1
|
Bezu L, Forget P, Hollmann MW, Parat MO, Piegeler T. Potential influence of different peri-operative analgesic regimens on tumour biology and outcome after oncologic surgery: A narrative review. Eur J Anaesthesiol 2024:00003643-990000000-00253. [PMID: 39743967 DOI: 10.1097/eja.0000000000002118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The management of peri-operative pain is one of the pillars of anaesthesia and is of particular importance in patients undergoing surgery for solid malignant tumours. Amongst several options, the most commonly employed analgesic regimens involve opioids, NSAIDs and regional anaesthesia techniques with different local anaesthetics. In recent years, several research reports have tried to establish a connection between peri-operative anaesthesia care and outcome after cancer surgery. Experimental studies have indicated that certain pain management substances may influence cancer progression, mainly by modifying the tumour's response to surgical stress and peri-operative inflammation. However, these promising in-vitro and in-vivo data have yet to be confirmed by randomised clinical trials. The reason for this might lie with the nature of tumour biology itself, and in the diversity of patient and tumour phenotypes. In a translational approach, future research should therefore concentrate on patient and tumour-related factors or biomarkers, which might either influence the tumour and its microenvironment or predict potential responses to interventions, including the choice of the analgesic. This might not only be relevant for the daily practice of clinical anaesthesia, but would also be of great importance for patients undergoing cancer surgery, who might be able to receive an individualised anaesthetic regimen based on their phenotypic profile.
Collapse
Affiliation(s)
- Lucillia Bezu
- From the Département d'Anesthésie, Chirurgie et Interventionnel (LB), U1138 Metabolism, Cancer and Immunity, Gustave Roussy, Villejuif, France (LB), Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA (LB), Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition (PF), Anaesthesia department, NHS Grampian, Aberdeen, UK (PF), IMAGINE UR UM 103, Montpellier University, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Nîmes, France (PF), Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ID ESAIC_RG_PAND) Research Group, Brussels, Belgium (PF), Department of Anaesthesiology, Amsterdam UMC, Amsterdam, The Netherlands (MWH), School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba Qld, Australia (M-OP), Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany (TP), EuroPeriscope, ESAIC Onco-Anaesthesiology Research Group, Brussels, Belgium (TP, LB, PF, MWH)
| | | | | | | | | |
Collapse
|
2
|
Huq MS, Acharya SC, Gautam M, Silwal SR, Sapkota S, Poudyal S, Sharma S, Babu KG, Nigar T, Pervin S, Gulia S, Gunasekara S, Uddin AFMK, Tshomo U, Safi AJ, Nadeem MS, Masood AI, Sumon MA, Purvin S, Hai MA, Skinner HD, Avery S, Ngwa W, Wijesooriya K. Cancer research in South Asian Association for Regional Cooperation (SAARC) countries. Lancet Oncol 2024; 25:e675-e684. [PMID: 39637904 DOI: 10.1016/s1470-2045(24)00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024]
Abstract
Cancer is a major global health threat, with 35 million new cases projected by 2050, predominantly in low-income and middle-income-countries. Within South Asian Association for Regional Cooperation (SAARC) countries, a notable gap in cancer research investment and output compared with high-income countries highlights the need to strengthen research capacity. The rising cancer incidence across SAARC countries is not being matched by local research, particularly in clinical trials in molecular biology, targeted therapy, immunotherapy, and cancer vaccines. This paucity of research is problematic as guidelines and therapies developed in high-income countries might not be directly applicable to low-income and middle-income countries due to distinct regional sociocultural, genetic, and environmental factors and are often impractical in these countries due to cost and implementation challenges. This Series paper examines the cancer research landscape within SAARC countries, focusing on Bangladesh, Nepal, Sri Lanka, India, Pakistan, Afghanistan, Bhutan, and Maldives. We analyse PubMed publication rates and examine available infrastructure, current research (including clinical trials), and limitations and disparities among SAARC countries in terms of cancer research. Key challenges include disparities in health-care access, cultural and economic barriers, and little funding and infrastructure. Strengthening cancer research in SAARC countries requires building collaborative networks, improving research facilities and training, focusing on local epidemiological studies, and developing affordable technologies and treatments. Effective policy and stakeholder engagement could greatly advance cancer care in the region.
