1
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
2
|
de Boer LL, Vanes L, Melgrati S, Biggs O'May J, Hayward D, Driscoll PC, Day J, Griffiths A, Magueta R, Morrell A, MacRae JI, Köchl R, Tybulewicz VLJ. T cell migration requires ion and water influx to regulate actin polymerization. Nat Commun 2023; 14:7844. [PMID: 38057317 PMCID: PMC10700356 DOI: 10.1038/s41467-023-43423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.
Collapse
Affiliation(s)
- Leonard L de Boer
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lesley Vanes
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Serena Melgrati
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Darryl Hayward
- The Francis Crick Institute, London, NW1 1AT, UK
- GSK, Stevenage, SG1 2NY, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Alexander Griffiths
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Renata Magueta
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Alexander Morrell
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | | | - Robert Köchl
- The Francis Crick Institute, London, NW1 1AT, UK
- Kings College London, London, SE1 9RT, UK
| | | |
Collapse
|
3
|
Contreras-Zárate MJ, Alvarez-Eraso KLF, Jaramillo-Gómez JA, Littrell Z, Tsuji N, Ormond DR, Karam SD, Kabos P, Cittelly DM. Short-term topiramate treatment prevents radiation-induced cytotoxic edema in preclinical models of breast-cancer brain metastasis. Neuro Oncol 2023; 25:1802-1814. [PMID: 37053041 PMCID: PMC10547511 DOI: 10.1093/neuonc/noad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Brain edema is a common complication of brain metastases (BM) and associated treatment. The extent to which cytotoxic edema, the first step in the sequence that leads to ionic edema, vasogenic edema, and brain swelling, contributes to radiation-induced brain edema during BM remains unknown. This study aimed to determine whether radiation-associated treatment of BM induces cytotoxic edema and the consequences of blocking the edema in preclinical models of breast-cancer brain metastases (BCBM). METHODS Using in vitro and in vivo models, we measured astrocytic swelling, trans-electric resistance (TEER), and aquaporin 4 (AQP4) expression following radiation. Genetic and pharmacological inhibition of AQP4 in astrocytes and cancer cells was used to assess the role of AQP4 in astrocytic swelling and brain water intake. An anti-epileptic drug that blocks AQP4 function (topiramate) was used to prevent cytotoxic edema in models of BM. RESULTS Radiation-induced astrocytic swelling and transient upregulation of AQP4 occurred within the first 24 hours following radiation. Topiramate decreased radiation-induced astrocytic swelling and loss of TEER in astrocytes in vitro, and acute short-term treatment (but not continuous administration), prevented radiation-induced increase in brain water content without pro-tumorigenic effects in multiple preclinical models of BCBM. AQP4 was expressed in clinical BM and breast-cancer cell lines, but AQP4 targeting had limited direct pro-tumorigenic or radioprotective effects in cancer cells that could impact its clinical translation. CONCLUSIONS Patients with BM could find additional benefits from acute and temporary preventive treatment of radiation-induced cytotoxic edema using anti-epileptic drugs able to block AQP4 function.
