1
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
2
|
Glyn T, Williams S, Whitehead M, Eglinton T, West N, Purcell RV. Digital spatial profiling identifies molecular changes involved in development of colitis-associated colorectal cancer. Front Oncol 2024; 14:1247106. [PMID: 38505585 PMCID: PMC10949367 DOI: 10.3389/fonc.2024.1247106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Objective Chronic colonic inflammation seen in inflammatory bowel disease (IBD) is a risk factor for colorectal cancer (CRC). Colitis-associated cancers (CAC) are molecularly different from sporadic CRC. This study aimed to evaluate spatially defined molecular changes associated with neoplastic progression to identify mechanisms of action and potential biomarkers for prognostication. Design IBD patients who had undergone colectomy for treatment of their IBD or dysplasia were identified from an institutional database. Formalin-fixed paraffin embedded samples from areas of normal, inflamed, dysplastic and adenocarcinoma tissue were identified for digital spatial profiling using the Nanostring GeoMx™ Cancer Transcriptome Atlas. RNA expression and quantification of 1812 genes was measured and analysed in a spatial context to compare differences in gene expression. Results Sixteen patients were included, nine patients had CAC, two had dysplasia only and five had colitis only. Significant, step-wise differences in gene expression were seen between tissue types, mainly involving progressive over-expression of collagen genes associated with stromal remodelling. Similarly, MYC over-expression was associated with neoplastic progression. Comparison of normal and inflamed tissue from patients who progressed to those who did not also showed significant differences in immune-related genes, including under-expression of thte chemokines CCL18, CCL25 and IL-R7, as well as CD3, CD6 and lysozyme. The known oncogene CD24 was significantly overexpressed. Conclusion Both tissue types and patient groups are molecularly distinguishable on the basis of their gene expression patterns. Further prospective work is necessary to confirm these differences and establish their clinical significance and potential utility as biomarkers.
Collapse
Affiliation(s)
- Tamara Glyn
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Sarah Williams
- Griffith Health, Griffith University, Gold Coast, QLD, Australia
| | - Martin Whitehead
- Department of Anatomical Pathology, Te Whatu Ora Waitaha, Christchurch, New Zealand
| | - Tim Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Nicholas West
- Griffith Health, Griffith University, Gold Coast, QLD, Australia
| | - Rachel V. Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| |
Collapse
|
3
|
Jacobse J, Pilat JM, Li J, Brown RE, Kwag A, Buendia MA, Choksi YA, Washington MK, Williams CS, Markham NO, Short SP, Goettel JA. Distinct roles for interleukin-23 receptor signaling in regulatory T cells in sporadic and inflammation-associated carcinogenesis. Front Oncol 2024; 13:1276743. [PMID: 38375204 PMCID: PMC10876294 DOI: 10.3389/fonc.2023.1276743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction The pro-inflammatory cytokine interleukin-23 (IL-23) has been implicated in colorectal cancer (CRC). Yet, the cell-specific contributions of IL-23 receptor (IL-23R) signaling in CRC remain unknown. One of the cell types that highly expresses IL-23R are colonic regulatory T cells (Treg cells). The aim of this study was to define the contribution of Treg cell-specific IL-23R signaling in sporadic and inflammation-associated CRC. Methods In mice, the role of IL-23R in Treg cells in colitis-associated cancer (CAC) was investigated using azoxymethane/dextran sodium sulphate in wild-type Treg cell reporter mice (WT, Foxp3 YFP-iCre), and mice harboring a Treg cell-specific deletion of IL-23 (Il23r ΔTreg). The role of IL-23R signaling in Treg cells in sporadic CRC was examined utilizing orthotopic injection of the syngeneic colon cancer cell line MC-38 submucosally into the colon/rectum of mice. The function of macrophages was studied using clodronate. Finally, single-cell RNA-seq of a previously published dataset in human sporadic cancer was reanalyzed to corroborate these findings. Results In CAC, Il23r ΔTreg mice had increased tumor size and increased dysplasia compared to WT mice that was associated with decreased tumor-infiltrating macrophages. In the sporadic cancer model, Il23r ΔTreg mice had increased survival and decreased tumor size compared to WT mice. Additionally, MC-38 tumors of Il23r ΔTreg mice exhibited a higher frequency of pro-inflammatory macrophages and IL-17 producing CD4+ T cells. The decreased tumor size in Il23r ΔTreg mice was macrophage-dependent. These data suggest that loss of IL-23R signaling in Treg cells permits IL-17 production by CD4+ T cells that in turn promotes pro-inflammatory macrophages to clear tumors. Finally, analysis of TCGA data and single-cell RNA-seq analysis of a previously published dataset in human sporadic cancer, revealed that IL23R was highly expressed in CRC compared to other cancers and specifically in tumor-associated Treg cells. Conclusion Inflammation in colorectal carcinogenesis differs with respect to the contribution of IL-23R signaling in regulatory T cells.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Jennifer M. Pilat
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rachel E. Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aaron Kwag
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Matthew A. Buendia
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yash A. Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nicholas O. Markham
- Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Sarah P. Short
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeremy A. Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Kim MK, Jo SI, Kim SY, Lim H, Kang HS, Moon SH, Ye BD, Soh JS, Hwang SW. PD-1-positive cells contribute to the diagnosis of inflammatory bowel disease and can aid in predicting response to vedolizumab. Sci Rep 2023; 13:21329. [PMID: 38044341 PMCID: PMC10694145 DOI: 10.1038/s41598-023-48651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
Differentiating inflammatory bowel disease (IBD) from other inflammatory diseases is often challenging. Programmed cell death protein-1 (PD-1) is expressed in T cells and is an indicator of their exhaustion. The role of PD-1 expression in diagnosing IBD and predicting the response of biologic agents remains inconclusive. In this study, endoscopic biopsy samples of 19 patients diagnosed with IBD, intestinal tuberculosis, and intestinal Behcet's disease were analyzed using multiplexed immunohistochemistry. Additionally, a separate "vedolizumab (VDZ) cohort" established in ulcerative colitis patients who underwent endoscopic biopsy before VDZ administration was analyzed to predict response to VDZ. In the immunohistochemistry analysis, the cell density of T cell subsets, including PD-1 + cells, was investigated and compared between IBD and other inflammatory diseases (OID). Cell densities of PD-1 + cells (p = 0.028), PD-1 + helper T cells (p = 0.008), and PD-1 + regulatory T cells (p = 0.024) were higher in IBD compared with OID. In the VDZ cohort, patients with a 14-week steroid-free clinical response had higher levels of PD-1 + cells (p = 0.026), PD-1 + helper T cells (p = 0.026), and PD-1 + regulatory T cells (p = 0.041) than the no response group. PD-1 + immune cells may contribute to the diagnosis of IBD and could be used to predict response to VDZ in ulcerative colitis patients.
