1
|
Gogoi M, Kalita SJ, Deb J, Gogoi A, Saikia L. Ligand-triggered antenna effect and dual emissions in Eu(III) MOF and its application in multi-mode sensing of 1,4-dioxane. Dalton Trans 2024; 53:17480-17497. [PMID: 39397532 DOI: 10.1039/d4dt01709a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A new set of metal-organic frameworks was designed by functionalizing g-C3N4 with benzoic acid and using them as structure-directing ligands during the metal-organic framework (MOF) formation. One such MOF exhibited dual emissions, both metal- and ligand-centered, enabling ratiometric sensing of the carcinogenic industrial solvent dioxane. The fabricated MOFs possessed a unique fluffy spherical morphology that enabled atomic level resolution in transmission electron microscopy-a rarity in MOFs due to the 'Knock-on' effect. Sensor experiments showed a rapid response within 5 s of analyte introduction and achieved a low limit of detection (LOD) of 0.026 ppm, well below the FDA-approved level of 10 ppm. In addition, the sensor exhibited exceptional selectivity, discriminating 1,4-dioxane from a pool of 16 solvents. This increased sensing capability was attributed to the formation of complexes and precise alignment of energy levels between the host and analyte, facilitating photoinduced electron transfer (PET). This material is equally efficient for colorimetric detection of the same solvent under excitation of UV light as well as gas phase detection of this volatile organic compound through I-V characteristics. Density functional theory (DFT) analysis supported the crucial role of Eu and the ligand system in efficiently detecting 1,4-dioxane by fluorescence spectroscopy, as shown in the energy level diagram. Future research could focus on optimizing these metal-organic frameworks for enhanced industrial applications in the detection of dioxane and exploring their potential applications in real-world environmental monitoring and public health safety.
Collapse
Affiliation(s)
- Madhulekha Gogoi
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Knowledgepie Private Limited, Bio-NEST, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Sanmilan Jyoti Kalita
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Jyotirmoy Deb
- Advanced Computational & Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Ankur Gogoi
- Department of Physics, Jagannath Barooah University, Jorhat-785001, Assam, India
| | - Lakshi Saikia
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Wang X, Zhou Q, Zhang H, Wang Y. Epitaxial Growth of a Three-Dimensional Hollow and Chestnut Shell Photothermal p-n Junction Photoanode. ACS NANO 2024; 18:29794-29803. [PMID: 39417602 DOI: 10.1021/acsnano.4c09465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The p-n junction, a widely studied semiconductor material structure, offers only limited improvements in photoelectrochemical (PEC) efficiency. Herein, a three-dimensional (3D) p-n junction h-Ta3N5@CoN featuring a stable chestnut shell hollow sphere structure and photothermal effect was synthesized by using an epitaxial growth strategy. The fine fibers within the sphere induce Rayleigh scattering, which scatters unabsorbed light, thereby enabling secondary absorption and enhancing light utilization. The quantum confinement effects generated by CoN fine fibers, which are sized in a few nanometers, inhibit the recombination of electron-hole pairs. Moreover, the lattice matching between Ta3N5 and CoN allows for smoother movement of carriers and nonradiative relaxation phonons along the lattice, thereby enhancing the transport of both carriers and heat. The obtained h-Ta3N5@CoN/FTO p-n junction photoanode, under near-infrared (NIR) auxiliary irradiation, demonstrates a photocurrent of 8.71 mA cm-2 at 1.23 VRHE. Moreover, the h-Ta3N5@CoN+NIR/FTO photoanode can sustain operation for 168 h, which, to my knowledge, surpasses the operational durations of all other Ta3N5-based photoanodes. This study synthesizes three-dimensional hollow chestnut shell photothermal p-n heterojunctions through an epitaxial growth strategy, endowing the material with a more efficient carrier separation and photothermal transfer efficiency.