Collapse
Affiliation(s)
| | - Karen L F Alvarez-Eraso
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jenny A Jaramillo-Gómez
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zachary Littrell
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nikki Tsuji
- Office of Laboratory Animal Resources, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Nicosia M, Lee J, Beavers A, Kish D, Farr GW, McGuirk PR, Pelletier MF, Lathia JD, Fairchild RL, Valujskikh A. Water channel aquaporin 4 is required for T cell receptor mediated lymphocyte activation. J Leukoc Biol 2023; 113:544-554. [PMID: 36805947 PMCID: PMC10848298 DOI: 10.1093/jleuko/qiad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Aquaporins are a family of ubiquitously expressed transmembrane water channels implicated in a broad range of physiological functions. We have previously reported that aquaporin 4 (AQP4) is expressed on T cells and that treatment with a small molecule AQP4 inhibitor significantly delays T cell mediated heart allograft rejection. Using either genetic deletion or small molecule inhibitor, we show that AQP4 supports T cell receptor mediated activation of both mouse and human T cells. Intact AQP4 is required for optimal T cell receptor (TCR)-related signaling events, including nuclear translocation of transcription factors and phosphorylation of proximal TCR signaling molecules. AQP4 deficiency or inhibition impairs actin cytoskeleton rearrangements following TCR crosslinking, causing inferior TCR polarization and a loss of TCR signaling. Our findings reveal a novel function of AQP4 in T lymphocytes and identify AQP4 as a potential therapeutic target for preventing TCR-mediated T cell activation.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ashley Beavers
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Danielle Kish
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - George W. Farr
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Paul R. McGuirk
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Marc F. Pelletier
- Aeromics Inc., 470 James Street Suite 007, New Haven, CT 06513, United States
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
6
|
Morley SC. T cells go with the flow: aquaporin 4 is required for full T-cell activation. J Leukoc Biol 2023; 113:541-543. [PMID: 37042742 PMCID: PMC10510064 DOI: 10.1093/jleuko/qiad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Proximal T-cell receptor signaling and subsequent T cell activation was reduced downstream of anti-CD3/CD28 ligation through small molecule inhibition of the water channel aquaporin 4.
Collapse
Affiliation(s)
- Sharon Celeste Morley
- Department of Pediatrics, Division of Infectious Diseases and Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis School of Medicine, Campus Box 8208, 660 S. Euclid Ave, St. Louis, MO 63116, United States
| |
Collapse
|
7
|
Contreras-Zárate MJ, Alvarez-Eraso KL, Jaramillo-Gómez JA, Littrell Z, Tsuji N, Ormond DR, Karam SD, Kabos P, Cittelly DM. Short-term Topiramate treatment prevents radiation-induced cytotoxic edema in preclinical models of breast-cancer brain metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528559. [PMID: 36824740 PMCID: PMC9948992 DOI: 10.1101/2023.02.14.528559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background Brain edema is a common complication of brain metastases (BM) and associated treatment. The extent to which cytotoxic edema, the first step in the sequence that leads to ionic edema, vasogenic edema and brain swelling, contributes to radiation-induced brain edema during BM remains unknown. This study aimed to determine whether radiation-associated treatment of BM induces cytotoxic edema and the consequences of blocking the edema in pre-clinical models of breast cancer brain metastases (BCBM). Methods Using in vitro and in vivo models, we measured astrocytic swelling, trans-electric resistance (TEER) and aquaporin 4 (AQP4) expression following radiation. Genetic and pharmacological inhibition of AQP4 in astrocytes and cancer cells was used to assess the role of AQP4 in astrocytic swelling and brain water intake. An anti-epileptic drug that blocks AQP4 function (topiramate) was used to prevent cytotoxic edema in models of BM. Results Radiation-induced astrocytic swelling and transient upregulation of AQP4 within the first 24 hours following radiation. Topiramate decreased radiation-induced astrocytic swelling, loss of TEER in astrocytes in vitro , and acute short term treatment (but not continuous administration), prevented radiation-induced increase in brain water content without pro-tumorigenic effects in multiple pre-clinical models of BCBM. AQP4 was expressed in clinical BM and breast cancer cell lines, but AQP4 targeting had limited direct pro-tumorigenic or radioprotective effects in cancer cells that could impact its clinical translation. Conclusions Patients with BM could find additional benefits from acute and temporary preventive treatment of radiation-induced cytotoxic edema using anti-epileptic drugs able to block AQP4 function. Key points Radiation induces cytotoxic edema via acute dysregulation of AQP4 in astrocytes in preclinical models of BM. Pharmacologic blockage of AQP4 function prevents water intake, astrocytic swelling and restores TEER in vitro. Pre-treatment with single-dose Topiramate prevents brain radiation-induced brain edema without direct tumor effects in pre-clinical models of BCBM. IMPORTANCE OF THE STUDY In this study we describe a novel role for astrocytic swelling and cytotoxic edema in the progression of radiation-induced brain edema during BM treatment. While radiation-induced edema has been fully attributed to the disruption of the blood-brain barrier (BBB) and ensuing vasogenic effects, our results suggest that cytotoxic edema affecting astrocytes in the acute setting plays an important role in the progression of brain edema during BM standard of care. Current standard of care for brain edema involves pre-treatment with steroids and the use of bevacizumab only after clinically significant edema develops. Both interventions are presumed to target vasogenic edema. This study suggests that patients with BM could find additional benefits from acute and temporary preventive treatment of radiation-induced cytotoxic edema using an already FDA-approved anti-epileptic drug. Such early prevention strategy can be easily clinically implemented with the goal of minimizing treatment-related toxicities.