Collapse
Affiliation(s)
- Min Kyu Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Su In Jo
- PrismCDX Co., Ltd., Hwaseong-Si, Republic of Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea
| | - Ho Suk Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Soh
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Republic of Korea.
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Schardey J, Lu C, Neumann J, Wirth U, Li Q, Jiang T, Zimmermann P, Andrassy J, Bazhin AV, Werner J, Kühn F. Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer. Cancers (Basel) 2023; 15:4743. [PMID: 37835436 PMCID: PMC10571767 DOI: 10.3390/cancers15194743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Chronic inflammation is a significant factor in colorectal cancer (CRC) development, especially in colitis-associated CRC (CAC). T-cell exhaustion is known to influence inflammatory bowel disease (IBD) progression and antitumor immunity in IBD patients. This study aimed to identify unique immune infiltration characteristics in CAC patients. METHODS We studied 20 CAC and 20 sporadic CRC (sCRC) patients, who were matched by tumor stage, grade, and location. Immunohistochemical staining targeted various T-cell markers (CD3, CD4, CD8, and FOXP3), T-cell exhaustion markers (TOX and TIGIT), a B-cell marker (CD20), and a neutrophil marker (CD66b) in tumor and tumor-free mucosa from both groups. The quantification of the tumor immune stroma algorithm assessed immune-infiltrating cells. RESULTS CAC patients had significantly lower TOX+ cell infiltration than sCRC in tumors (p = 0.02) and paracancerous tissues (p < 0.01). Right-sided CAC showed increased infiltration of TOX+ cells (p = 0.01), FOXP3+ regulatory T-cells (p < 0.01), and CD20+ B-cells (p < 0.01) compared to left-sided CAC. In sCRC, higher tumor stages (III and IV) had significantly lower TIGIT+ infiltrate than stages I and II. In CAC, high CD3+ (p < 0.01) and CD20+ (p < 0.01) infiltrates correlated with improved overall survival. In sCRC, better survival was associated with decreased TIGIT+ cells (p < 0.038) and reduced CD8+ infiltrates (p = 0.02). CONCLUSION In CAC, high CD3+ and CD20+ infiltrates relate to improved survival, while this association is absent in sCRC. The study revealed marked differences in TIGIT and TOX expression, emphasizing distinctions between CAC and sCRC. T-cell exhaustion appears to have a different role in CAC development.
Collapse
Affiliation(s)
- Josefine Schardey
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Can Lu
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Clinical Research Center for CANCER & Cancer Center of Zhejiang University, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jens Neumann
- Department of Pathology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Qiang Li
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Tianxiao Jiang
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Petra Zimmermann
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Florian Kühn
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
Yoo JW, Jo SI, Shin DW, Park JW, Kim SE, Lim H, Kang HS, Moon SH, Kim MK, Kim SY, Hwang SW, Soh JS. Clinical Usefulness of Immune Profiling for Differential Diagnosis between Crohn's Disease, Intestinal Tuberculosis, and Behcet's Disease. Diagnostics (Basel) 2023; 13:2904. [PMID: 37761270 PMCID: PMC10529363 DOI: 10.3390/diagnostics13182904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
It is important to make a differential diagnosis between inflammatory diseases of the bowel with similar clinical and endoscopic features. The profiling of immune cells could be helpful for accurately diagnosing inflammatory bowel diseases. We compared immune marker expression between Crohn's disease (CD), intestinal Behcet's disease (BD), and intestinal tuberculosis (TB) and evaluated the usefulness of immune profiling in differentiating between these diseases. Biopsy specimens were acquired around ulcerations on the terminal ileum or cecum from five patients with each disease. Panel 1 included multiplex immunohistochemistry staining for CD8, CD4, Foxp3, CD20, programmed death-1, and granzyme B. CD56, CD68, CD163, CD11c, and HLA-DR were analyzed in panel 2. The differences in cytotoxic T cells (CD8+CD4-Fopx3-CD20-), helper T cells (CD8-CD4+Fopx3-CD20-), and regulatory T cells (CD8-CD4+Fopx3+CD20-) were also not significant. However, M1 macrophage (CD68+CD163-HLA-DR-) cell densities were significantly higher in intestinal BD than in other diseases. The expression level of dendritic cells (CD56-CD68-CD163-CD11c+HLA-DR+) was highest in intestinal TB and lowest in intestinal BD. The expression of immune cells, including M1 macrophages and dendritic cells, was different between CD, intestinal BD, and intestinal TB. Immune profiling can be helpful for establishing differential diagnoses of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ji Won Yoo
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, NV 89557, USA;
| | - Su In Jo
- PrismCDX Co., Ltd., Hwaseong-si 18469, Republic of Korea;
| | - Dong Woo Shin
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| | - Ji Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| | - Ho Suk Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| | - Min Kyu Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Jae Seung Soh
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang 14068, Republic of Korea; (D.W.S.); (J.W.P.); (S.-E.K.); (H.L.); (H.S.K.); (S.-H.M.)
| |
Collapse
|
7
|
Singh S, Sharma P, Sarma DK, Kumawat M, Tiwari R, Verma V, Nagpal R, Kumar M. Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers (Basel) 2023; 15:1913. [PMID: 36980799 PMCID: PMC10047102 DOI: 10.3390/cancers15061913] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.