Collapse
Affiliation(s)
- M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Sandhya C Acharya
- Clinical Oncology, Bir Hospital, National Academy of Medical Sciences, Kathmandu, Nepal
| | | | - Sudhir R Silwal
- Radiation Oncology, Bhaktapur Cancer Hospital, Bhaktapur, Nepal
| | - Simit Sapkota
- Clinical Oncology, Kathmandu Cancer Center, Bhaktapur, Nepal
| | - Saugat Poudyal
- Clinical Oncology, Bir Hospital, National Academy of Medical Sciences, Kathmandu, Nepal
| | - Susmita Sharma
- Medical Oncology, Nepal Mediciti Hospital, Lalitpur, Nepal
| | - K Govind Babu
- HCG Hospital, St Johns Medical College and Hospital, Bangalore, India
| | - Taslima Nigar
- National Institute of Cancer Research and Hospital, Dhaka, Bangladesh
| | - Shahana Pervin
- National Institute of Cancer Research and Hospital, Dhaka, Bangladesh
| | | | | | - A F M Kamal Uddin
- Department of Radiation Oncology, National Institute of Ear, Nose and Throat, Dhaka, Bangladesh
| | - Ugyen Tshomo
- Jigme Dorji Wangchuck National Referral Hospital, Thimpu, Bhutan
| | - Ahmad J Safi
- Afghanistan Cancer Foundation, Kabul, Afghanistan
| | | | - Ahmed I Masood
- Department of Clinical Oncology, Nishtar Medical University, Multan, Pakistan
| | - Mostafa A Sumon
- Radiation Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | | | - Mohammad A Hai
- Bangladesh Cancer Hospital and Welfare Home, Dhaka, Bangladesh
| | - Heath Devin Skinner
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stephen Avery
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wilfred Ngwa
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krishni Wijesooriya
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Lai HC, Huang HH, Hao YJ, Lee HL, Wang CC, Ling TY, Wu JK, Tseng FG. A Preliminary Analysis of Circulating Tumor Microemboli from Breast Cancer Patients during Follow-Up Visits. Curr Oncol 2024; 31:5677-5693. [PMID: 39330049 PMCID: PMC11431662 DOI: 10.3390/curroncol31090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Most breast cancer-related deaths are caused by distant metastases and drug resistance. It is important to find appropriate biomarkers to monitor the disease and to predict patient responses after treatment early and accurately. Many studies have found that clustered circulating tumor cells, with more correlations with metastatic cancer and poor survival of patients than individual ones, are promising biomarkers. METHODS Eighty samples from eleven patients with breast cancer during follow-up visits were examined. By using a microfluidic chip and imaging system, the number of circulating tumor cells and microemboli (CTC/CTM) were counted to assess the distribution in stratified patients and the potential in predicting the disease condition of patients after treatments during follow-up visits. Specific components and subtypes of CTM were also preliminarily investigated. RESULTS Compared to CTC, CTM displayed a distinguishable distribution in stratified patients, having a better AUC value, in predicting the disease progression of breast cancer patients during follow-up visits in this study. Four subtypes were categorized from the identified CTM by considering different components. In combination with CEA and CA153, enumerated CTC and CTM from individual patients were applied to monitor the disease condition and patient response to the therapy during follow-up visits. CONCLUSIONS The CTM and its subtypes are promising biomarkers and valuable tools for studying cancer metastasis and longitudinally monitoring cancer patients during follow-up visits.