Collapse
Affiliation(s)
- Xiaodong Wang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Qingxia Zhou
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| |
Collapse
|
3
|
Xiao Y, Li Z, Xu B. Flexible Triboelectric Nanogenerators based on Hydrogel/g-C 3N 4 Composites for Biomechanical Energy Harvesting and Self-Powered Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13674-13684. [PMID: 38457219 DOI: 10.1021/acsami.3c17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Flexible and stretchable triboelectric nanogenerators (TENGs) have been rapidly advanced owing to the demand for portable and wearable electronic devices that can work under universal or motional circumstances. While versatile materials can be applied in a TENG as dielectric materials, flexible and cost-effective electrodes are crucially important for the output performance of TENGs. Herein, we developed a poly(vinyl alcohol) (PVA) hydrogel TENG doped with a novel two-dimensional material, graphitic carbon nitride (g-C3N4), which could act as both a cost-effective flexible electrode and a positive dielectric for TENG with different morphologies. The measured peak-to-peak open-circuit voltage of the TENG reached 80 V at a dopant concentration of 2.7 wt % in single-electrode mode, which is far higher than that of the pristine PVA hydrogel TENG. As a demonstration of the application, the g-C3N4/PVA hydrogel TENG can be adopted as electronic skin to monitor the movement of the human body. Low-frequency mechanical energy-harvesting devices in different morphologies including discoid flake shape, tube shape, and spiral shape in the single-electrode mode or contact-separation mode have been designed, fabricated, and evaluated. All of these merits of the proposed hydrogel TENG after doping two-dimensional (2D) material g-C3N4 have demonstrated their promising potential for versatile applications in biomechanical energy harvesting and self-powered sensing.
Collapse
Affiliation(s)
- Yana Xiao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Zihua Li
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
4
|
Wang Y, Zhong S, Niu Z, Dai Y, Li J. Synthesis and up-to-date applications of 2D microporous g-C 3N 4 nanomaterials for sustainable development. Chem Commun (Camb) 2023; 59:10883-10911. [PMID: 37622731 DOI: 10.1039/d3cc03550f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
In recent years, with the development of industrial technology and the increase of people's environmental awareness, the research on sustainable materials and their applications has become a hot topic. Among two-dimensional (2D) materials that have been selected for sustainable research, graphitic phase carbon nitride (g-C3N4) has become a hot research topic because of its many outstanding advantages such as simple preparation, good electrochemical properties, excellent photochemical properties, and better thermal stability. Nevertheless, the inherent limitations of g-C3N4 due to its relatively poor specific surface area, rapid charge recombination, limited light absorption range, and inferior dispersion in aqueous and organic media have limited its practical application. In the review, we summarize and analyze the unique structure of the 2D microporous nanomaterial g-C3N4, its synthesis method, chemical modification method, and the latest application examples in various fields in recent years, highlighting its advantages and shortcomings, with a view to providing ideas for overcoming the difficulties in its application. Furthermore, the pressing challenges faced by g-C3N4 are briefly discussed, as well as an outlook on the application prospects of g-C3N4 materials. It is expected that the review in this paper will provide more theoretical strategies for the future practical application of g-C3N4-based materials, as well as contributing to nanomaterials in sustainable applications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Suyue Zhong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Zhenhua Niu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Yangyang Dai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
5
|
Kumar G, Dey RS. Coordination Engineering of Dual Co, Ni Active Sites in N-Doped Carbon Fostering Reversible Oxygen Electrocatalysis. Inorg Chem 2023; 62:13519-13529. [PMID: 37562977 DOI: 10.1021/acs.inorgchem.3c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The development of affordable and non-noble-metal-based reversible oxygen electrocatalysts is required for renewable energy conversion and storage systems like metal-air batteries (MABs). However, the nonbifunctionality of most of the catalysts impedes their use in rechargeable MAB applications. Moreover, the loss of active sites also affects the long-term performance of the electrocatalyst toward oxygen electrocatalysis. In this work, we report a simplistic yet controllable chemical approach for the synthesis of dual transitional metals such as cobalt, nickel, and nitrogen-doped carbon (CoNi-NC) as bifunctional electrode materials for rechargeable zinc-air batteries (ZABs). The spatially isolated Ni-N4 and Co-N4 active units were rendered for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. The individual efficacy of both reversible reactions enables an ΔE value of ∼0.72 V, which outperforms several bifunctional electrocatalysts reported in the literature. The half-wave potential (E1/2) and overpotential were achieved at 0.83 V and 330 mV (vs RHE) for ORR and OER, respectively. The peak power density of ZAB equipped with the CoNi-NC catalyst was calculated to be 194 mW cm-2. The present strategy for the synthesis of bifunctional electrocatalysts with dual active sites offers prospects for developing electrochemical energy storage and conversion systems.