Collapse
Affiliation(s)
- Samradhi Singh
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Poonam Sharma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
8
|
Collard MK, Tourneur-Marsille J, Uzzan M, Albuquerque M, Roy M, Dumay A, Freund JN, Hugot JP, Guedj N, Treton X, Panis Y, Ogier-Denis E. The Appendix Orchestrates T-Cell Mediated Immunosurveillance in Colitis-Associated Cancer. Cell Mol Gastroenterol Hepatol 2023; 15:665-687. [PMID: 36332814 PMCID: PMC9871441 DOI: 10.1016/j.jcmgh.2022.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Although appendectomy may reduce colorectal inflammation in patients with ulcerative colitis (UC), this surgical procedure has been suggested to be associated with an increased risk of colitis-associated cancer (CAC). Our aim was to explore the mechanism underlying the appendectomy-associated increased risk of CAC. METHODS Five-week-old male BALB/c mice underwent appendectomy, appendicitis induction, or sham laparotomy. They were then exposed to azoxymethane/dextran sodium sulfate (AOM/DSS) to induce CAC. Mice were killed 12 weeks later, and colons were taken for pathological analysis and immunohistochemistry (CD3 and CD8 staining). Human colonic tumors from 21 patients with UC who underwent surgical resection for CAC were immunophenotyped and stratified according to appendectomy status. RESULTS Whereas appendectomy significantly reduced colitis severity and increased CAC number, appendicitis induction without appendectomy led to opposite results. Intratumor CD3+ and CD8+ T-cell densities were lower after appendectomy and higher after appendicitis induction compared with the sham laparotomy group. Blocking lymphocyte trafficking to the colon with the anti-α4β7 integrin antibody or a sphingosine-1-phosphate receptor agonist suppressed the inducing effect of the appendectomy on tumors' number and on CD3+/CD8+ intratumoral density. CD8+ or CD3+ T cells isolated from inflammatory neo-appendix and intravenously injected into AOM/DSS-treated recipient mice increased CD3+/CD8+ T-cell tumor infiltration and decreased tumor number. In UC patients with a history of appendectomy, intratumor CD3+ and CD8+ T-cell densities were decreased compared with UC patients without history of appendectomy. CONCLUSIONS In UC, appendectomy could suppress a major site of T-cell priming, resulting in a less efficient CAC immunosurveillance.
Collapse
Affiliation(s)
- Maxime K Collard
- Assistance Publique Hôpitaux de Paris, Service de Chirurgie Colorectale, Hôpital Beaujon, Clichy, France; Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Julien Tourneur-Marsille
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Mathieu Uzzan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; Assistance Publique Hôpitaux de Paris, Service de Gastroentérologie, Hôpital Beaujon, Clichy, France
| | - Miguel Albuquerque
- Assistance Publique Hôpitaux de Paris, Service d'Anatomopathologie, Hôpital Beaujon, Clichy, France
| | - Maryline Roy
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Anne Dumay
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Jean-Pierre Hugot
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Nathalie Guedj
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; Assistance Publique Hôpitaux de Paris, Service d'Anatomopathologie, Hôpital Beaujon, Clichy, France
| | - Xavier Treton
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; Assistance Publique Hôpitaux de Paris, Service de Gastroentérologie, Hôpital Beaujon, Clichy, France
| | - Yves Panis
- Assistance Publique Hôpitaux de Paris, Service de Chirurgie Colorectale, Hôpital Beaujon, Clichy, France; Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Eric Ogier-Denis
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; INSERM, Université Rennes, CLCC Eugène Marquis, «Chemistry, Oncogenesis, Stress Signaling» UMR_S 1242, Rennes, France.
| |
Collapse
|
9
|
Qiu Y, Ke S, Chen J, Qin Z, Zhang W, Yuan Y, Meng D, Zhao G, Wu K, Li B, Li D. FOXP3+ regulatory T cells and the immune escape in solid tumours. Front Immunol 2022; 13:982986. [PMID: 36569832 PMCID: PMC9774953 DOI: 10.3389/fimmu.2022.982986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/15/2023] Open
Abstract
FOXP3+ regulatory T (Treg) cells play critical roles in establishing the immunosuppressive tumour microenvironment, which is achieved and dynamically maintained with the contribution of various stromal and immune cell subsets. However, the dynamics of non-lymphoid FOXP3+ Treg cells and the mutual regulation of Treg cells and other cell types in solid tumour microenvironment remains largely unclear. In this review, we summarize the latest findings on the dynamic connections and reciprocal regulations of non-lymphoid Treg cell subsets in accordance with well-established and new emerging hallmarks of cancer, especially on the immune escape of tumour cells in solid tumours. Our comprehension of the interplay between FOXP3+ Treg cells and key hallmarks of cancer may provide new insights into the development of next-generation engineered T cell-based immune treatments for solid tumours.