Collapse
Affiliation(s)
- Hung-Chih Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Hsing-Hua Huang
- Division of Breast Surgery Clinic, En Chu Kong Hospital, No. 258, Zhongshan Rd., Sanxia Dist., New Taipei City 237, Taiwan
| | - Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Hsin-Ling Lee
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Chiao-Chan Wang
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Thai-Yen Ling
- Graduate Institute of Pharmacology, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Jen-Kuei Wu
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, No.28, Alley 70, Section 2, Academia Road, Nankang District, Taipei City 115201, Taiwan
| |
Collapse
|
4
|
Hao YJ, Chang LW, Yang CY, Lo LC, Lin CP, Jian YW, Jiang JK, Tseng FG. The rare circulating tumor microemboli as a biomarker contributes to predicting early colorectal cancer recurrences after medical treatment. Transl Res 2024; 263:1-14. [PMID: 37558203 DOI: 10.1016/j.trsl.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Early prognosis of cancer recurrence remains difficult partially due to insufficient and ineffective screening biomarkers or regimes. This study evaluated the rare circulating tumor microemboli (CTM) from liquid biopsy individually and together with circulating tumor cells (CTCs) and serum CEA/CA19-9 in a panel, on early prediction of colorectal cancer (CRC) recurrence. Stained CTCs/CTM were detected by a microfluidic chip-based automatic rare-cell imaging platform. ROC, AUC, Kaplan-Meier survival, and Cox proportional hazard models regarding 4 selected biomarkers were analyzed. The relative risk, odds ratio, predictive accuracy, and positive/negative predictive value of biomarkers individually and in combination, to predict CRC recurrence were assessed and preliminarily validated. The EpCAM+Hochest+CD45- CTCs/CTM could be found in all cancer stages, where more recurrences were observed in late-stage cases. Significant correlations between CTCs/CTM with metastatic stages and clinical treatment were illustrated. CA19-9 and CTM could be seen as independent risk factors in patient survivals, while stratified patients by grouped biomarkers on the Kaplan-Meier analyses presented more significant differences in predicting CRC recurrences. By monitoring the panel of selected biomarkers, disease progressions of 4 CRC patients during follow-up visits after first treatments within 3 years were predicted successfully. This study unveiled the value of rare CTM on clinical studies and a panel of selected biomarkers on predicting CRC recurrences in patients at the early time after medical treatment, in which the CTM and serum CA19-9 could be applied in clinical surveillance and CRC management to improve the accuracy.
Collapse
Affiliation(s)
- Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lu-Wey Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei, Taiwan; Commission for General Education, National United University, Miaoli, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan
| | - Liang-Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chien-Ping Lin
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Wei Jian
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu, Taiwan; Research Center for Applied Sciences, Taipei, Taiwan.
| |
Collapse
|
5
|
Gostomczyk K, Marsool MDM, Tayyab H, Pandey A, Borowczak J, Macome F, Chacon J, Dave T, Maniewski M, Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum Cell 2024; 37:101-120. [PMID: 37874534 PMCID: PMC10764589 DOI: 10.1007/s13577-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.
- University Hospital No. 2 Im. Dr Jan Biziel, Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | | | | | | | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Facundo Macome
- Universidad del Norte Santo Tomás de Aquino, San Miquel de Tucuman, Argentina
| | - Jose Chacon
- American University of Integrative Sciences, Cole Bay, Saint Martin, Barbados
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
6
|
Fonseca Teixeira A, Wu S, Luwor R, Zhu HJ. A New Era of Integration between Multiomics and Spatio-Temporal Analysis for the Translation of EMT towards Clinical Applications in Cancer. Cells 2023; 12:2740. [PMID: 38067168 PMCID: PMC10706093 DOI: 10.3390/cells12232740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is crucial to metastasis by increasing cancer cell migration and invasion. At the cellular level, EMT-related morphological and functional changes are well established. At the molecular level, critical signaling pathways able to drive EMT have been described. Yet, the translation of EMT into efficient diagnostic methods and anti-metastatic therapies is still missing. This highlights a gap in our understanding of the precise mechanisms governing EMT. Here, we discuss evidence suggesting that overcoming this limitation requires the integration of multiple omics, a hitherto neglected strategy in the EMT field. More specifically, this work summarizes results that were independently obtained through epigenomics/transcriptomics while comprehensively reviewing the achievements of proteomics in cancer research. Additionally, we prospect gains to be obtained by applying spatio-temporal multiomics in the investigation of EMT-driven metastasis. Along with the development of more sensitive technologies, the integration of currently available omics, and a look at dynamic alterations that regulate EMT at the subcellular level will lead to a deeper understanding of this process. Further, considering the significance of EMT to cancer progression, this integrative strategy may enable the development of new and improved biomarkers and therapeutics capable of increasing the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| | - Rodney Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia (S.W.); (R.