturized frogs are among the world's smallest vertebrates and exhibit an array of enigmatic features. One area where miniaturization has predictable consequences is the vestibular system, which acts as a gyroscope, providing sensory information about movement and orientation. We investigated the vestibular system of pumpkin toadlets, Brachycephalus (Anura: Brachycephalidae), a clade of miniaturized frogs from Brazil. The semicircular canals of miniaturized frogs are the smallest recorded for adult vertebrates, resulting in low sensitivity to angular acceleration due to insufficient displacement of endolymph. This translates into a lack of postural control during jumping in Brachycephalus and represents a physical constraint resulting from Poiseuille's law, which governs movement of fluids within tubes.
Collapse
Affiliation(s)
- Richard L. Essner
- Department of Biological Sciences, Southern Illinois University Edwardsville , Edwardsville, IL, USA
| | - Rudá E. E. Pereira
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - David C. Blackburn
- Florida Museum of Natural History, University of Florida, , Gainesville, FL, USA
| | - Amber L. Singh
- Florida Museum of Natural History, University of Florida, , Gainesville, FL, USA
| | - Edward L. Stanley
- Florida Museum of Natural History, University of Florida, , Gainesville, FL, USA
| | - Mauricio O. Moura
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Mater Natura—Instituto de Estudos Ambientais, Curitiba, Paraná, Brazil
| | - André E. Confetti
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Marcio R. Pie
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| |
Collapse
|
8
|
Maria M, Al-Razi H, Borzée A, Bin Muzaffar S. Biofluorescence in the herpetofauna of northeast Bangladesh. HERPETOZOA 2022. [DOI: 10.3897/herpetozoa.35.e76225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluorescence is a poorly documented phenomenon in vertebrates and has been suggested to play several biological roles. With increased study, the number of species in which biofluorescence has been identified is increasing steadily. We conducted a UV light survey for biofluorescence in the herpetofauna in Lawachara National Park, Bangladesh and found biofluorescence in one amphibian (Microhyla berdmorei) and three reptile species (Boiga cyanea, Cyrtodactylus tripuraensis and Hemidactylus platyurus).
Collapse
|
9
|
Condez TH, Monteiro JP, Malagoli LR, Trevine VC, Schunck F, Garcia PC, Haddad CF. Notes on the Hyperossified Pumpkin Toadlets of the Genus Brachycephalus (Anura: Brachycephalidae) with the Description of a New Species. HERPETOLOGICA 2021. [DOI: 10.1655/herpetologica-d-20-00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thais H. Condez
- Instituto Nacional da Mata Atlântica (INMA), 29.650–000, Santa Teresa, Espírito Santo, Brazil
| | - Juliane P.C. Monteiro
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), 13506–900, Rio Claro, São Paulo, Brazil
| | - Leo R. Malagoli
- Fundação para a Conservação e a Produção Florestal do Estado de São Paulo, Parque Estadual da Serra do Mar, Núcleo São Sebastião, 11600–000, São Sebastião, São Paulo, Brazil
| | - Vivian C. Trevine
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503–900, São Paulo, São Paulo, Brazil
| | - Fabio Schunck
- Comitê Brasileiro de Registros Ornitológicos, www.cbro.org.br, 04785–040, São Paulo, São Paulo, Brazil
| | - Paulo C.A. Garcia
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Zoologia, Laboratório de Herpetologia, 31270–910, Belo Horizonte, Minas Gerais, Brazil
| | - Célio F.B. Haddad
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), 13506–900, Rio Claro, São Paulo, Brazil
| |
Collapse
|
10
|
Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae). Sci Rep 2021; 11:4125. [PMID: 33603032 PMCID: PMC7892538 DOI: 10.1038/s41598-021-83588-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/01/2021] [Indexed: 11/24/2022] Open
Abstract
Biofluorescence has been detected in several nocturnal-crepuscular organisms from invertebrates to birds and mammals. Biofluorescence in mammals has been detected across the phylogeny, including the monotreme duck-billed platypus (Ornithorhyncus anatinus), marsupial opossums (Didelphidae), and New World placental flying squirrels (Gluacomys spp.). Here, we document vivid biofluorescence of springhare (Pedetidae) in both museum specimens and captive individuals—the first documented biofluorescence of an Old World placental mammal. We explore the variation in biofluorescence across our sample and characterize its physical and chemical properties. The striking visual patterning and intensity of color shift was unique relative to biofluorescence found in other mammals. We establish that biofluorescence in springhare likely originates within the cuticle of the hair fiber and emanates, at least partially, from several fluorescent porphyrins and potentially one unassigned molecule absent from our standard porphyrin mixture. This discovery further supports the hypothesis that biofluorescence may be ecologically important for nocturnal-crepuscular mammals and suggests that it may be more broadly distributed throughout Mammalia than previously thought.