Collapse
Affiliation(s)
- Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhizhen Qin
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenle Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqin Yuan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dehua Meng
- Department of Orthopedics, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Gang Zhao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Xu Y, Yang S, Zhu Y, Yao S, Li Y, Ye H, Ye Y, Li Z, Wu L, Zhao K, Huang L, Liu Z. Artificial intelligence for quantifying Crohn's-like lymphoid reaction and tumor-infiltrating lymphocytes in colorectal cancer. Comput Struct Biotechnol J 2022; 20:5586-5594. [PMID: 36284712 PMCID: PMC9568693 DOI: 10.1016/j.csbj.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Crohn's-like lymphoid reaction (CLR) and tumor-infiltrating lymphocytes (TILs) are crucial for the host antitumor immune response. We proposed an artificial intelligence (AI)-based model to quantify the density of TILs and CLR in immunohistochemical (IHC)-stained whole-slide images (WSIs) and further constructed the CLR-I (immune) score, a tissue level- and cell level-based immune factor, to predict the overall survival (OS) of patients with colorectal cancer (CRC). The TILs score and CLR score were obtained according to the related density. And the CLR-I score was calculated by summing two scores. The development (Hospital 1, N = 370) and validation (Hospital 2 & 3, N = 144) cohorts were used to evaluate the prognostic value of the CLR-I score. The C-index and integrated area under the curve were used to assess the discrimination ability. A higher CLR-I score was associated with a better prognosis, which was identified by multivariable analysis in the development (hazard ratio for score 3 vs score 0 = 0.22, 95% confidence interval 0.12-0.40, P < 0.001) and validation cohort (0.21, 0.05-0.78, P = 0.020). The AI-based CLR-I score outperforms the single predictor in predicting OS which is objective and more prone to be deployed in clinical practice.
Collapse
Affiliation(s)
- Yao Xu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shangqing Yang
- School of Life Science and Technology, Xidian University, Xian 710071, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yajun Li
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huifen Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510080, China
| | - Yunrui Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510080, China
| | - Zhenhui Li
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China
| | - Lin Wu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming 650118, China
| | - Ke Zhao
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Corresponding authors at: Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China (K. Zhao and Z. Liu). School of Life Science and Technology, Xidian University, 2 Taibai Nanlu Road, Xian, 710071, China (L. Huang).
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xian 710071, China,Corresponding authors at: Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China (K. Zhao and Z. Liu). School of Life Science and Technology, Xidian University, 2 Taibai Nanlu Road, Xian, 710071, China (L. Huang).
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China,Corresponding authors at: Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China (K. Zhao and Z. Liu). School of Life Science and Technology, Xidian University, 2 Taibai Nanlu Road, Xian, 710071, China (L. Huang).
| |
Collapse
|
11
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
12
|
Kim JH, Kim GH, Ryu YM, Kim SY, Kim HD, Yoon SK, Cho Y, Lee JL. Clinical implications of the tumor microenvironment using multiplexed immunohistochemistry in patients with advanced or metastatic renal cell carcinoma treated with nivolumab plus ipilimumab. Front Oncol 2022; 12:969569. [PMID: 36237314 PMCID: PMC9552830 DOI: 10.3389/fonc.2022.969569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Immune checkpoint inhibitors (ICIs) such as nivolumab and ipilimumab (N/I) are important treatment options for advanced renal cell carcinoma (RCC). The tumor microenvironment (TME) in these ICI-treated patients is largely unknown. Methods Twenty-four patients treated with N/I between July 2015 and June 2020 were analyzed. Multiplexed immunohistochemistry (mIHC) was conducted to define the TME, including various T cell subsets, B cells, macrophages, and dendritic cells. Results The median age of the study patients was 61 years (range, 39-80) and 75.0% of these cases were men. The objective response rate with N/I was 50.0%. The densities of the CD8+ cytotoxic T cells (P=0.005), specifically CD137+ CD8+ T cells (P=0.017), Foxp3- CD4+ helper T cells (P=0.003), Foxp3+ CD4+ regulatory T cells (P=0.045), CD68+ CD206- M1 macrophages (P=0.008), and CD68+ CD206+ M2 macrophages (P=0.021) were significantly higher in the treatment responders. At a median follow-up duration of 24.7 months, the median progression-free survival (PFS) was 11.6 months. The high densities (≥median) of Foxp3- CD4+ helper T cells (P=0.016) and CD68+ CD206- M1 macrophages (P=0.008) were significantly associated with better PFS, and the density of CD137+ CD8+ cytotoxic T cells (P=0.079) was marginally associated with better PFS. After multivariate analysis, the higher density of Foxp3- CD4+ helper T cells was independently associated with better PFS (hazard ratio 0.19; P=0.016). Conclusion The properties and clinical implications of the TME properties in RCC indicate that Foxp3- CD4+ helper T cells, M1 macrophages, and CD137+ CD8+ T cells are potential predictive biomarkers and treatment targets.
