1
|
Bonilla JO, Jofré RV, Callegari EA, Paez MD, Kurina-Sanz M, Magallanes-Noguera C. Unraveling the molecular response of Brassica napus hairy roots in the active Naphthol blue-black removal: Insights from proteomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135425. [PMID: 39137543 DOI: 10.1016/j.jhazmat.2024.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In vitro plant cultures are able to remove and metabolise xenobiotics, making them promising tools for decontamination strategies. In this work, we evaluated Brassica napus hairy roots (HRs) to tolerate and remove high concentrations of the azo dye Naphthol Blue-Black (NBB). Experiments were performed using both growing and resting culture systems at different pHs. Reuse of HRs biomass was evaluated in successive decolourisation cycles. Proteomics was applied to understand the molecular responses likely to be involved in the tolerance and removal of NBB. The HRs tolerated up to 480 µg mL-1 NBB, and 100 % removal was achieved at 180 µg mL-1 NBB after 10 days using both culture systems. Interestingly, the HRs are robust enough to be reused, showing 55-60 % removal even after three reuse cycles. The highest dye removal rates were achieved during the first 2 days of incubation, as initial removal is mainly driven by passive processes. Active mechanisms are triggered later by regulating the expression of proteins with different biological functions, mainly those related to xenobiotic metabolism, such as hydrolytic and redox enzymes. These results suggest that B. napus HRs are a robust tool that could make a significant contribution to textile wastewater treatment.
Collapse
Affiliation(s)
- José Oscar Bonilla
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina
| | - Rosario Valentina Jofré
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina
| | - Eduardo Alberto Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Marcela Kurina-Sanz
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina
| | - Cynthia Magallanes-Noguera
- INTEQUI-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis D5700HGD, Argentina.
| |
Collapse
|
2
|
Garavaglia M, McGregor C, Bommareddy RR, Irorere V, Arenas C, Robazza A, Minton NP, Kovacs K. Stable Platform for Mevalonate Bioproduction from CO 2. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13486-13499. [PMID: 39268049 PMCID: PMC11388446 DOI: 10.1021/acssuschemeng.4c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Stable production of value-added products using a microbial chassis is pivotal for determining the industrial suitability of the engineered biocatalyst. Microbial cells often lose the multicopy expression plasmids during long-term cultivations. Owing to the advantages related to titers, yields, and productivities when using a multicopy expression system compared with genomic integrations, plasmid stability is essential for industrially relevant biobased processes. Cupriavidus necator H16, a facultative chemolithoautotrophic bacterium, has been successfully engineered to convert inorganic carbon obtained from CO2 fixation into value-added products. The application of this unique capability in the biotech industry has been hindered by C. necator H16 inability to stably maintain multicopy plasmids. In this study, we designed and tested plasmid addiction systems based on the complementation of essential genes. Among these, implementation of a plasmid addiction tool based on the complementation of mutants lacking RubisCO, which is essential for CO2 fixation, successfully stabilized a multicopy plasmid. Expressing the mevalonate pathway operon (MvaES) using this addiction system resulted in the production of ∼10 g/L mevalonate with carbon yields of ∼25%. The mevalonate titers and yields obtained here using CO2 are the highest achieved to date for the production of C6 compounds from C1 feedstocks.