Collapse
|
8
|
Abstract
Recent studies have shown that at least six aquaporins (AQPs), including AQP1, AQP3, AQP4, AQP5, AQP7, and AQP9, are expressed in immune system. These AQPs distribute in lymphocytes, macrophages, dendritic cells, and neutrophils, and mediate water and glycerol transportation in these cells, which play important roles in innate and adaptive immune functions. Immune system plays important roles in body physiological functions and health. Therefore, understanding the association between AQPs and immune system may provide approaches to prevent and treat related diseases. Here we will discuss the expression and physiological functions of AQPs in immune system and summarize recent researches on AQPs in immune diseases.
Collapse
Affiliation(s)
- Yazhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Carlos E. Arias Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
- Department of Biotechnology, Universidad Popular Autónoma del Estado de Puebla, Pue, Mexico
| | - Zachary T. Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Kevin Carthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
10
|
Shangzu Z, Dingxiong X, ChengJun M, Yan C, Yangyang L, Zhiwei L, Ting Z, Zhiming M, Yiming Z, Liying Z, Yongqi L. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 2022; 183:106363. [PMID: 35905892 DOI: 10.1016/j.phrs.2022.106363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Xie Dingxiong
- Gansu Institute of Cardiovascular Diseases, LanZhou,China
| | - Ma ChengJun
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Liu Zhiwei
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhou Ting
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Yiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of traditional Chinese Medicine, LanZhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou,China.
| | - Liu Yongqi
- Gansu University of traditional Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
11
|
Aquaporins: Unexpected actors in autoimmune diseases. Clin Exp Rheumatol 2022; 21:103131. [PMID: 35690248 DOI: 10.1016/j.autrev.2022.103131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Aquaporins (AQPs), transmembrane proteins allowing the passage of water and sometimes other small solutes and molecules, are involved in autoimmune diseases including neuromyelitis optica, Sjögren's syndrome and rheumatoid arthritis. Both autoantibodies against AQPs and altered expression and/or trafficking of AQPs in various tissue cell types as well as inflammatory cells are playing key roles in pathogenesis of autoimmune diseases. Detection of autoantibodies against AQP4 in the central nervous system has paved the way for a deeper understanding in disease pathophysiology as well as enabling diagnosis. This review provides a comprehensive summary of the roles of AQPs in autoimmune diseases.