Collapse
Affiliation(s)
- Jwa Hoon Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Gi Hwan Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yeon-Mi Ryu
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Shin Kyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
HAUS Augmin-Like Complex Subunit 1 Influences Tumour Microenvironment and Prognostic Outcomes in Glioma. JOURNAL OF ONCOLOGY 2022; 2022:8027686. [PMID: 35865089 PMCID: PMC9296284 DOI: 10.1155/2022/8027686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Background. The expression of HAUS Augmin-like complex subunit 1 (HAUS1), a protein-coding gene, is low in normal samples among various cancers with pan-cancer analysis. The depletion of HAUS1 in cells decreases the G2/M cell compartment and induces apoptosis. However, the detailed expression pattern of HAUS1 and its correlation with immune infiltration in glioma (LGG and GBM) (LGG: low-grade glioma; GBM: glioblastoma) remain unknown. Therefore, in this study, we examined the role and prognostic value of HAUS1 in glioma. Methods. Transcriptional expression data of HAUS1 were collected from the CGGA and TCGA databases. The Kaplan–Meier analysis, univariate and multivariate Cox analyses, and receiver operating characteristic (ROC) curves were used to analyse the clinical significance of HAUS1 in glioma. The STRING database was used to analyse protein-protein interactions (PPI), and the “ClusterProfiler” package was used for functional enrichment analysis to examine the possible biological roles of HAUS1. In addition, the HAUS1 promoter methylation modification was analysed using MEXPRESS, and the association between HAUS1 expression and tumour-infiltrating immune cells was investigated using CIBERSORT. Results. Based on the data retrieved from TCGA (703 samples) and CGGA (1018 samples), an elevated expression of HAUS1 was observed in glioma samples, which was associated with poorer survival of patients, unfavourable clinical characteristics, 1p/19q codeletion status, WHO grade, and IDH mutation status. Furthermore, multivariate and univariate Cox analyses revealed that HAUS1 was an independent predictor of glioma. HAUS1 expression level was associated with several tumour-infiltrating immune cells, such as Th2 cells, macrophages, and activated dendritic cells. The outcomes of ROC curve analysis showed that HAUS1 was good to prognosticate immune infiltrating levels in glioma with a higher area under the curve (AUC) value (AUC = 0.974). Conclusions. HAUS1 was upregulated and served as a biomarker for poor prognosis in patients with glioma. High HAUS1 expression was associated with several tumour-infiltrating immune cells such as Th2 cells, macrophages, and activated dendritic cells, which had high infiltration levels. Therefore, these findings suggest that HAUS1 is a potential biomarker for predicting the prognosis of patients with glioma and plays a pivotal role in immune infiltration in glioma.
Collapse
|
14
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Jou E, Rodriguez-Rodriguez N, Ferreira ACF, Jolin HE, Clark PA, Sawmynaden K, Ko M, Murphy JE, Mannion J, Ward C, Matthews DJ, Buczacki SJA, McKenzie ANJ. An innate IL-25-ILC2-MDSC axis creates a cancer-permissive microenvironment for Apc mutation-driven intestinal tumorigenesis. Sci Immunol 2022; 7:eabn0175. [PMID: 35658010 PMCID: PMC7612821 DOI: 10.1126/sciimmunol.abn0175] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-25 (IL-25) and group 2 innate lymphoid cells (ILC2s) defend the host against intestinal helminth infection and are associated with inappropriate allergic reactions. IL-33-activated ILC2s were previously found to augment protective tissue-specific pancreatic cancer immunity. Here, we showed that intestinal IL-25-activated ILC2s created an innate cancer-permissive microenvironment. Colorectal cancer (CRC) patients with higher tumor IL25 expression had reduced survival and increased IL-25R-expressing tumor-resident ILC2s and myeloid-derived suppressor cells (MDSCs) associated with impaired antitumor responses. Ablation of IL-25 signaling reduced tumors, virtually doubling life expectancy in an Apc mutation-driven model of spontaneous intestinal tumorigenesis. Mechanistically, IL-25 promoted intratumoral ILC2s, which sustained tumor-infiltrating MDSCs to suppress antitumor immunity. Therapeutic antibody-mediated blockade of IL-25 signaling decreased intratumoral ILC2s, MDSCs, and adenoma/adenocarcinoma while increasing antitumor adaptive T cell and interferon-γ (IFN-γ)-mediated immunity. Thus, the roles of innate epithelium-derived cytokines IL-25 and IL-33 as well as ILC2s in cancer cannot be generalized. The protumoral nature of the IL-25-ILC2 axis in CRC highlights this pathway as a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | | | - Helen E. Jolin
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jane E. Murphy
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Christopher Ward
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW United Kingdom
| | | | - Simon J. A. Buczacki
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW United Kingdom
| | | |
Collapse
|
16
|
Hong SW, Lee S, Kim YJ, Ahn S, Park IJ, Hong SM, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Yang SK, Kim J, Kim SY, Myung SJ. Immune profile by multiplexed immunohistochemistry associated with recurrence after chemoradiation in rectal cancer. J Gastroenterol Hepatol 2022; 37:542-550. [PMID: 34993983 DOI: 10.1111/jgh.15773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIM Evidence has emerged that a pretreatment immune profile in rectal cancer is associated with response to chemoradiotherapy (CRT) and recurrence after CRT. However, few studies have evaluated the immune profile differences after CRT regarding recurrence and nonrecurrence. METHODS We included patients with advanced rectal cancer treated with CRT and surgery with recurrence within 1 year in a recurrence group. After sex and age matching with the recurrence group, patients with no recurrence for 3 years after CRT were included in a nonrecurrence group. We extracted the immune profile, including CD3 and CD8, from the surgical specimen after CRT using multispectral fluorescence immunohistochemistry and compared the two groups. RESULTS The immune profiles of 65 patients with rectal cancer were assessed; 30 were included in the recurrence group and 35 were included in the nonrecurrence group. CD3+ and CD8+ T lymphocyte densities were significantly higher in the nonrecurrence group than in the recurrence group (CD3+ ; P < 0.001, CD8+ ; P = 0.003) in the primary tumor. Consistent results were found in epithelial and stromal cells. Compared with the recurrence group, the distinct profiles of co-expressed immune markers in the nonrecurrence group were revealed (CD3+ CD8+ , P = 0.001; CD3+ CD8+ PD-L1- , P = 0.001; CD3+ CD8+ FOXP3- PD-L1- , P = 0.001). CONCLUSIONS Vigorous CD3+ and CD8+ T cell priming post-CRT was prominent in the nonrecurrence group compared with that of the recurrence group. This finding suggests that differences in immune profiles may have clinical significance even after CRT.