Collapse
Affiliation(s)
- Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Callum McGregor
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, U.K
| | - Victor Irorere
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- DSM-Firmenich, 250 Plainsboro Road, Plainsboro, New Jersey 08536, United States
| | - Christian Arenas
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Alberto Robazza
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Karlsruhe Institute of Technology (KIT), PO Box 6980, Karlsruhe 76049, Germany
| | - Nigel Peter Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Katalin Kovacs
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- School of Pharmacy, University Park, The University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
3
|
Bielecka M, Stafiniak M, Pencakowski B, Ślusarczyk S, Jastrzębski JP, Paukszto Ł, Łaczmański Ł, Gharibi S, Matkowski A. Comparative transcriptomics of two Salvia subg. Perovskia species contribute towards molecular background of abietane-type diterpenoid biosynthesis. Sci Rep 2024; 14:3046. [PMID: 38321199 PMCID: PMC10847172 DOI: 10.1038/s41598-024-53510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Tanshinones, are a group of diterpenoid red pigments present in Danshen - an important herbal drug of Traditional Chinese Medicine which is a dried root of Salvia miltiorrhiza Bunge. Some of the tanshinones are sought after as pharmacologically active natural products. To date, the biosynthetic pathway of tanshinones has been only partially elucidated. These compounds are also present in some of the other Salvia species, i.a. from subgenus Perovskia, such as S. abrotanoides (Kar.) Sytsma and S. yangii B.T. Drew. Despite of the close genetic relationship between these species, significant qualitative differences in their diterpenoid profile have been discovered. In this work, we have used the Liquid Chromatography-Mass Spectrometry analysis to follow the content of diterpenoids during the vegetation season, which confirmed our previous observations of a diverse diterpenoid profile. As metabolic differences are reflected in different transcript profile of a species or tissues, we used metabolomics-guided transcriptomic approach to select candidate genes, which expression possibly led to observed chemical differences. Using an RNA-sequencing technology we have sequenced and de novo assembled transcriptomes of leaves and roots of S. abrotanoides and S. yangii. As a result, 134,443 transcripts were annotated by UniProt and 56,693 of them were assigned as Viridiplantae. In order to seek for differences, the differential expression analysis was performed, which revealed that 463, 362, 922 and 835 genes indicated changes in expression in four comparisons. GO enrichment analysis and KEGG functional analysis of selected DEGs were performed. The homology and expression of two gene families, associated with downstream steps of tanshinone and carnosic acid biosynthesis were studied, namely: cytochromes P-450 and 2-oxoglutarate-dependend dioxygenases. Additionally, BLAST analysis revealed existence of 39 different transcripts related to abietane diterpenoid biosynthesis in transcriptomes of S. abrotanoides and S. yangii. We have used quantitative real-time RT-PCR analysis of selected candidate genes, to follow their expression levels over the vegetative season. A hypothesis of an existence of a multifunctional CYP76AH89 in transcriptomes of S. abrotanoides and S. yangii is discussed and potential roles of other CYP450 homologs are speculated. By using the comparative transcriptomic approach, we have generated a dataset of candidate genes which provides a valuable resource for further elucidation of tanshinone biosynthesis. In a long run, our investigation may lead to optimization of diterpenoid profile in S. abrotanoides and S. yangii, which may become an alternative source of tanshinones for further research on their bioactivity and pharmacological therapy.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland.
| | - Marta Stafiniak
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/113, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Rudolfa Weigla 12, Wrocław, Poland
| | - Shima Gharibi
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, Wrocław, Poland
| |
Collapse
|
4
|
Wang Q, Zhao X, Jiang Y, Jin B, Wang L. Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants. Biomolecules 2023; 13:1725. [PMID: 38136596 PMCID: PMC10741589 DOI: 10.3390/biom13121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Terpenoids are the broadest and richest group of chemicals obtained from plants. These plant-derived terpenoids have been extensively utilized in various industries, including food and pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants, emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances in the technology of sequencing, the genomes of certain important medicinal plants have been assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba, and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment interactions as well as their significance in the pharmaceutical and food industries. Additionally, we highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology seeding, and genetic engineering in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.Z.); (Y.J.); (B.J.)
| |
Collapse
|
5
|
Alcalde MA, Hidalgo-Martinez D, Bru Martínez R, Sellés-Marchart S, Bonfill M, Palazon J. Insights into enhancing Centella asiatica organ cell biofactories via hairy root protein profiling. FRONTIERS IN PLANT SCIENCE 2023; 14:1274767. [PMID: 37965024 PMCID: PMC10642384 DOI: 10.3389/fpls.2023.1274767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