Collapse
Affiliation(s)
- Greesh Kumar
- Institute of Nano Science and Technology (INST), Sector-81, Mohali 140306, Punjab, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
6
|
Che H, Wang J, Wang P, Ao Y, Chen J, Gao X, Zhu F, Liu B. Simultaneously Achieving Fast Intramolecular Charge Transfer and Mass Transport in Holey D-π-A Organic Conjugated Polymers for Highly Efficient Photocatalytic Pollutant Degradation. JACS AU 2023; 3:1424-1434. [PMID: 37234118 PMCID: PMC10206595 DOI: 10.1021/jacsau.3c00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Simultaneously realizing efficient intramolecular charge transfer and mass transport in metal-free polymer photocatalysts is critical but challenging for environmental remediation. Herein, we develop a simple strategy to construct holey polymeric carbon nitride (PCN)-based donor-π-acceptor organic conjugated polymers via copolymerizing urea with 5-bromo-2-thiophenecarboxaldehyde (PCN-5B2T D-π-A OCPs). The resultant PCN-5B2T D-π-A OCPs extended the π-conjugate structure and introduced abundant micro-, meso-, and macro-pores, which greatly promoted intramolecular charge transfer, light absorption, and mass transport and thus significantly enhanced the photocatalytic performance in pollutant degradation. The apparent rate constant of the optimized PCN-5B2T D-π-A OCP for 2-mercaptobenzothiazole (2-MBT) removal is ∼10 times higher than that of the pure PCN. Density functional theory calculations reveal that the photogenerated electrons in PCN-5B2T D-π-A OCPs are much easier to transfer from the donor tertiary amine group to the benzene π-bridge and then to the acceptor imine group, while 2-MBT is more easily adsorbed on π-bridge and reacts with the photogenerated holes. A Fukui function calculation on the intermediates of 2-MBT predicted the real-time changing of actual reaction sites during the entire degradation process. Additionally, computational fluid dynamics further verified the rapid mass transport in holey PCN-5B2T D-π-A OCPs. These results demonstrate a novel concept toward highly efficient photocatalysis for environmental remediation by improving both intramolecular charge transfer and mass transport.
Collapse
Affiliation(s)
- Huinan Che
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Jian Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yanhui Ao
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Juan Chen
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Xin Gao
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Fangyuan Zhu
- Shanghai
Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bin Liu
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong-SAR 999077, China
| |
Collapse
|
7
|
Bhoyar T, Vidyasagar D, Umare SS. Mitigating phytotoxicity of tetracycline by metal-free 8-hydroxyquinoline functionalized carbon nitride photocatalyst. J Environ Sci (China) 2023; 125:37-46. [PMID: 36375922 DOI: 10.1016/j.jes.2021.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 06/16/2023]
Abstract
Photooxidative removal of pharmaceuticals and organic dyes is an effective way to eliminate growing micropollutants. However, photooxidation often results in byproducts as secondary hazardous substances such as phytotoxins. Herein, we found that photooxidation of common antibiotic tetracycline hydrochloride (TCH) over a metal-free 8-hydroxyquinoline (8-HQ) functionalized carbon nitride (CN) photocatalyst significantly reduces the TCH phytotoxic effect. The phytotoxicity test of photocatalytic treated TCH-solution evaluated towards seed growth of Cicer arietinum plant model endowed natural root and shoot growth. This study highlights the conceptual insights in designing of metal-free photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Toshali Bhoyar
- Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Devthade Vidyasagar
- Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India; School of Material Science and Engineering, Kyungpook National University, Daegu 41566, Korea.
| | - Suresh S Umare
- Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India.
| |
Collapse
|
8
|
Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022; 13:7299. [DOI: 10.1038/s41467-022-35013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractSwitchable gas separation membranes are intriguing systems for regulating the transport properties of gases. However, existing stimuli-responsive gas separation membranes suffer from either very slow response times or require high energy input for switching to occur. Accordingly, herein, we introduced light-switchable polymeric carbon nitride (pCN) gas separation membranes with fast response times prepared from melamine precursor through in-situ formation and deposition of pCN onto a porous support using chemical vapor deposition. Our systematic analysis revealed that the gas transport behavior upon light irradiation is fully governed by the polarizability of the permeating gas and its interaction with the charged pCN surface, and can be easily tuned either by controlling the power of the light and/or the duration of irradiation. We also demonstrated that gases with higher polarizabilities such as CO2 can be separated from gases with lower polarizability like H2 and He effectively with more than 22% increase in the gas/CO2 selectivity upon light irradiation. The membranes also exhibited fast response times (<1 s) and can be turned “on” and “off” using a single light source at 550 nm.