Collapse
Affiliation(s)
- Seung Wook Hong
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seohyun Lee
- Department of Gastroenterology, Center for Health Promotion, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jae Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Soyeon Ahn
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, South Korea
| | - In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jaeil Kim
- Health Screening and Promotion Center, Asan Medical Center, Seoul, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Porter RJ, Arends MJ, Churchhouse AMD, Din S. Inflammatory Bowel Disease-Associated Colorectal Cancer: Translational Risks from Mechanisms to Medicines. J Crohns Colitis 2021; 15:2131-2141. [PMID: 34111282 PMCID: PMC8684457 DOI: 10.1093/ecco-jcc/jjab102] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cumulative impact of chronic inflammation in patients with inflammatory bowel diseases predisposes to the development of inflammatory bowel disease-associated colorectal cancer [IBD-CRC]. Inflammation can induce mutagenesis, and the relapsing-remitting nature of this inflammation, together with epithelial regeneration, may exert selective pressure accelerating carcinogenesis. The molecular pathogenesis of IBD-CRC, termed the 'inflammation-dysplasia-carcinoma' sequence, is well described. However, the immunopathogenesis of IBD-CRC is less well understood. The impact of novel immunosuppressive therapies, which aim to achieve deep remission, is mostly unknown. Therefore, this timely review summarizes the clinical context of IBD-CRC, outlines the molecular and immunological basis of disease pathogenesis, and considers the impact of novel biological therapies.
Collapse
Affiliation(s)
- Ross J Porter
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, UK
- NHS Lothian Edinburgh IBD Unit, Western General Hospital, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Institute of Cancer & Genetics, Western General Hospital, University of Edinburgh, UK
| | | | - Shahida Din
- NHS Lothian Edinburgh IBD Unit, Western General Hospital, UK
- Corresponding author: Dr Shahida Din, Edinburgh IBD Unit, Anne Ferguson Building, Western General Hospital, Edinburgh EH4 2XU, UK. Tel: +44 (0) 131 537 1758;
| |
Collapse
|
18
|
Ke X, Hu T, Jiang M. cGAS-STING signaling pathway in gastrointestinal inflammatory disease and cancers. FASEB J 2021; 36:e22029. [PMID: 34907606 DOI: 10.1096/fj.202101199r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a key DNA-sensing machinery in innate immunity. Activation of cGAS-STING signaling pathway mediates the production of interferons and proinflammatory cytokines. Although cGAS-STING signaling pathway shows critical function in the maintenance of gut homeostasis, overactive cGAS-STING signaling pathway leads to gastrointestinal (GI) inflammation. Harnessing the effect and mechanism of the cGAS-STING signaling pathway could be beneficial for the development of novel strategies for the treatment of GI diseases. This review presents recent advances regarding the role of cGAS-STING signaling pathway in GI inflammatory disease and cancers and describes perspective therapeutic strategies targeting the signaling pathway.
Collapse
Affiliation(s)
- Xinxin Ke
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mizu Jiang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
19
|
Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis. Biomolecules 2021; 11:biom11101440. [PMID: 34680073 PMCID: PMC8533626 DOI: 10.3390/biom11101440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Immunological and epigenetic changes are interconnected and contribute to tumorigenesis. We determined the immunoprofiles and promoter methylation of inflammation-related genes for colitis-associated colorectal carcinomas (CA-CRC). The results were compared with Lynch syndrome (LS)-associated colorectal tumors, which are characterized by an active immune environment through inherited mismatch repair defects. CA-CRCs (n = 31) were immunohistochemically evaluated for immune cell scores (ICSs) and PDCD1 and CD274 expression. Seven inflammation-associated genes (CD274, NTSR1, PPARG, PTGS2, PYCARD, SOCS1, and SOCS2), the repair gene MGMT, and eight standard marker genes for the CpG Island Methylator Phenotype (CIMP) were investigated for promoter methylation in CA-CRCs, LS tumors (n = 29), and paired normal mucosae by multiplex ligation-dependent probe amplification. All but one CA-CRCs were microsatellite-stable and all LS tumors were microsatellite-unstable. Most CA-CRCs had a high ICS (55%) and a positive CD274 expression in immune cells (52%). NTSR1 revealed frequent tumor-specific hypermethylation in CA-CRC and LS. When compared to LS mucosae, normal mucosae from patients with CA-CRC showed significantly higher methylation of NTSR1 and most CIMP markers. In conclusion, CA-CRCs share a frequent ICShigh/CD274pos expression pattern with LS tumors. Elevated methylation in normal mucosa may indicate field cancerization as a feature of CA-CRC-associated tumorigenesis.