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211800, China
| |
Collapse
|
7
|
Bates M, Mohamed BM, Ward MP, Kelly TE, O'Connor R, Malone V, Brooks R, Brooks D, Selemidis S, Martin C, O'Toole S, O'Leary JJ. Circulating tumour cells: The Good, the Bad and the Ugly. Biochim Biophys Acta Rev Cancer 2023; 1878:188863. [PMID: 36796527 DOI: 10.1016/j.bbcan.2023.188863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
This review is an overview of the current knowledge regarding circulating tumour cells (CTCs), which are potentially the most lethal type of cancer cell, and may be a key component of the metastatic cascade. The clinical utility of CTCs (the "Good"), includes their diagnostic, prognostic, and therapeutic potential. Conversely, their complex biology (the "Bad"), including the existence of CD45+/EpCAM+ CTCs, adds insult to injury regarding their isolation and identification, which in turn hampers their clinical translation. CTCs are capable of forming microemboli composed of both non-discrete phenotypic populations such as mesenchymal CTCs and homotypic and heterotypic clusters which are poised to interact with other cells in the circulation, including immune cells and platelets, which may increase their malignant potential. These microemboli (the "Ugly") represent a prognostically important CTC subset, however, phenotypic EMT/MET gradients bring additional complexities to an already challenging situation.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya E Kelly
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Roisin O'Connor
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Robert Brooks
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Doug Brooks
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
8
|
The Impact of Surgery on Circulating Malignant Tumour Cells in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15030584. [PMID: 36765549 PMCID: PMC9913761 DOI: 10.3390/cancers15030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
IMPORTANCE The extent to which surgical management of oral squamous cell carcinoma (OSCC) disseminates cancer is currently unknown. OBJECTIVE To determine changes in numbers of malignant cells released into systemic circulation immediately following tumour removal and over the first seven post-operative days. DESIGN An observational study from March 2019 to February 2021. SETTING This study was undertaken at Queen Mary University Hospital, Hong Kong. PARTICIPANTS Patients with biopsy-proven oral SCC were considered for eligibility. Patients under 18 years of age, pregnant or lactating women and those unable to understand the study details or unable to sign the consent form were excluded. Twenty-two patients were enrolled (12 male and 10 female) with mean age of 65.5 years. INTERVENTION Primary tumour management was performed in accord with multi-disciplinary team agreement. Anaesthesia and post-operative care were unaltered and provided in accord with accepted clinical practice. MAIN OUTCOMES AND MEASURES Three types of malignant cells detected in peripheral blood samples were enumerated and sub-typed based on the presence of chromosomal aneuploidy and immunohistochemical characteristics. To test the hypothesis that malignant cells are released by surgery, the numbers of single circulating tumour cells (CTCs), circulating tumour microemboli (CTM) and circulating endothelial cells (CTECs) were recorded pre-operatively, upon tumour removal and the second and seventh post-operative days. RESULTS Of a potential 88 data collection points, specimens were not obtainable in 12 instances. Tumour removal resulted in a statistically significant increase in CTCs and a non-statistically significant rise in CTMs. CTCs, CTMs and CTECs were detected in the majority of patients up to the seventh post-operative day. Individual patients demonstrated striking increases in post-operative CTCs and CTECs numbers. CONCLUSIONS/RELEVANCE Surgical management of OSCC has a significant impact on the systemic distribution of cancer cells. Malignant cells persisted post-operatively in a manner independent of recognised staging methods suggesting differences in tumour biology between individuals. Further investigation is warranted to determine whether circulating malignant cell enumeration can be used to refine risk stratification for patients with OSCC.