Collapse
|
9
|
Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022; 13:7299. [DOI: https:/doi.org/10.1038/s41467-022-35013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 07/03/2024] Open
Abstract
AbstractSwitchable gas separation membranes are intriguing systems for regulating the transport properties of gases. However, existing stimuli-responsive gas separation membranes suffer from either very slow response times or require high energy input for switching to occur. Accordingly, herein, we introduced light-switchable polymeric carbon nitride (pCN) gas separation membranes with fast response times prepared from melamine precursor through in-situ formation and deposition of pCN onto a porous support using chemical vapor deposition. Our systematic analysis revealed that the gas transport behavior upon light irradiation is fully governed by the polarizability of the permeating gas and its interaction with the charged pCN surface, and can be easily tuned either by controlling the power of the light and/or the duration of irradiation. We also demonstrated that gases with higher polarizabilities such as CO2 can be separated from gases with lower polarizability like H2 and He effectively with more than 22% increase in the gas/CO2 selectivity upon light irradiation. The membranes also exhibited fast response times (<1 s) and can be turned “on” and “off” using a single light source at 550 nm.
Collapse
|
10
|
Low-frequency acoustic irradiation coupled photocatalytic degradation of dye pollutant using LaNi0.5Co0.5O3/g-C3N4 nanocatalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Kulhary D, Singh S. Design of g‐C
3
N
4
/BaBiO
3
Heterojunction Nanocomposites for Photodegradation of an Organic Dye and Diclofenac Sodium under Visible Light via Interfacial Charge Transfer. ChemistrySelect 2022. [DOI: 10.1002/slct.202201964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dinesh Kulhary
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| | - Satyendra Singh
- Special Center for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
12
|
Akaike K, Hosokai A, Nagashima H, Wei Q, Hosokai T. Chemical reactions of graphitic carbon nitride films with glass surfaces and their impact on photocatalytic activity. Phys Chem Chem Phys 2022; 24:17504-17515. [PMID: 35838187 DOI: 10.1039/d2cp01677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin films of graphitic carbon nitride (g-CN), a visible-light-driven photocatalyst, have recently attracted interest for application in photoelectrochemical cells for water splitting and high-throughput photocatalysis. In typical syntheses, g-CN films are formed by heating the nitrogen-rich precursor and substrate to 500-600 °C. The heated substrate should affect the polycondensation of the precursor and thereby alter the properties of the g-CN film. In this paper, we demonstrate that soda-lime glass, such as commercial glass slides, modifies the chemical structure of g-CN. The terminal amino groups of g-CN are partially substituted with cyanamide and hydroxyl groups. The electron-withdrawing groups provide the energy offsets of the frontier orbitals between the modified and unmodified molecules, facilitating exciton dissociation. After alkali metals are removed, the modified g-CN film exhibits a faster photodegradation of methyl orange compared with a melon film. The simple protocol to activate a g-CN film without co-catalysts paves a new way to enhance photocatalytic activity via selections of substrates, including waste glass.
Collapse
Affiliation(s)
- Kouki Akaike
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Ayako Hosokai
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Qingshuo Wei
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Takuya Hosokai
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
13
|
Energy-Efficient CuO/TiO2@GCN Cellulose Acetate-Based Membrane for Concurrent Filtration and Photodegradation of Ketoprofen in Drinking and Groundwater. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photocatalytic membranes possessing both photocatalytic and solid-liquid separation capabilities were developed. These materials are based on ternary 1% CuO/TiO2@GCN (1:9) embedded on cellulose acetate (CA) via the phase inversion method. The CA membranes containing 0.1, 0.3 and 0.5 wt% of 1% CuO/TiO2@GCN (1:9) (CTG–100, CTG–300 and CTG–500) were fabricated. The deposition of 1% CuO/TiO2@GCN (1:9) onto the CA membranes and the consequential changes in the materials’ properties were investigated with various characterization techniques. For instance, PXRD, FTIR, and XPS analysis provided evidence that photocatalytic membranes were formed. Electron microscopy and EDX were then used to visualize the photocatalytic membranes and show that the photocatalyst (1% CuO/TiO2@GCN (1:9)) was well dispersed onto the CA membrane. On the other hand, the properties of the photocatalytic membranes were scrutinized, where it was found that the membranes had a sponge-like morphology and that was significantly less hydrophilic compared to neat CA. The removal of KP in water using CTG–500 exhibited over 94% efficiency, while 38% for neat CA was achieved. Water permeability flux improved with increasing 1% CuO/TiO2@GCN (1:9) and hydrophilicity of the membranes. The electrical energy consumption was calculated and determined to be significantly lower than that of the CA membrane. The CTG–500 membrane after every cycle showed self-cleaning ability after operation in drinking and groundwater.