Recent advancements in plant biotechnology have highlighted the potential of hairy roots as a biotechnological platform, primarily due to their rapid growth and ability to produce specialized metabolites. This study aimed to delve deeper into hairy root development in C. asiatica and explore the optimization of genetic transformation for enhanced bioactive compound production. Previously established hairy root lines of C. asiatica were categorized based on their centelloside production capacity into HIGH, MID, or LOW groups. These lines were then subjected to a meticulous label-free proteomic analysis to identify and quantify proteins. Subsequent multivariate and protein network analyses were conducted to discern proteome differences and commonalities. Additionally, the quantification of rol gene copy numbers was undertaken using qPCR, followed by gene expression measurements. From the proteomic analysis, 213 proteins were identified. Distinct proteome differences, especially between the LOW line and other lines, were observed. Key proteins related to essential processes like photosynthesis and specialized metabolism were identified. Notably, potential biomarkers, such as the Tr-type G domain-containing protein and alcohol dehydrogenase, were found in the HIGH group. The presence of ornithine cyclodeaminase in the hairy roots emerged as a significant biomarker linked with centelloside production capacity lines, indicating successful Rhizobium-mediated genetic transformation. However, qPCR results showed an inconsistency with rol gene expression levels, with the HIGH line displaying notably higher expression, particularly of the rolD gene. The study unveiled the importance of ornithine cyclodeaminase as a traceable biomarker for centelloside production capacity. The strong correlation between this biomarker and the rolD gene emphasizes its potential role in optimizing genetic transformation processes in C. asiatica.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Biotechnology, Health and Education Research Group, Posgraduate School, Cesar Vallejo University, Trujillo, Peru
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Roque Bru Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology, Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology, Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
You H, Li S, Chen Y, Lin J, Wang Z, Dennis M, Li C, Yang D. Global proteome and lysine succinylation analyses provide insights into the secondary metabolism in Salvia miltiorrhiza. J Proteomics 2023; 288:104959. [PMID: 37478968 DOI: 10.1016/j.jprot.2023.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/10/2023] [Accepted: 07/01/2023] [Indexed: 07/23/2023]
Abstract
Danshen, belongs to the Lamiaceae family, and its scientific name is Salvia miltiorrhiza Bunge. It is a valuable medicinal plant to prevent and treat cardiovascular and cerebrovascular diseases. Lysine succinylation, a widespread modification found in various organisms, plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. Our findings reveal 566 lysine succinylation sites in 348 protein sequences. We observed 110 succinylated proteins related to secondary metabolism, totaling 210 modification sites. Our analysis identified 53 types of enzymes among the succinylated proteins, including phenylalanine ammonia-lyase (PAL) and aldehyde dehydrogenase (ALDH). PAL, a crucial enzyme involved in the biosynthesis of rosmarinic acid and flavonoids, displayed succinylation at two sites. ALDH, which participates in the phenylpropane metabolic pathway, was succinylated at 8 eight sites. These observations suggest that lysine succinylation may play a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on plant succinylation, specifically as a reference point. SIGNIFICANCE: Salvia miltiorrhiza Bunge is a valuable medicinal plant that prevents and treats cardiovascular and cerebrovascular diseases. Lysine succinylation plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. These observations suggest that lysine succinylation may act as a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on succinylation in plants, specifically as a reference point.
Collapse
Affiliation(s)
- Huaqian You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China; College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Yiwen Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Zixuan Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Mans Dennis
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
7
|
Wang CH, Hou J, Deng HK, Wang LJ. Microbial Production of Mevalonate. J Biotechnol 2023; 370:1-11. [PMID: 37209831 DOI: 10.1016/j.jbiotec.2023.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Mevalonate, an important intermediate product of the mevalonate pathway, has a broad spectrum of applications. With the rapid growth of metabolic engineering and synthetic biology, mevalonate biosynthesis by microorganisms is feasible and holds great promise in the future. In this review, we summarize the applications of mevalonate and its derivatives and describe the biosynthesis pathways of mevalonate. The current status of mevalonate biosynthesis is also detailed with an emphasis on metabolic engineering strategies to enhance mevalonate production in typical industrial organisms, including Escherichia coli, Saccharomyces cerevisiae, and Pseudomonas putida, suggesting new insights for the efficient production of biosynthesized mevalonate.
Collapse
Affiliation(s)
- Cong-Han Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jie Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hong-Kuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Li-Juan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Boccia E, Alfieri M, Belvedere R, Santoro V, Colella M, Del Gaudio P, Moros M, Dal Piaz F, Petrella A, Leone A, Ambrosone A. Plant hairy roots for the production of extracellular vesicles with antitumor bioactivity. Commun Biol 2022; 5:848. [PMID: 35987960 PMCID: PMC9392725 DOI: 10.1038/s42003-022-03781-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
Plant extracellular vesicles (EVs) concentrate and deliver different types of bioactive molecules in human cells and are excellent candidates for a next-generation drug delivery system. However, the lack of standard protocols for plant EV production and the natural variations of their biomolecular cargo pose serious limitation to their use as therapeutics. To overcome these issues, we set up a versatile and standardized procedure to purify plant EVs from hairy root (HR) cultures, a versatile biotechnological system, already successfully employed as source of bioactive molecules with pharmaceutical and nutraceutical relevance. Herewith, we report that HR of Salvia dominica represent an excellent platform for the production of plant EVs. In particular, EVs derived from S. dominica HRs are small round-shaped vesicles carrying typical EV-associated proteins such as cytoskeletal components, chaperon proteins and integral membrane proteins including the tetraspanin TET-7. Interestingly, the HR-derived EVs showed selective and strong pro-apoptotic activity in pancreatic and mammary cancer cells. These results reveal that plant hairy roots may be considered a new promising tool in plant biotechnology for the production of extracellular vesicles for human health.