Collapse
|
11
|
Prötzel D, Heß M, Schwager M, Glaw F, Scherz MD. Neon-green fluorescence in the desert gecko Pachydactylus rangei caused by iridophores. Sci Rep 2021; 11:297. [PMID: 33432052 PMCID: PMC7801506 DOI: 10.1038/s41598-020-79706-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Biofluorescence is widespread in the natural world, but only recently discovered in terrestrial vertebrates. Here, we report on the discovery of iridophore-based, neon-green flourescence in the gecko Pachydactylus rangei, localised to the skin around the eyes and along the flanks. The maximum emission of the fluorescence is at a wavelength of 516 nm in the green spectrum (excitation maximum 465 nm, blue) with another, smaller peak at 430 nm. The fluorescent regions of the skin show large numbers of iridophores, which are lacking in the non-fluorescent parts. Two types of iridophores are recognized, fluorescent iridophores and basal, non-fluorescent iridophores, the latter of which might function as a mirror, amplifying the omnidirectional fluorescence. The strong intensity of the fluorescence (quantum yield of 12.5%) indicates this to be a highly effective mechanism, unique among tetrapods. Although the fluorescence is associated with iridophores, the spectra of emission and excitation as well as the small Stokes shifts argue against guanine crystals as its source, but rather a rigid pair of fluorophores. Further studies are necessary to identify their morphology and chemical structures. We hypothesise that this nocturnal gecko uses the neon-green fluorescence, excited by moonlight, for intraspecific signalling in its open desert habitat.
Collapse
Affiliation(s)
- David Prötzel
- grid.452282.b0000 0001 1013 3702Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 Munich, Germany
| | - Martin Heß
- grid.5252.00000 0004 1936 973XDepartment Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Martina Schwager
- grid.434949.70000 0001 1408 3925Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Lothstr. 34, 80335 Munich, Germany
| | - Frank Glaw
- grid.452282.b0000 0001 1013 3702Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 Munich, Germany
| | - Mark D. Scherz
- grid.452282.b0000 0001 1013 3702Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 Munich, Germany
| |
Collapse
|
12
|
Vera Candioti F, Goldberg J, Akmentins MS, Nogueira Costa P, Goulart Taucce PP, Pombal J. Skeleton in the closet: hidden diversity in patterns of cranial and postcranial ontogeny in Neotropical direct-developing frogs (Anura: Brachycephaloidea). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00467-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Kaye TG, Pittman M. Fluorescence‐based detection of field targets using an autonomous unmanned aerial vehicle system. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas G. Kaye
- Foundation for Scientific Advancement Sierra Vista AZ USA
- Laboratory for Space Research The University of Hong Kong Hong Kong SAR China
| | - Michael Pittman
- Laboratory for Space Research The University of Hong Kong Hong Kong SAR China
- Vertebrate Palaeontology Laboratory Division of Earth and Planetary Science The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
14
|
Donner K, Yovanovich CAM. A frog's eye view: Foundational revelations and future promises. Semin Cell Dev Biol 2020; 106:72-85. [PMID: 32466970 DOI: 10.1016/j.semcdb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
From the mid-19th century until the 1980's, frogs and toads provided important research models for many fundamental questions in visual neuroscience. In the present century, they have been largely neglected. Yet they are animals with highly developed vision, a complex retina built on the basic vertebrate plan, an accessible brain, and an experimentally useful behavioural repertoire. They also offer a rich diversity of species and life histories on a reasonably restricted physiological and evolutionary background. We suggest that important insights may be gained from revisiting classical questions in anurans with state-of-the-art methods. At the input to the system, this especially concerns the molecular evolution of visual pigments and photoreceptors, at the output, the relation between retinal signals, brain processing and behavioural decision-making.