Collapse
|
14
|
Chen X, Bao H, Liu S, Liu X, Zhang C. Facile solvothermal assisted g-C 3N 4 post-grafting with aromatic amine dyes for effective photocatalytic hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj02812c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dye grafted g-C3N4 using covalent bonds via a Schiff base chemical reaction exhibit much higher photocatalytic activity for H2 evolution.
Collapse
Affiliation(s)
- Xiaodi Chen
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hailian Bao
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Shihang Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Xingliang Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Chao Zhang
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| |
Collapse
|
15
|
Chen T, Hu S, Xing Q, Yu X, Chen J, Li X, Xu X, Zhang B. In situ formation of 2-thiobarbituric acid incorporated g-C 3N 4 for enhanced visible-light-driven photocatalytic performance. RSC Adv 2021; 11:21084-21096. [PMID: 35479385 PMCID: PMC9034024 DOI: 10.1039/d1ra02121d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/08/2021] [Indexed: 12/28/2022] Open
Abstract
Embedding heterocycles into the skeleton of g-C3N4 has been proved to be a simple and efficient strategy for improving light response and the separation of photo-excited charges. Herein, 2-thiobarbituric acid incorporated g-C3N4 (TBA/CN) with good photocatalytic efficiency for Rh B degradation and H2 production was successfully achieved via a facile thermal copolymerization approach. The incorporation of aromatics and S atoms into the skeleton of g-C3N4 was identified via systematic characterizations. This unique structure contributed to the narrowed band-gap, extended delocalization of lone pair electrons and changed electron transition pathway, which led to the enhanced visible light utilization, accelerated charge migration and prolonged electron lifetime, subsequently resulting in the significant boost of photocatalytic activity. The optimal TBA/CN-3 sample yielded the largest Rh B degradation rate constant k value of 0.0273 min−1 and simultaneously highest rate of H2 evolution of 0.438 mmol g−1 h−1, which were almost 3.5 and 3.8 folds as fast as that of the pristine CN, respectively. Finally, the photocatalytic mechanism was proposed for the detailed elucidation of the process of Rh B degradation coupled with H2 production. Embedding heterocycles into the skeleton of g-C3N4 has been proved to be a simple and efficient strategy for improving light response and the separation of photo-excited charges.![]()
Collapse
Affiliation(s)
- Tingting Chen
- School of Environment and Safety Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Shan Hu
- School of Environment and Safety Engineering, Jiangsu University Zhenjiang 212013 PR China.,Jiangsu Province Synergistic Innovation Center of Modern Agricultural Equipment and Technology Zhenjiang 212013 PR China
| | - Quanfeng Xing
- School of Environment and Safety Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Xiaofeng Yu
- School of Pharmacy, Jiangsu University Zhenjiang 212013 PR China
| | - Jinming Chen
- School of Pharmacy, Jiangsu University Zhenjiang 212013 PR China
| | - Xiaolong Li
- School of Pharmacy, Jiangsu University Zhenjiang 212013 PR China
| | - Xiuquan Xu
- School of Pharmacy, Jiangsu University Zhenjiang 212013 PR China
| | - Bo Zhang
- School of Environment and Safety Engineering, Jiangsu University Zhenjiang 212013 PR China.,Jiangsu Province Synergistic Innovation Center of Modern Agricultural Equipment and Technology Zhenjiang 212013 PR China
| |
Collapse
|
16
|
Hu S, Yu A, Lu R. A comparison study of sodium ion- and potassium ion-modified graphitic carbon nitride for photocatalytic hydrogen evolution. RSC Adv 2021; 11:15701-15709. [PMID: 35481164 PMCID: PMC9029307 DOI: 10.1039/d1ra01395e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