Collapse
Affiliation(s)
- Eleonora Boccia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy
| | - Mariaevelina Alfieri
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy
- Clinical Pathology, Pausilipon Hospital, A.O.R.N Santobono-Pausilipon, 80123, Naples, Italy
| | | | - Valentina Santoro
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy
| | - Marianna Colella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy
| | | | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081, Baronissi, Italy
- Operative Unit of Clinical Pharmacology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131, Salerno, Italy
| | | | - Antonietta Leone
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy
| | - Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy.
| |
Collapse
|
9
|
Guo X, Meng X, Li Y, Qu C, Liu Y, Cao M, Yao X, Meng F, Wu J, Peng H, Peng D, Xing S, Jiang W. Comparative proteomics reveals biochemical changes in Salvia miltiorrhiza Bunge during sweating processing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115329. [PMID: 35490901 DOI: 10.1016/j.jep.2022.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge is a bulk medicinal material used in traditional Chinese medicine, that can cure cardiovascular diseases, neurasthenia, and other conditions. Sweating is a frequently used method of processing S. miltiorrhiza for medical applications. We previously demonstrated changes to the metabolic profile of linoleic acid, glyoxylate, and dicarboxylate after Sweating. However, this alteration has not been explained at the molecular level. MATERIALS AND METHODS Fresh roots of Salvia miltiorrhiza Bunge were treated by the Sweating processing, and then the tandem mass tag technique was used to compare the proteome difference between Sweating S. miltiorrhiza and non-Sweating S. miltiorrhiza. RESULTS We identified a total of 850 differentially expressed proteins after Sweating treatment in S. miltiorrhiza, including 529 upregulated proteins and 321 downregulated proteins. GO enrichment analysis indicated that these differentially expressed proteins are involved in external encapsulating structure, cell wall, oxidoreductase activity, ligase activity, and others. Further analysis showed that CYP450, the pathogenesis-related protein Bet v 1 family, and the peroxidase domain were the major protein domains. KEGG enrichment identified 18 pathways, of which phenylpropanoid biosynthesis is the most important one related to the metabolite profile and is the principal chemical component of S. miltiorrhiza. CONCLUSION This study addressed potential molecular mechanisms in S. miltiorrhiza after Sweating, and the findings provide reasons for the changes in biochemical properties and metabolites changes which might cause pharmacological variation at the proteome level.
Collapse
Affiliation(s)
- Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, MN, 55108, USA
| | - Yan Li
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging, Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, China.
| |
Collapse
|
10
|
Coghi P, Yun XY, Ng JPL, Law BYK, Memo M, Gianoncelli A, Wong VKW, Ribaudo G. Exploring SARS-CoV-2 Delta variant spike protein receptor-binding domain (RBD) as a target for tanshinones and antimalarials. Nat Prod Res 2022; 36:6150-6155. [PMID: 35337238 DOI: 10.1080/14786419.2022.2057492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) of spike protein with angiotensin-converting enzyme 2 (ACE2) mediates cell invasion. While this interaction mechanism is conserved, the RBD is affected by amino acid mutations in variants such as Delta and Omicron, resulting in enhanced transmissibility and altered ligand binding. Tanshinones are currently investigated as multi-target antiviral agents, but the studies were limited to the original SARS-CoV-2. This study aims at investigating the interaction of tanshinones with the Delta RBD. Chloroquine, methylene blue and pyronaridine, antimalarials previously identified as SARS-CoV-2 RBD binders, were studied for reference. Docking indicated the best scores for tanshinones, while bio-layer interferometry and molecular dynamics highlighted methylene blue as the best Delta RBD binder, although with decreased affinity with respect to the original strain.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiao Yun Yun
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jerome P L Ng
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Betty Yuan Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Szymczyk P, Szymańska G, Kuźma Ł, Jeleń A, Balcerczak E. Methyl Jasmonate Activates the 2C Methyl-D-erithrytol 2,4-cyclodiphosphate Synthase Gene and Stimulates Tanshinone Accumulation in Salvia miltiorrhiza Solid Callus Cultures. Molecules 2022; 27:molecules27061772. [PMID: 35335134 PMCID: PMC8950807 DOI: 10.3390/molecules27061772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/25/2023] Open
Abstract