Collapse
Affiliation(s)
- Kristian Donner
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; PB 65 (Viikinkaari 1), 00014, University of Helsinki, Finland.
| | - Carola A M Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil; Rua do Matão, Trav. 14, N°101, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
15
|
Lamb JY, Davis MP. Salamanders and other amphibians are aglow with biofluorescence. Sci Rep 2020; 10:2821. [PMID: 32108141 PMCID: PMC7046780 DOI: 10.1038/s41598-020-59528-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/04/2023] Open
Abstract
Biofluorescence is the absorption of electromagnetic radiation (light) at one wavelength followed by its reemission at a lower energy and longer wavelength by a living organism. Previous studies have documented the widespread presence of biofluorescence in some animals, including cnidarians, arthropods, and cartilaginous and ray-finned fishes. Many studies on biofluorescence have focused on marine animals (cnidarians, cartilaginous and ray-finned fishes) but we know comparatively little about the presence of biofluorescence in tetrapods. We show for the first time that biofluorescence is widespread across Amphibia, with a focus on salamanders (Caudata), which are a diverse group with a primarily Holarctic distribution. We find that biofluorescence is not restricted to any particular family of salamanders, there is striking variation in their fluorescent patterning, and the primary wavelengths emitted in response to blue excitation light are within the spectrum of green light. Widespread biofluorescence across the amphibian radiation is a previously undocumented phenomenon that could have significant ramifications for the ecology and evolution of these diverse and declining vertebrates. Our results provide a roadmap for future studies on the characterization of molecular mechanisms of biofluorescence in amphibians, as well as directions for investigations into the potential impact of biofluorescence on the visual ecology and behavior of biofluorescent amphibians.
Collapse
Affiliation(s)
- Jennifer Y Lamb
- St. Cloud State University, Department of Biology, St. Cloud, Minnesota, 56301, USA.
| | - Matthew P Davis
- St. Cloud State University, Department of Biology, St. Cloud, Minnesota, 56301, USA.
| |
Collapse
|
16
|
Camacho C, Negro JJ, Redondo I, Palacios S, Sáez-Gómez P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Sci Rep 2019; 9:19115. [PMID: 31836769 PMCID: PMC6910967 DOI: 10.1038/s41598-019-55522-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
Many nocturnal animals, including invertebrates such as scorpions and a variety of vertebrate species, including toadlets, flying squirrels, owls, and nightjars, emit bright fluorescence under ultraviolet light. However, the ecological significance of this unique coloration so attached to nocturnality remains obscure. Here, we used an intensively studied population of migratory red-necked nightjars (Caprimulgus ruficollis) to investigate inter-individual variation in porphyrin-based pink fluorescence according to sex, age, body condition, time of the year, and the extent of white plumage patches known to be involved in sexual communication. Males and females exhibited a similar extent of pink fluorescence on the under-side of the wings in both juvenile and adult birds, but males had larger white patches than females. Body condition predicted the extent of pink fluorescence in juvenile birds, but not in adults. On average, the extent of pink fluorescence in juveniles increased by ca. 20% for every 10-g increase in body mass. For both age classes, there was a slight seasonal increase (1–4% per week) in the amount of fluorescence. Our results suggest that the porphyrin-based coloration of nightjars might signal individual quality, at least in their first potential breeding season, although the ability of these and other nocturnal birds to perceive fluorescence remains to be unequivocally proven.
Collapse
Affiliation(s)
- Carlos Camacho
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Seville, Spain.,Department of Biology, Centre for Animal Movement Research (CAnMove). Lund University. Ecology Building, 223 62, Lund, Sweden
| | - Juan José Negro
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Seville, Spain.
| | - Iraida Redondo
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Sebastián Palacios
- Monitoring Team of Natural Processes (ICTS-RBD). Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Seville, Spain
| | - Pedro Sáez-Gómez
- Department of Integrative Sciences, University of Huelva, Campus Universitario El Carmen, Av. Andalucía, 21071, Huelva, Spain.,Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, 03080, Alicante, Spain
| |
Collapse
|