It is well known that modifying graphitic carbon nitride (GCN) is an imperative strategy to improve its photocatalytic activity. In this study, Na-doped and K-doped graphitic carbon nitride (GCN-Na and GCN-K) were prepared via the simple thermal polymerization of a mixture of melamine and NaCl or KCl, respectively. The structure characterization showed that both Na+ and K+ intercalation could reduce the interlayer distance of GCN and introduce cyano defects in GCN, while K+ apparently had a stronger influence on the structure variation of GCN. The chemical composition data showed that both Na+ and K+ could easily interact with GCN, while K-doping caused a greater change in the C/N ratio than Na-doping. Moreover, compared to GCN-Na-5 (5 represents weight ratio of alkali halide to melamine), the conduction and valence bands of GCN-K-5 both shifted upward based on the electronic and optical measurements. Consequently, GCN-K-5 yielded an H2 evolution rate around 4 times higher than that of GCN-Na-5 under visible light irradiation (>420 nm). The cation size effect on GCN was proposed to be mainly responsible for the variation in the structure, optical and electronic properties of ion-doped GCNs, and hence the enhanced photocatalytic H2 evolution. The current work can provide new insight into optimizing photocatalysts for enhanced photocatalytic performances. The ion size effect on graphitic carbon nitride is responsible for variations in its structure, optical and electronic properties, and hence the enhancement in photocatalytic hydrogen evolution.![]()
Collapse
Affiliation(s)
- Siyu Hu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China +86-10-6251-6444
| | - Anchi Yu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China +86-10-6251-6444
| | - Rong Lu
- Department of Chemistry, Renmin University of China Beijing 100872 P. R. China +86-10-6251-6444
| |
Collapse
|
17
|
Wu Y, Liu X, Zhang H, Li J, Zhou M, Li L, Wang Y. Atomic Sandwiched p‐n Homojunctions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu Wu
- The School of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment &, System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - XiaoQing Liu
- The School of Optoelectronic Engineering Key Laboratory of Optoelectronic Technology and System of Ministry of Education Chongqing University Chongqing 400044 P. R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment &, System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Jian Li
- The School of Electrical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Miao Zhou
- The School of Optoelectronic Engineering Key Laboratory of Optoelectronic Technology and System of Ministry of Education Chongqing University Chongqing 400044 P. R. China
| | - Liang Li
- The School of Physical Science and Technology Center for Energy Conversion Materials & Physics Jiangsu Key Laboratory of Thin Films Soochow University Suzhou 215006 P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment &, System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
- The School of Electrical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| |
Collapse
|
18
|
Wu Y, Liu X, Zhang H, Li J, Zhou M, Li L, Wang Y. Atomic Sandwiched p-n Homojunctions. Angew Chem Int Ed Engl 2021; 60:3487-3492. [PMID: 33128336 DOI: 10.1002/anie.202012734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Semiconductor p-n junctions have been explored and applied in photoelectrochemical (PEC) water splitting, but serious carrier recombination and sluggish oxygen evolution reaction (OER) dynamics have demanded further progress in p-n junction photoelectrode design. Here, via a controllable NH3 treatment, we construct sandwiched p-n homojunctions in three-unit-cells n-type SnS2 (n-SnS2 ) nanosheet arrays using nitrogen (N) as acceptor dopants. The optimal N-doped n-SnS2 (pnp-SnS2 ) with such unique structure achieves a record photocurrent density of 3.28 mA cm-2 , which is 21 times as high as that of n-SnS2 and the highest value among all the SnS2 photoanodes reported so far. Moreover, the stoichiometric O2 and H2 evolution from water was achieved with Faradaic efficiencies close to 100 %. The superior performance could be attributed to the facilitated electron-hole separation/transfer, accelerated surface OER kinetics, prolonged carrier lifetime, and improved structural stability.