Collapse
|
20
|
Lee SW, Lee HY, Kang SW, Kim MJ, Lee YJ, Sung CO, Kim YM. Application of Immunoprofiling Using Multiplexed Immunofluorescence Staining Identifies the Prognosis of Patients with High-Grade Serous Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22179638. [PMID: 34502561 PMCID: PMC8431807 DOI: 10.3390/ijms22179638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/14/2023] Open
Abstract
Immunoprofiling has an established impact on the prognosis of several cancers; however, its role and definition in high-grade serous ovarian cancer (HGSOC) are mostly unknown. This study is to investigate immunoprofiling which could be a prognostic factor in HGSOC. We produced tumor microarrays of 187 patients diagnosed with HGSOC. We performed a multiplexed immunofluorescence staining using Opal Multiplex IHC kit and quantitative analysis with Vectra-Inform system. The expression intensities of programmed death-ligand 1 (PD-L1), CD4, CD8, CD20, FoxP3, and CK in whole tumor tissues were evaluated. The enrolled patients showed general characteristics, mostly FIGO stage III/IV and responsive to chemotherapy. Each immune marker showed diverse positive densities, and each tumor sample represented its immune characteristics as an inflamed tumor or noninflamed tumor. No marker was associated with survival as a single one. Interestingly, high ratios of CD8 to FoxP3 and CD8 to PD-L1 were related to the favorable overall survival (77 vs. 39 months, 84 vs. 47 months, respectively), and CD8 to PD-L1 ratio was also a significant prognostic factor (HR 0.621, 95% CI 0.420-0.917, p = 0.017) along with well-known clinical prognostic factors. Additionally, CD8 to PD-L1 ratio was found to be higher in the chemosensitive group (p = 0.034). In conclusion, the relative expression levels of CD8, FoxP3, and PD-L1 were significantly related to the clinical outcome of patients with HGSOC, which could be a kind of significant immunoprofiling of ovarian cancer patients to apply for treatment.
Collapse
Affiliation(s)
- Shin-Wha Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence:
| | - Ha-Young Lee
- Asan Institute for Life Science, Seoul 05505, Korea; (H.-Y.L.); (S.W.K.); (M.J.K.)
| | - Sung Wan Kang
- Asan Institute for Life Science, Seoul 05505, Korea; (H.-Y.L.); (S.W.K.); (M.J.K.)
| | - Min Je Kim
- Asan Institute for Life Science, Seoul 05505, Korea; (H.-Y.L.); (S.W.K.); (M.J.K.)
| | - Young-Jae Lee
- Department of Obstetrics and Gynecology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung 25440, Korea;
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| |
Collapse
|
21
|
Zhang Y, Xie R, Zhang H, Zheng Y, Lin C, Yang L, Huang M, Li M, Song F, Lu L, Yang M, Liu Y, Wei Q, Li J, Chen J. Integrin β7 Inhibits Colorectal Cancer Pathogenesis via Maintaining Antitumor Immunity. Cancer Immunol Res 2021; 9:967-980. [PMID: 34131019 DOI: 10.1158/2326-6066.cir-20-0879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Immune cell infiltration is important for predicting the clinical outcomes of colorectal cancer. Integrin β7 (ITGB7), which is expressed on the surface of leukocytes, plays an essential role in the homing of immune cells to gut-associated lymphoid tissue and facilitating the retention of lymphocytes in gut epithelium; however, its role in colorectal cancer pathogenesis is poorly explored. Here, we found that the number of β7+ cells decreased significantly in tumor tissue compared with adjacent normal tissue. β7 expression decreased in tumor-derived compared with normal tissue-derived CD8+ T cells. With bulk RNA expression data from public platforms, we demonstrated that higher ITGB7 expression correlated with longer patient survival, higher cytotoxic immune cell infiltration, lower somatic copy-number alterations, decreased mutation frequency of APC and TP53, and better response to immunotherapy. The possible cell-cell interactions mediated by ITGB7 and its ligands MAdCAM-1, VCAM-1, and CDH1 were investigated using public single-cell RNA sequencing data. ITGB7 deficiency led to exaggerated tumorigenesis and progression in both Apcmin /+ spontaneous and MC38 orthotopic models of colorectal cancer, which could be due to a reduced infiltration of activated CD8+ T cells, effector memory CD8+ T cells, IFNγ+ CD8+ T cells, IFNγ+ natural killer cells, CD103+ dendritic cells, and other immune cell subsets that are essential players in antitumor immunity. In conclusion, our data revealed that ITGB7 could inhibit the tumorigenesis and progression of colorectal cancer by maintaining antitumor immunity.
Collapse
Affiliation(s)
- Youhua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Hailong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yajuan Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Changdong Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lei Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Mengwen Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Man Li
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Feifei Song
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Ying Liu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China.
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, P.R. China.
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, P.R. China
| |
Collapse
|
22
|
STAT6 Is Critical for the Induction of Regulatory T Cells In Vivo Controlling the Initial Steps of Colitis-Associated Cancer. Int J Mol Sci 2021; 22:ijms22084049. [PMID: 33919941 PMCID: PMC8070924 DOI: 10.3390/ijms22084049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6−/−) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6−/− and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6−/− mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6−/− mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.