Collapse
|
9
|
Patil D, Akolkar D, Nagarkar R, Srivastava N, Datta V, Patil S, Apurwa S, Srinivasan A, Datar R. Multi-analyte liquid biopsies for molecular pathway guided personalized treatment selection in advanced refractory cancers: A clinical utility pilot study. Front Oncol 2022; 12:972322. [PMID: 36620556 PMCID: PMC9822573 DOI: 10.3389/fonc.2022.972322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose The selection of safe and efficacious anticancer regimens for treatment of patients with broadly refractory metastatic cancers remains a clinical challenge. Such patients are often fatigued by toxicities of prior failed treatments and may have no further viable standard of care treatment options. Liquid Biopsy-based multi-analyte profiling in peripheral blood can identify a majority of drug targets that can guide the selection of efficacious combination regimens. Patients and methods LIQUID IMPACT was a pilot clinical study where patients with advanced refractory cancers received combination anticancer treatment regimens based on multi-analyte liquid biopsy (MLB) profiling of circulating tumor biomarkers; this study design was based on the findings of prior feasibility analysis to determine the abundance of targetable variants in blood specimens from 1299 real-world cases of advanced refractory cancers. Results Among the 29 patients in the intent to treat (ITT) cohort of the trial, 26 were finally evaluable as per study criteria out of whom 12 patients showed Partial Response (PR) indicating an Objective Response Rate (ORR) of 46.2% and 11 patients showed Stable Disease (SD) indicating the Disease Control Rate (DCR) to be 88.5%. The median Progression-Free Survival (mPFS) and median Overall Survival (mOS) were 4.3 months (95% CI: 3.0 - 5.6 months) and 8.8 months (95% CI: 7.0 - 10.7 months), respectively. Toxicities were manageable and there were no treatment-related deaths. Conclusion The study findings suggest that MLB could be used to assist treatment selection in heavily pretreated patients with advanced refractory cancers.
Collapse
Affiliation(s)
- Darshana Patil
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| | - Dadasaheb Akolkar
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| | - Rajnish Nagarkar
- Department of Surgical Oncology, HCG Manavata Cancer Centre, Nasik, India
| | - Navin Srivastava
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| | - Vineet Datta
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| | - Sanket Patil
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| | - Sachin Apurwa
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| | - Ajay Srinivasan
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India,*Correspondence: Ajay Srinivasan,
| | - Rajan Datar
- Department of Research and Innovation, Datar Cancer Genetics, Nasik, India
| |
Collapse
|
10
|
Drug susceptibility testing of circulating lung cancer cells for personalized treatment. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:1. [PMID: 36308571 DOI: 10.1007/s12032-022-01860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/19/2022] [Indexed: 01/17/2023]
Abstract
The presence of Circulating tumor cells (CTCs) has been proven to be correlated with disease progression and the patient's response to treatment. However, the culture of CTCs for clinical utility is still a big challenge. We have developed a short-term method that enables CTCs culture and provides an opportunity to monitor drug susceptibility testing in individual patients. In a proof-of-concept study, we established a unique method using Matrigel® coated in 96 well plate to enable cancer cell clusters to attach and proliferate. The culture method using Matrigel® provides in vitro conditions and improves the attachment and differentiation of anchorage-dependent epithelial cells proliferation and mimics the tumor microenvironment. We further treated the cells attached to Matrigel® with the same drug regimen as the patient has undergone. Around 30.7% of the CTCs were viable after the drug treatment. We also correlated the decrease in cell viability after drug treatment with the reduction in the pleural effusion of the patient as seen by the images obtained from CT scans pre-and post-treatment. Moreover, as per the RECIST criterion, the patient had exhibited a positive response to the treatment. The short-term culturing of CTC along with the drug susceptibility testing offers a novel method to predict patient response to the treatment and could be utilized for screening suitable drug combinations for personalized treatment.