Collapse
Affiliation(s)
- Yu Wu
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - XiaoQing Liu
- The School of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing, 400044, P. R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Jian Li
- The School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Miao Zhou
- The School of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing, 400044, P. R. China
| | - Liang Li
- The School of Physical Science and Technology, Center for Energy Conversion Materials & Physics, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.,The School of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| |
Collapse
|
19
|
Mukhopadhyay TK, Leherte L, Datta A. Molecular Mechanism for the Self-Supported Synthesis of Graphitic Carbon Nitride from Urea Pyrolysis. J Phys Chem Lett 2021; 12:1396-1406. [PMID: 33508198 DOI: 10.1021/acs.jpclett.0c03559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantum chemical calculations combined with kinetic Monte Carlo simulations are performed to decipher the kinetics for the one-pot synthesis of two-dimensional graphitic carbon nitride (g-C3N4) from urea pyrolysis. Two mechanisms are considered, one involving ammelide as the intermediate compound and the other considering cyanuric acid. Different grid growing patterns are investigated, and the size, shape, and density of the grids as well as the number and position of the defects are evaluated. We find that the mechanistic pathway involving ammelide is preferred. Larger g-C3N4 grids with lower density are achieved when the rate constant for melon growing is inversely proportional to the number of local reaction sites, while nearly filled smaller grids are obtained in the opposite scenario. Larger defects appear at the grid periphery while smaller holes appear throughout the grid. The synthesis of extended g-C3N4 structures is favored if the g-C3N4 growing propensity is directly proportional to the number of reaction sites.
Collapse
Affiliation(s)
- Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Laurence Leherte
- Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Namur Medicine & Drug Innovation Center (NAMEDIC), Department of Chemistry, Laboratory of Structural Biological Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
20
|
Singh P, Yadav RK, Kumar K, Lee Y, Gupta AK, Kumar K, Yadav BC, Singh SN, Dwivedi DK, Nam SH, Singh AP, Kim TW. Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00991e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful development of eosin-Y and sulfur-codoped g-C3N4 composite as a highly efficient photocatalyst for the regeneration of NADH/NADPH (64.38%/81.14%) and the light-driven oxidation of sulfide to sulfoxide with an yield of 99.6%.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Yubin Lee
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Abhishek K. Gupta
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Kuldeep Kumar
- Department of Physics, Babasaheb Bhimrao Ambedkar University of Lucknow, U.P, 226025, India
| | - B. C. Yadav
- Department of Physics, Babasaheb Bhimrao Ambedkar University of Lucknow, U.P, 226025, India
| | - S. N. Singh
- Department of Humanities and Management Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - D. K. Dwivedi
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Sang-Ho Nam
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
- Spectrochemical Analysis Center for Organic & Inorganic Materials and Natural Products, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, Punjab, 140413, India
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
- Spectrochemical Analysis Center for Organic & Inorganic Materials and Natural Products, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| |
Collapse
|
21
|
Zhang C, Bao H, Chen X, Liu X, Xu S. Arylamine organic dye-functionalized g-C 3N 4 formed through cycloaddition reactions and its application in photocatalytic hydrogen evolution. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01398j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The arylamine organic dye grafted g-C3N4 by covalent azomethine ylide bonds via 1,3-dipolar cycloaddition is successfully prepared, which is the as-obtained g-C3N4/TPA-CNCHO photocatalyst with much enhanced photocatalytic activity for H2 production.
Collapse
Affiliation(s)
- Chao Zhang
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Hailian Bao
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Xiaodi Chen
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Xingliang Liu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
| | - Shiai Xu
- School of Chemical Engineering, Qinghai University, Xining 810016, Qinghai, China
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Wang R, Ye C, Wang H, Jiang F. Z-Scheme LaCoO 3/g-C 3N 4 for Efficient Full-Spectrum Light-Simulated Solar Photocatalytic Hydrogen Generation. ACS OMEGA 2020; 5:30373-30382. [PMID: 33283085 PMCID: PMC7711698 DOI: 10.1021/acsomega.0c03318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Photocatalytic decomposition of water is the most attractive method for the sustainable production of hydrogen, but the development of a highly active and low-cost catalyst remains a major challenge. Here, we report the preparation of LaCoO3/g-C3N4 nanosheets and the utilization of LaCoO3 instead of noble metals to improve the photocatalytic activity for the production of hydrogen. First, LaCoO3 was successfully prepared by the sol-gel method, and then a series of highly efficient Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts were synthesized by the solvothermal method. Various characterization techniques (X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS), photoluminescence (PL), transient photocurrent response test, electron paramagnetic resonance (EPR)) confirm that the heterostructure and interfacial interaction had been formed between LaCoO3 nanoparticles and g-C3N4 nanosheets. In the photocatalytic water splitting test, LaCoO3/g-C3N4-20 wt % exhibited the highest photocatalytic activity of 1046.15 μmol h-1 g-1, which is 3.5 and 1.4 times higher than those of LaCoO3 and g-C3N4, respectively. This work leads to an inexpensive and efficient LaCoO3/g-C3N4 photocatalysis system for water splitting or other photocatalytic applications.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Changyu Ye