Collapse
|
23
|
Kim HD, Kim JH, Ryu YM, Kim D, Lee S, Shin J, Hong SM, Kim KH, Jung D, Song G, Hwang DW, Lee JH, Song KB, Ryoo BY, Jeong JH, Kim KP, Kim SY, Yoo C. Spatial Distribution and Prognostic Implications of Tumor-Infiltrating FoxP3- CD4+ T Cells in Biliary Tract Cancer. Cancer Res Treat 2021; 53:162-171. [PMID: 32878426 PMCID: PMC7812013 DOI: 10.4143/crt.2020.704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The clinical implications of tumor-infiltrating T cell subsets and their spatial distribution in biliary tract cancer (BTC) patients treated with gemcitabine plus cisplatin were investigated. MATERIALS AND METHODS A total of 52 BTC patients treated with palliative gemcitabine plus cisplatin were included. Multiplexed immunohistochemistry was performed on tumor tissues, and immune infiltrates were separately analyzed for the stroma, tumor margin, and tumor core. RESULTS The density of CD8+ T cells, FoxP3- CD4+ helper T cells, and FoxP3+ CD4+ regulatory T cells was significantly higher in the tumor margin than in the stroma and tumor core. The density of LAG3- or TIM3-expressing CD8+ T cell and FoxP3- CD4+ helper T cell infiltrates was also higher in the tumor margin. In extrahepatic cholangiocarcinoma, there was a higher density of T cell subsets in the tumor core and regulatory T cells in all regions. A high density of FoxP3- CD4+ helper T cells in the tumor margin showed a trend toward better progression-free survival (PFS) (p=0.092) and significantly better overall survival (OS) (p=0.012). In multivariate analyses, a high density of FoxP3- CD4+ helper T cells in the tumor margin was independently associated with favorable PFS and OS. CONCLUSION The tumor margin is the major site for the active infiltration of T cell subsets with higher levels of LAG3 and TIM3 expression in BTC. The density of tumor margin-infiltrating FoxP3- CD4+ helper T cells may be associated with clinical outcomes in BTC patients treated with gemcitabine plus cisplatin.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jwa Hoon Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Danbee Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sunmin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaehoon Shin
- Department of Pathology, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Ki-Hun Kim
- Department of Surgery, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Dong‐Hwan Jung
- Department of Surgery, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Gi‐Won Song
- Department of Surgery, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Dae Wook Hwang
- Department of Surgery, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Jae Hoon Lee
- Department of Surgery, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Ki Byung Song
- Department of Surgery, Asan Medical Center, Seoul, University of Ulsan College of Medicine, Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyu-pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Fantini MC, Favale A, Onali S, Facciotti F. Tumor Infiltrating Regulatory T Cells in Sporadic and Colitis-Associated Colorectal Cancer: The Red Little Riding Hood and the Wolf. Int J Mol Sci 2020; 21:E6744. [PMID: 32937953 PMCID: PMC7555219 DOI: 10.3390/ijms21186744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells represent a class of specialized T lymphocytes that suppress unwanted immune responses and size the activation of the immune system whereby limiting collateral damages in tissues involved by inflammation. In cancer, the accumulation of Tregs is generally associated with poor prognosis. Many lines of evidence indicate that Tregs accumulation in the tumor microenvironment (TME) suppresses the immune response against tumor-associated antigens (TAA), thus promoting tumor progression in non-small cell lung carcinoma (NSLC), breast carcinoma and melanoma. In colorectal cancer (CRC) the effect of Tregs accumulation is debated. Some reports describe the association of high number of Tregs in CRC stroma with a better prognosis while others failed to find any association. These discordant results stem from the heterogeneity of the immune environment generated in CRC in which anticancer immune response may coexists with tumor promoting inflammation. Moreover, different subsets of Tregs have been identified that may exert different effects on cancer progression depending on tumor stage and their location within the tumor mass. Finally, Tregs phenotypic plasticity may be induced by cytokines released in the TME by dysplastic and other tumor-infiltrating cells thus affecting their functional role in the tumor. Here, we reviewed the recent literature about the role of Tregs in CRC and in colitis-associated colorectal cancer (CAC), where inflammation is the main driver of tumor initiation and progression. We tried to explain when and how Tregs can be considered to be the "good" or the "bad" in the colon carcinogenesis process on the basis of the available data concluding that the final effect of Tregs on sporadic CRC and CAC depends on their localization within the tumor, the subtype of Tregs involved and their phenotypic plasticity.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Agnese Favale
- Department of Medical Science and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Sara Onali
- CEMAD-IBD UNIT-Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
| |
Collapse
|
25
|
Luo Q, Zeng L, Tang C, Zhang Z, Chen Y, Zeng C. TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-κB expression levels. Oncol Lett 2020; 20:110. [PMID: 32863923 PMCID: PMC7448563 DOI: 10.3892/ol.2020.11971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic colorectal inflammation has been associated with colorectal cancer (CRC); however, its exact molecular mechanisms remain unclear. The present study aimed to investigate the effect of Toll-like receptor 9 (TLR9) on the development of colitis-associated CRC (CAC) through its regulation of the NF-κB signaling pathway. By using a CAC mouse model and immunohistochemistry, the present study discovered that the protein expression levels of TLR9 were gradually upregulated during the development of CRC. In addition, the expression levels of TLR9 were revealed to be positively correlated with NF-κB and Ki67 expression levels. In vitro, inhibiting TLR9 expression levels using chloroquine decreased the cell viability, proliferation and migration of the CRC cell line HT29, and further experiments indicated that this may occur through downregulating the expression levels of NF-κB, proliferating cell nuclear antigen and Bcl-xl. In conclusion, the findings of the present study suggested that TLR9 may serve an important role in the development of CAC by regulating NF-κB signaling.
Collapse
Affiliation(s)
- Qingtian Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Ling Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chaotao Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhendong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youxiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunyan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Ortega S, Halicek M, Fabelo H, Callico GM, Fei B. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:3195-3233. [PMID: 32637250 PMCID: PMC7315999 DOI: 10.1364/boe.386338] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 05/08/2020] [Indexed: 05/06/2023]
Abstract
Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the potential to transform the fields of digital and computational pathology. Traditional digitized histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within and beyond the visual range can complement spatial information for the creation of computer-aided diagnostic tools for both stained and unstained histological specimens. In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research. Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an improvement in the detection of diseases and clinical practice compared with traditional RGB analysis, and brings new opportunities in histological analysis of samples, such as digital staining or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of studies in this field is currently limited, and more research is needed to confirm the advantages of this technology compared to conventional imagery.
Collapse
Affiliation(s)
- Samuel Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
- These authors contributed equally to this work
| | - Martin Halicek
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biomedical Engineering, Georgia Inst. of Tech. and Emory University, Atlanta, GA 30322, USA
- These authors contributed equally to this work
| | - Himar Fabelo
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Gustavo M Callico
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Baowei Fei
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX 75235, USA
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX 75235, USA
| |
Collapse
|