Collapse
|
11
|
Macaraniag C, Luan Q, Zhou J, Papautsky I. Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters. APL Bioeng 2022; 6:031501. [PMID: 35856010 PMCID: PMC9288269 DOI: 10.1063/5.0093806] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cell (CTC) clusters that are shed from the primary tumor into the bloodstream are associated with a poor prognosis, elevated metastatic potential, higher proliferation rate, and distinct molecular features compared to single CTCs. Studying CTC clusters may give us information on the differences in the genetic profiles, somatic mutations, and epigenetic changes in circulating cells compared to the primary tumor and metastatic sites. Microfluidic systems offer the means of studying CTC clusters through the ability to efficiently isolate these rare cells from the whole blood of patients in a liquid biopsy. Microfluidics can also be used to develop in vitro models of CTC clusters and make possible their characterization and analysis. Ultimately, microfluidic systems can offer the means to gather insight on the complexities of the metastatic process, the biology of cancer, and the potential for developing novel or personalized therapies. In this review, we aim to discuss the advantages and challenges of the existing microfluidic systems for working with CTC clusters. We hope that an improved understanding of the role microfluidics can play in isolation, formation, and characterization of CTC clusters, which can lead to increased sophistication of microfluidic platforms in cancer research.
Collapse
Affiliation(s)
- Celine Macaraniag
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
12
|
Słomka A, Wang B, Mocan T, Horhat A, Willms AG, Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA, Lukacs-Kornek V, Kornek MT. Extracellular Vesicles and Circulating Tumour Cells - complementary liquid biopsies or standalone concepts? Theranostics 2022; 12:5836-5855. [PMID: 35966579 PMCID: PMC9373826 DOI: 10.7150/thno.73400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies do promise a lot, but are they keeping it? In the past decade, additional novel biomarkers qualified to be called like that, of which, some took necessary hurdles resulting in FDA approval and clinical use. Some others are since a while around, well known and were once regarded to be a game changer in cancer diagnosis or cancer screening. But, during their clinical use limitations were observed from statistical significance and questions raised regarding their robustness, that eventually led to be dropped from associated clinical guidelines for certain applications including cancer diagnosis. The purpose of this review isn't to give a broad overview of all current liquid biopsy as biomarkers, weight them and promise a brighter future in cancer prevention, but rather to take a deeper look on two of those who do qualify to be called liquid biopsies now or then. These two are probably of greatest interest conceptually and methodically, and likely have the highest chances to be in clinical use soon, with a portfolio extension over their original conceptual usage. We aim to dig deeper beyond cancer diagnosis or cancer screening. Actually, we aim to review in depth extracellular vesicles (EVs) and compare with circulating tumour cells (CTCs). The latter methodology is partially FDA approved and in clinical use. We will lay out similarities as taking advantage of surface antigens on EVs and CTCs in case of characterization and quantification. But drawing readers' attention to downstream application based on capture/isolation methodology and simply on their overall nature, here apparently being living material eventually recoverable as CTCs are vs. dead material with transient effects on recipient cell as in case of EVs. All this we try to bring in perspective, compare and conclude towards which future direction we are aiming for, or should aim for. Do we announce a winner between CTCs vs EVs? No, but we provide good reasons to intensify research on them.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Adelina Horhat
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Arnulf G Willms
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Department of General, Visceral and Vascular Surgery, German Armed Forces Hospital Hamburg, 22049 Hamburg, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Miroslaw T Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| |
Collapse
|
13
|
Tao J, Zhu L, Yakoub M, Reißfelder C, Loges S, Schölch S. Cell-Cell Interactions Drive Metastasis of Circulating Tumor Microemboli. Cancer Res 2022; 82:2661-2671. [PMID: 35856896 DOI: 10.1158/0008-5472.can-22-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Circulating tumor cells are the cellular mediators of distant metastasis in solid malignancies. Their metastatic potential can be augmented by clustering with other tumor cells or nonmalignant cells, forming circulating tumor microemboli (CTM). Cell-cell interactions are key regulators within CTM that convey enhanced metastatic properties, including improved cell survival, immune evasion, and effective extravasation into distant organs. However, the cellular and molecular mechanism of CTM formation, as well as the biology of interactions between tumor cells and immune cells, platelets, and stromal cells in the circulation, remains to be determined. Here, we review the current literature on cell-cell interactions in homotypic and heterotypic CTM and provide perspectives on therapeutic strategies to attenuate CTM-mediated metastasis by targeting cell-cell interactions.