The present study characterizes the 5′ regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5′UTR and 31 nucleotide 5′ fragments of the CDS region. In silico bioinformatic analysis found that the promoter region contains repetitions of many potential cis-active elements. Cis-active elements associated with the response to methyl jasmonate (MeJa) were identified in the SmMEC gene promoter. Co-expression studies combined with earlier transcriptomic research suggest the significant role of MeJa in SmMEC gene regulation. These findings were in line with the results of the RT-PCR test showing SmMEC gene expression induction after 72 h of MeJa treatment. Biphasic total tanshinone accumulation was observed following treatment of S. miltiorrhiza solid callus cultures with 50–500 μM methyl jasmonate, with peaks observed after 10–20 and 50–60 days. An early peak of total tanshinone concentration (0.08%) occurred after 20 days of 100 μM MeJa induction, and a second, much lower one, was observed after 50 days of 50 μM MeJa stimulation (0.04%). The dominant tanshinones were cryptotanshinone (CT) and dihydrotanshinone (DHT). To better understand the inducing effect of MeJa treatment on tanshinone biosynthesis, a search was performed for methyl jasmonate-responsive cis-active motifs in the available sequences of gene proximal promoters associated with terpenoid precursor biosynthesis. The results indicate that MeJa has the potential to induce a significant proportion of the presented genes, which is in line with available transcriptomic and RT-PCR data.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
- Correspondence:
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| |
Collapse
|
12
|
Zhou J, Liu R, Shuai M, Yan ZY, Chen X. Comparative transcriptome analyses of different Salvia miltiorrhiza varieties during the accumulation of tanshinones. PeerJ 2021; 9:e12300. [PMID: 34721983 PMCID: PMC8541307 DOI: 10.7717/peerj.12300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Salvia miltiorrhiza (Labiatae) is an important medicinal plant in traditional Chinese medicine. Tanshinones are one of the main active components of S. miltiorrhiza. It has been found that the intraspecific variation of S. miltiorrhiza is relatively large and the content of tanshinones in its roots of different varieties is also relatively different. To investigate the molecular mechanisms that responsible for the differences among these varieties, the tanshinones content was determined and comparative transcriptomics analysis was carried out during the tanshinones accumulation stage. A total of 52,216 unigenes were obtained from the transcriptome by RNA sequencing among which 23,369 genes were differentially expressed among different varieties, and 2,016 genes including 18 diterpenoid biosynthesis-related genes were differentially expressed during the tanshinones accumulation stage. Functional categorization of the differentially expressed genes (DEGs) among these varieties revealed that the pathway related to photosynthesis, oxidative phosphorylation, secondary metabolite biosynthesis, diterpenoid biosynthesis, terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis are the most differentially regulated processes in these varieties. The six tanshinone components in these varieties showed different dynamic changes in tanshinone accumulation stage. In addition, combined with the analysis of the dynamic changes, 277 DEGs (including one dehydrogenase, three CYP450 and 24 transcription factors belonging to 12 transcription factor families) related to the accumulation of tanshinones components were obtained. Furthermore, the KEGG pathway enrichment analysis of these 277 DEGs suggested that there might be an interconnection between the primary metabolic processes, signaling processes and the accumulation of tanshinones components. This study expands the vision of intraspecific variation and gene regulation mechanism of secondary metabolite biosynthesis pathways in medicinal plants from the “omics” perspective.
Collapse
Affiliation(s)
- Jingwen Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Rui Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Min Shuai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Zhu-Yun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Kentsop RAD, Iobbi V, Donadio G, Ruffoni B, De Tommasi N, Bisio A. Abietane Diterpenoids from the Hairy Roots of Salvia corrugata. Molecules 2021; 26:5144. [PMID: 34500582 PMCID: PMC8434070 DOI: 10.3390/molecules26175144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Salvia corrugata Vahl. is an interesting source of abietane and abeo-abietane compounds that showed antibacterial, antitumor, and cytotoxic activities. The aim of the study was to obtain transformed roots of S. corrugata and to evaluate the production of terpenoids in comparison with in vivo root production. Hairy roots were initiated from leaf explants by infection with ATCC 15834 Agrobacterium rhizogenes onto hormone-free Murashige and Skoog (MS) solid medium. Transformation was confirmed by polymerase chain reaction analysis of rolC and virC1 genes. The biomass production was obtained in hormone-free liquid MS medium using Temporary Immersion System bioreactor RITA®. The chromatographic separation of the methanolic extract of the untransformed roots afforded horminone, ferruginol, 7-O-acetylhorminone and 7-O-methylhorminone. Agastol and ferruginol were isolated and quantified from the hairy roots. The amount of these metabolites indicated that the hairy roots of S. corrugata can be considered a source of these compounds.