Collapse
|
12
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
13
|
Zou S, Lan YL, Ren T, Li X, Zhang L, Wang H, Wang X. A Bioinformatics Analysis of the Potential Roles of Aquaporin 4 in Human Brain Tumors: An Immune-Related Process. Front Pharmacol 2021; 12:692175. [PMID: 34113257 PMCID: PMC8185330 DOI: 10.3389/fphar.2021.692175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Aquaporin 4 (AQP4) is an ubiquitously expressed membrane protein channel found in the central nervous system and mainly on astrocytes. Recent studies on AQP4 has implicated it in tumorigenesis. It is of interest to determine the potential value of AQP4 in identifying, guiding treatment and prognosticating various types of CNS cancers. This investigation systematically investigated the oncogenic role of AQP4 across 33 CNS tumors found in GEO and TCGA datasets. We found that CNS tumors strongly expressed AQP4. There appeared to be a strong link between the prognosis of patients with a CNS malignancy and degree of AQP4 expression. AQP4 expression influences the degree of CD8+ T-cell infiltration level as well as cancer-associated fibroblast infiltration in CNS tumors. Moreover, synaptic vesicle cycle and phosphatidylinositol signaling system-associated functions were also found to be related to AQP4 functional mechanisms. Furthermore, potential AQP4 inhibitors have also been explored by using Specs data base and virtual screening technique. This study contributes toward current knowledge regarding the role of AQP4 in CNS tumors.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physiology, Dalian Medical University, Dalian, China
| | - Yu-Long Lan
- Department of Physiology, Dalian Medical University, Dalian, China.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Breast Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tong Ren
- Department of Neurosurgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Xiangyu Li
- Department of Neurosurgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongjin Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Robertson TF, Chengappa P, Gomez Atria D, Wu CF, Avery L, Roy NH, Maillard I, Petrie RJ, Burkhardt JK. Lymphocyte egress signal sphingosine-1-phosphate promotes ERM-guided, bleb-based migration. J Cell Biol 2021; 220:211919. [PMID: 33764397 PMCID: PMC8006814 DOI: 10.1083/jcb.202007182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Ezrin, radixin, and moesin (ERM) family proteins regulate cytoskeletal responses by tethering the plasma membrane to the underlying actin cortex. Mutations in ERM proteins lead to severe combined immunodeficiency, but the function of these proteins in T cells remains poorly defined. Using mice in which T cells lack all ERM proteins, we demonstrate a selective role for these proteins in facilitating S1P-dependent egress from lymphoid organs. ERM-deficient T cells display defective S1P-induced migration in vitro, despite normal responses to standard protein chemokines. Analysis of these defects revealed that S1P promotes a fundamentally different mode of migration than chemokines, characterized by intracellular pressurization and bleb-based motility. ERM proteins facilitate this process, controlling directional migration by limiting blebbing to the leading edge. We propose that the distinct modes of motility induced by S1P and chemokines are specialized to allow T cell migration across lymphatic barriers and through tissue stroma, respectively.
Collapse
Affiliation(s)
- Tanner F Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Daniela Gomez Atria
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christine F Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lyndsay Avery
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Abstract
Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.
Collapse
|
16
|
Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon SH, Comjean A, Li F, Dervis F, Hung RJ, Nam JW, Ho Sui S, Shim J, Perrimon N. A single-cell survey of Drosophila blood. eLife 2020; 9:e54818. [PMID: 32396065 PMCID: PMC7237219 DOI: 10.7554/elife.54818] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | | | | | - Sang-Ho Yoon
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Fangge Li
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Franz Dervis
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jin-Wu Nam
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | | | - Jiwon Shim
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
17
|
When rubber meets the road: how innate features of adaptive immune cells play critical roles in transplant alloimmunity. Curr Opin Organ Transplant 2020; 24:659-663. [PMID: 31577597 DOI: 10.1097/mot.0000000000000706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Studies on adaptive cells have largely focused on features that are specific to adaptive immunity. However, adaptive cells utilize innate cell features to modulate their responses, and this area of T and B-cell biology is understudied. This review will highlight recent work done to understand how innate features of adaptive immune cells modulate alloimmunity. RECENT FINDINGS Over the past year, research has shown that T-cell-expressed danger-associated molecular patterns, Toll-like receptors, complement receptors, and Fc receptors regulate T-cell alloimmunity in a cell-intrinsic manner. Further, IL-17 and p40 of IL-12 have been implicated in the migration of T cells into allografts. Lastly, innate B cells, specifically B1 cells, have been shown to produce clinically relevant autoantibody associated with poor graft outcome. SUMMARY These data provide evidence that innate features are utilized by adaptive immune cells to control adaptive alloimmunity.
Collapse
|