Collapse
Affiliation(s)
- Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Yakoub
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Hao YJ, Yang CY, Chen MH, Chang LW, Lin CP, Lo LC, Huang SC, Lyu YY, Jiang JK, Tseng FG. Potential Values of Circulating microRNA-21 to Predict Early Recurrence in Patients with Colorectal Cancer after Treatments. J Clin Med 2022; 11:2400. [PMID: 35566526 PMCID: PMC9100254 DOI: 10.3390/jcm11092400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/09/2022] Open
Abstract
Insufficient prognosis of local recurrence contributes to the poor progression-free survival rate and death in colorectal cancer (CRC) patients. Various biomarkers have been explored in predicting CRC recurrence. This study investigated the expressions of plasma/exosomal microRNA-21 (miR-21) in 113 CRC patients by qPCR, their values of predicting CRC recurrence, and the possibility to improve the prognostic efficacy in early CRC recurrence in stratified patients by combined biomarkers including circulating miR-21s, circulating tumour cells/microemboli (CTCs/CTM), and serum carcinoembryonic antigen (CEA)/carbohydrate antigen 19-9 (CA19-9). Expressions of plasma and exosomal miR-21s were significantly correlated (p < 0.0001) in all and late-stage patients, presenting similar correlations with other biomarkers. However, stage IV patients stratified by a high level of exosomal miR-21 and stage I to III patients stratified by a high level of plasma miR-21 displayed significantly worse survival outcomes in predicting CRC recurrence, suggesting their different values to predict CRC recurrence in stratified patients. Comparable and even better performances in predicting CRC recurrence in late-stage patients were found by CTCs/CTM from our blood samples as sensitive biomarkers. Improved prognosing efficacy in CRC recurrence and better outcomes to significantly differentiate recurrence in stratified patients could be obtained by analysing combined biomarkers.
Collapse
Affiliation(s)
- Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei 10341, Taiwan;
- Commission for General Education, National United University, Miaoli 36003, Taiwan
- General Education Center, University of Taipei, Taipei 110014, Taiwan
| | - Ming-Hsien Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
| | - Lu-Wey Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
| | - Chien-Ping Lin
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (L.-C.L.); (Y.-Y.L.)
| | - Liang-Chuan Lo
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (L.-C.L.); (Y.-Y.L.)
| | - Sheng-Chieh Huang
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan;
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - You-You Lyu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (L.-C.L.); (Y.-Y.L.)
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan;
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Kapeleris J, Ebrahimi Warkiani M, Kulasinghe A, Vela I, Kenny L, Ladwa R, O’Byrne K, Punyadeera C. Clinical Applications of Circulating Tumour Cells and Circulating Tumour DNA in Non-Small Cell Lung Cancer-An Update. Front Oncol 2022; 12:859152. [PMID: 35372000 PMCID: PMC8965052 DOI: 10.3389/fonc.2022.859152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Despite efforts to improve earlier diagnosis of non-small cell lung cancer (NSCLC), most patients present with advanced stage disease, which is often associated with poor survival outcomes with only 15% surviving for 5 years from their diagnosis. Tumour tissue biopsy is the current mainstream for cancer diagnosis and prognosis in many parts of the world. However, due to tumour heterogeneity and accessibility issues, liquid biopsy is emerging as a game changer for both cancer diagnosis and prognosis. Liquid biopsy is the analysis of tumour-derived biomarkers in body fluids, which has remarkable advantages over the use of traditional tumour biopsy. Circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA) are two main derivatives of liquid biopsy. CTC enumeration and molecular analysis enable monitoring of cancer progression, recurrence, and treatment response earlier than traditional biopsy through a minimally invasive liquid biopsy approach. CTC-derived ex-vivo cultures are essential to understanding CTC biology and their role in metastasis, provide a means for personalized drug testing, and guide treatment selection. Just like CTCs, ctDNA provides opportunity for screening, monitoring, treatment evaluation, and disease surveillance. We present an updated review highlighting the prognostic and therapeutic significance of CTCs and ctDNA in NSCLC.