Collapse
Affiliation(s)
- Roméo Arago Dougué Kentsop
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy; (R.A.D.K.); (V.I.)
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura—CREA Centro di Ricerca Orticoltura e Florovivaismo, Corso degli Inglesi, 508, 18038 Sanremo, Italy;
| | - Valeria Iobbi
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy; (R.A.D.K.); (V.I.)
| | - Giuliana Donadio
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Barbara Ruffoni
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura—CREA Centro di Ricerca Orticoltura e Florovivaismo, Corso degli Inglesi, 508, 18038 Sanremo, Italy;
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Angela Bisio
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy; (R.A.D.K.); (V.I.)
| |
Collapse
|
14
|
Lyu J, Xue M, Li J, Lyu W, Wen Z, Yao P, Li J, Zhang Y, Gong Y, Xie Y, Chen K, Wang L, Chai Y. Clinical effectiveness and safety of salvia miltiorrhiza depside salt combined with aspirin in patients with stable angina pectoris: A multicenter, pragmatic, randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153419. [PMID: 33360345 DOI: 10.1016/j.phymed.2020.153419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Salvia Miltiorrhiza Depside Salt (SMDS) was extracted from Salvia miltiorrhiza with high-quality control of active principles. In 2005, China's FDA approved the use of SMDS for stable angina pectoris (SAP), but the evidence of SMDS combined with aspirin remains unclear. PURPOSE The aim of this study was to assess the clinical effectiveness and safety of SMDS combined with aspirin in patients with SAP. METHODS A multicenter, pragmatic, three-armed parallel group and an individually randomized controlled superiority trial was designed. Participants aged 35 to 75 years old with SAP were recruited from four "Class Ⅲ Grade A" hospitals in China. Participants who were randomized into the SMDS group were treated with SMDS by intravenous drip. Participants in the control group received aspirin enteric-coated tablets (aspirin). Participants who were randomly assigned to the combination group received SMDS combined with aspirin. All participants received standard care from clinicians, without any restrictions. The primary outcome measure was thromboelastography (TEG). Secondary outcome measures included symptom score of the Seattle Angina Questionnaire (SAQ), visual analogue scale (VAS) score of traditional Chinese medicine (TCM) symptoms, platelet aggregation measured by light transmittance aggregometry (LTA), and fasting blood glucose. Effectiveness evaluation data were collected at baseline and ten days after treatment. Researchers followed up with participants for one month after treatment to determine whether adverse events (AEs) or adverse drug reactions (ADRs) such as bleeding tendency occurred. All statistical calculations were carried out with R 3.5.3 statistical analysis software. RESULTS A total of 135 participants completed follow-up data on the primary outcome after ten days of treatment. Participants in the SMDS combined aspirin group had the highest improvement rate of sensitivity in AA% [p < 0.001, 95% CI (0.00-0.00)], from 30.6% before treatment to 81.6% after treatment. Participants with drug resistance (AA% < 20%) in the SMDS combined with aspirin group also had the highest sensitivity rate [p < 0.001, 95% CI (0.00-0.00)] after treatment (accounting for 81.0% of the combination group and 60.7% of the sensitive participants). The improvement of TCM symptoms in participants treated with SMDS combined with aspirin was significantly better than that of the aspirin group [MD = 1.71, 95% CI (0.15-3.27), p = 0.032]. There were no significant differences in other indexes (R, TPI, MA, K, CI, α value) of TEG, SAQ, platelet aggregation and fasting blood glucose among the three groups. No bleeding tendency or ADRs occurred in all participants. CONCLUSION SMDS combined with aspirin is a clinically effective and safe intervention to treat adults aged 35 and older with SAP. This trial shows that SMDS combined with aspirin can significantly improve the sensitivity rate of AA% in TEG and the VAS score of TCM symptoms. Further large samples and high-quality research are needed to determine if certain participants might benefit more from SMDS combined with aspirin. The study protocol was registered in the Clinical Trials USA registry (registration No. NCT02694848).