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haoyu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fubin Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Majdoub M, Anfar Z, Amedlous A. Emerging Chemical Functionalization of g-C 3N 4: Covalent/Noncovalent Modifications and Applications. ACS NANO 2020; 14:12390-12469. [PMID: 33052050 DOI: 10.1021/acsnano.0c06116] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomically 2D thin-layered structures, such as graphene nanosheets, graphitic carbon nitride nanosheets (g-C3N4), hexagonal boron nitride, and transition metal dichalcogenides are emerging as fascinating materials for a good array of domains owing to their rare physicochemical characteristics. In particular, graphitic carbon nitride has turned into a hot subject in the scientific community due to numerous qualities such as simple preparation, electrochemical properties, high adsorption capacity, good photochemical properties, thermal stability, and acid-alkali chemical resistance, etc. Basically, g-C3N4 is considered as a polymeric material consisting of N and C atoms forming a tri-s-triazine network connected by planar amino groups. In comparison with most C-based materials, g-C3N4 possesses electron-rich characteristics, basic moieties, and hydrogen-bonding groups owing to the presence of hydrogen and nitrogen atoms; therefore, it is taken into account as an interesting nominee to further complement carbon in applications of functional materials. Nevertheless, g-C3N4 has some intrinsic limitations and drawbacks mainly related to a relatively poor specific surface area, rapid charge recombination, a limited light absorption range, and a poor dispersibility in both aqueous and organic mediums. To overcome these shortcomings, numerous chemical modification approaches have been conducted with the aim of expanding the range of application of g-C3N4 and enhancing its properties. In the current review, the comprehensive survey is conducted on g-C3N4 chemical functionalization strategies including covalent and noncovalent approaches. Covalent approaches consist of establishing covalent linkage between the g-C3N4 structure and the chemical modifier such as oxidation/carboxylation, amidation, polymer grafting, etc., whereas the noncovalent approaches mainly consist of physical bonding and intermolecular interaction such as van der Waals interactions, electrostatic interactions, π-π interactions, and so on. Furthermore, the preparation, characterization, and diverse applications of functionalized g-C3N4 in various domains are described and recapped. We believe that this work will inspire scientists and readers to conduct research with the aim of exploring other functionalization strategies for this material in numerous applications.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, Casablanca 20000, Morocco
| | - Zakaria Anfar
- Laboratory of Materials & Environment, Ibn Zohr University, Agadir 80000, Morocco
- Institute of Materials Science of Mulhouse, Haute Alsace University, Mulhouse 68100, France
- Strasbourg University, Strasbourg 67081, France
| | - Abdallah Amedlous
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, Casablanca 20000, Morocco
| |
Collapse
|
24
|
Akhundi A, Badiei A, Ziarani GM, Habibi-Yangjeh A, Muñoz-Batista MJ, Luque R. Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110902] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Sheng W, Li W, Tan D, Zhang P, Zhang E, Sheremet E, Schmidt BV, Feng X, Rodriguez RD, Jordan R, Amin I. Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9797-9805. [PMID: 31999093 PMCID: PMC7050013 DOI: 10.1021/acsami.9b21984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 05/27/2023]
Abstract
Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation.
Collapse
Affiliation(s)
- Wenbo Sheng
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Wei Li
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Deming Tan
- Department of Inorganic
Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Panpan Zhang
- Chair of Molecular
Functional Materials, Faculty of Chemistry and Food Chemistry, School
of Science, Technische Universität
Dresden, Mommsenstr.
4, 01069 Dresden, Germany
| | - En Zhang
- Department of Inorganic
Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | | | - Xinliang Feng
- Chair of Molecular
Functional Materials, Faculty of Chemistry and Food Chemistry, School
of Science, Technische Universität
Dresden, Mommsenstr.
4, 01069 Dresden, Germany
| | - Raul D. Rodriguez
- Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Ave, 634050 Tomsk, Russia
| | - Rainer Jordan
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Ihsan Amin
- Chair of Macromolecular
Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
- Van’t Hoff Institute of Molecular Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|