Collapse
Affiliation(s)
- Jian Lyu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Inner Dongzhimen, Beijing 100700, China
| | - Mei Xue
- XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing 100091, China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, North Line Pavilion, Xicheng District, Beijing 100053, China
| | - Weihui Lyu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Zehuai Wen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Ping Yao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou 510120, China
| | - Junxia Li
- General Hospital of Beijing PLA Military Region, No.5, Nan men Cang, Dongsishitiao, Dongcheng District, Beijing 100700, China
| | - Yanling Zhang
- General Hospital of Beijing PLA Military Region, No.5, Nan men Cang, Dongsishitiao, Dongcheng District, Beijing 100700, China
| | - Yumiao Gong
- General Hospital of Beijing PLA Military Region, No.5, Nan men Cang, Dongsishitiao, Dongcheng District, Beijing 100700, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Inner Dongzhimen, Beijing 100700, China.
| | - Keji Chen
- XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing 100091, China.
| | - Lianxin Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Inner Dongzhimen, Beijing 100700, China.
| | - Yan Chai
- Department of Epidemiology, University of California-Los Angeles, 405 Hilgard Avenue, California 90095, USA.
| |
Collapse
|
15
|
Lefevre M, Flammang P, Aranko AS, Linder MB, Scheibel T, Humenik M, Leclercq M, Surin M, Tafforeau L, Wattiez R, Leclère P, Hennebert E. Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomater 2020; 112:62-74. [PMID: 32502634 DOI: 10.1016/j.actbio.2020.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022]
Abstract
Sea stars adhere to various underwater substrata using an efficient protein-based adhesive secretion. The protein Sfp1 is a major component of this secretion. In the natural glue, it is cleaved into four subunits (Sfp1 Alpha, Beta, Delta and Gamma) displaying specific domains which mediate protein-protein or protein-carbohydrate interactions. In this study, we used the bacterium E. coli to produce recombinantly two fragments of Sfp1 comprising most of its functional domains: the C-terminal part of the Beta subunit (rSfp1 Beta C-term) and the Delta subunit (rSfp1 Delta). Using native polyacrylamide gel electrophoresis and size exclusion chromatography, we show that the proteins self-assemble and form oligomers and aggregates in the presence of NaCl. Moreover, they adsorb onto glass and polystyrene upon addition of Na+ and/or Ca2+ ions, forming homogeneous coatings or irregular meshworks, depending on the cation species and concentration. We show that coatings made of each of the two proteins have no cytotoxic effects on HeLa cells and even increase their proliferation. We propose that the Sfp1 recombinant protein coatings are valuable new materials with potential for cell culture or biomedical applications. STATEMENT OF SIGNIFICANCE: Biological adhesives offer impressive performance in their natural context and, therewith, the potential to inspire the development of advanced biomaterials for an increasing variety of applications in medicine or in material sciences. To date, most marine adhesive proteins that have been produced recombinantly in order to develop bio-inspired adhesives are small proteins from mussels and barnacles. Here, we produced two multi-modular proteins based on the sequence of Sfp1, a major protein from sea star adhesive secretion. These two proteins comprise most of Sfp1 functional domains which mediate protein-protein and protein-carbohydrate interactions. We characterized the two recombinant proteins with an emphasis on functional characteristics such as self-assembly, adsorption and cytocompatibility. We discuss their potential as biomaterials.
Collapse
Affiliation(s)
- Mathilde Lefevre
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium; Laboratory for Chemistry of Novel Materials, Research Institute for Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str.1, 95447 Bayreuth, Germany
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str.1, 95447 Bayreuth, Germany
| | - Maxime Leclercq
- Laboratory for Chemistry of Novel Materials, Research Institute for Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Research Institute for Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Lionel Tafforeau
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials, Research Institute for Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium.
| |
Collapse
|
16
|
Shi M, Liao P, Nile SH, Georgiev MI, Kai G. Biotechnological Exploration of Transformed Root Culture for Value-Added Products. Trends Biotechnol 2020; 39:137-149. [PMID: 32690221 DOI: 10.1016/j.tibtech.2020.06.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/09/2023]
Abstract
Medicinal plants produce valuable secondary metabolites with anticancer, analgesic, anticholinergic or other activities, but low metabolite levels and limited available tissue restrict metabolite yields. Transformed root cultures, also called hairy roots, provide a feasible approach for producing valuable secondary metabolites. Various strategies have been used to enhance secondary metabolite production in hairy roots, including increasing substrate availability, regulating key biosynthetic genes, multigene engineering, combining genetic engineering and elicitation, using transcription factors (TFs), and introducing new genes. In this review, we focus on recent developments in hairy roots from medicinal plants, techniques to boost production of desired secondary metabolites, and the development of new technologies to study these metabolites. We also discuss recent trends, emerging applications, and future perspectives.
Collapse
Affiliation(s)
- Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China.
| |
Collapse
|
17
|
Yang J, Yang X, Li B, Lu X, Kang J, Cao X. Establishment of in vitro culture system for Codonopsis pilosula transgenic hairy roots. 3 Biotech 2020; 10:137. [PMID: 32158633 DOI: 10.1007/s13205-020-2130-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
The aim of the study was to establish a reliable system of transgenic hairy roots in Codonopsis pilosula through Agrobacterium-mediated genetic transformation. For this, we optimized several steps in the process of A. rhizogenes strain C58C1 mediated hairy root induction, including the most appropriate medium, explant type, time for infection and co-cultivation. We achieved an induction rate of up to 100% when the roots of C. pilosula seedlings were used as explants, infected with A. rhizogenes C58C1 harboring pCAMBIA1305 for 5 min, followed by induction on 1/2MS supplemented with 0.2 mg/L naphthylacetic acid and 200 mg/L cefotaxime sodium. The co-transformed hairy roots were confirmed by PCR amplification of hygromycin phosphotransferase II gene and histochemical GUS assay, and the efficiency of transformation was 70% and 68.3%, respectively, when no hygromycin selection pressure was exerted. To increase biomass production, we excised and self-propagated the transformed hairy roots, which produce saponins. Our successful establishment of an in vitro culture system of transgenic hairy root for this species lays the foundation not only for assessing gene expression and function but also for obtaining high levels of secondary metabolites through genetic engineering technology.
Collapse
Affiliation(s)
- Jing Yang
- 1Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, China
| | - Xiaozeng Yang
- 2Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Li
- 1Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, China
| | - Xiayang Lu
- 1Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, China
| | - Jiefang Kang
- 1Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, China
| | - Xiaoyan Cao
- 1Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
18
|
Jiang Y, Hu F, Li Q, Shen C, Yang J, Li M. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol 2019; 77:105968. [PMID: 31704290 DOI: 10.1016/j.intimp.2019.105968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune inflammatory and vascular disorder leading to progressive tissue fibrosis. Tanshinone IIA (Tan IIA) is a phytochemical extracted from the Chinese herb Salvia miltiorrhiza that exhibits diverse activities. In this study, we attempted to evaluate the potential impact of Tan IIA on the skin fibrosis-related endothelial-to-mesenchymal transition (EndoMT) and investigate the underlying molecular mechanisms. EndoMT-related indexes including morphological characteristics, functional changes, histological parameters, expression levels of extracellular matrix associated genes, and changes in the expression of related biomarkers in dermal fibrosis were assessed. Tan IIA had a strong anti-fibrotic effect through amelioration of skin thickness and collagen deposition. Moreover, Tan IIA partially reversed bleomycin-induced EndoMT both in vivo and in vitro. Additionally, Tan IIA mitigated the diminution of tube formation in endothelial cells induced by bleomycin. Furthermore, mechanistically, the activation of the Akt/mTOR/p70S6K pathway was found to be involved in bleomycin-treated SSc mouse model, which was alleviated by Tan IIA. In summary, these data suggest that Tan IIA alleviates SSc-related dermal fibrosis and EndoMT and that the Akt/mTOR/p70S6K signaling pathway is involved in this regulation, thus supporting the potential of Tan IIA as a disease-modifying candidate agent for treating the vascular damage of SSc.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
19
|
Chang Y, Wang M, Li J, Lu S. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 2019; 9:14929. [PMID: 31624328 PMCID: PMC6797793 DOI: 10.1038/s41598-019-51535-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
Tanshinones are important bioactive components in Salvia miltiorrhiza and mainly accumulate in the periderms of mature roots. Tanshinone biosynthesis is a complicated process, and little is known about the third stage of the pathway. To investigate potential genes that are responsible for tanshinone biosynthesis, we conducted transcriptome profiling analysis of two S. miltiorrhiza cultivars. Differential expression analysis provided 2,149 differentially expressed genes (DEGs) for further analysis. GO and KEGG analysis showed that the DEGs were mainly associated with the biosynthesis of secondary metabolites. Weighted gene coexpression network analysis (WGCNA) was further performed to identify a “cyan” module associated with tanshinone biosynthesis. In this module, 25 cytochromes P450 (CYPs), three 2-oxoglutarate-dependent dioxygenases (2OGDs), one short-chain alcohol dehydrogenases (SDRs) and eight transcription factors were found to be likely involved in tanshinone biosynthesis. Among these CYPs, 14 CYPs have been reported previously, and 11 CYPs were identified in this study. Expression analysis showed that four newly identified CYPs were upregulated upon application of MeJA, suggesting their possible roles in tanshinone biosynthesis. Overall, this study not only identified candidate genes involved in tanshinone biosynthesis but also provided a basis for characterization of genes involved in important active ingredients of other traditional Chinese medicinal plants.
Collapse
Affiliation(s)
- Yujie Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|