Collapse
Affiliation(s)
- Joanna Kapeleris
- Saliva and Liquid Biopsy Translational Laboratory, The Centre for Biomedical Technologies, The School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | | | - Arutha Kulasinghe
- Translational Research Institute, Brisbane, QLD, Australia
- The School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian Vela
- The School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women’s Hospital, Central Integrated Regional Cancer Service, Queensland Health, Brisbane, QLD, Australia
| | - Rahul Ladwa
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Kenneth O’Byrne
- Translational Research Institute, Brisbane, QLD, Australia
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, The Centre for Biomedical Technologies, The School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
16
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
17
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|
18
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
19
|
Yu JJ, Shu C, Yang HY, Huang Z, Li YN, Tao R, Chen YY, Chen Q, Chen XP, Xiao W. The Presence of Circulating Tumor Cell Cluster Characterizes an Aggressive Hepatocellular Carcinoma Subtype. Front Oncol 2021; 11:734564. [PMID: 34722281 PMCID: PMC8554092 DOI: 10.3389/fonc.2021.734564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Growing evidence suggests that circulating tumor cell (CTC) clusters may be an important factor in the metastatic process, but their role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to characterize the molecular and clinical features of CTC cluster-positive human HCC and to assess its prognostic value in HCC patients. Methods The CTCs and CTC clusters were evaluated in 204 HCC patients using CellSearch™ System. The counts of CTCs and CTC clusters were correlated with different clinical features, while their associations with progression-free survival (PFS) and overall survival (OS) were evaluated integrally and hierarchically by Kaplan–Meier estimates or Cox proportional regression analysis. Five cases each of CTC cluster-negative and cluster-positive patients were selected for RNA-sequencing analysis. The results of gene enrichment analysis were further verified using tissue microarray (TMA) by immunohistochemistry (IHC). Results CTCs and CTC clusters were detected in 76 (37.3%) and 19 (9.3%) of 204 preoperative samples, respectively. CTC cluster-positive HCC represented an aggressive HCC phenotype with larger tumor size, more frequent microvascular invasion, and higher tumor stages. The survival of HCC patients utilizing CTCs and CTC clusters individually showed prognostic significance, while joint analysis revealed patients in Group III (CTC ≥ 2 and CTC cluster > 0) had the worst outcome. Stratified analysis of outcomes in Barcelona Clinic Liver Cancer (BCLC) and tumor–node–metastasis (TNM) stages indicated that patients with CTC clusters had significantly poorer prognosis in each stage than those without CTC clusters. Moreover, the RNA sequencing and TMA staining results showed that CTC cluster-positive HCCs were usually associated with Wnt/β-catenin signaling activation. Conclusion The presence of CTC clusters characterizes an aggressive HCC subtype. CTC clusters may be used as a biomarker in predicting the prognosis on each stage of malignancy in HCC, which provides evidence for formulating therapeutic strategies for more precise treatment.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Shu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Yuan Yang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ni Li
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Tao
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue-Yue Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiao
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Qian H, Zhang Y, Xu J, He J, Gao W. Progress and application of circulating tumor cells in non-small cell lung cancer. Mol Ther Oncolytics 2021; 22:72-84. [PMID: 34514090 PMCID: PMC8408556 DOI: 10.1016/j.omto.2021.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality worldwide among malignant tumors. NSCLC is a great threat to health and well-being. Biopsy is the gold standard to diagnose lung cancer, but traditional biopsy methods cannot fully reflect the true condition of tumors. There is growing evidence that a single-point biopsy fails to reveal the complete landscape of the tumor due to intratumor heterogeneity, but it is impractical to complete multiple biopsies that are separated both spatially and temporally. Liquid biopsy heralds that a new era is coming. Circulating tumor cells (CTCs) are tumor cells that circulate in the peripheral blood after being shed from primary or metastatic tumors. CTCs constitute a considerable portion of a liquid biopsy, which contributes to the diagnosis, assessment of prognosis, and therapy of NSCLC. Herein, this review discusses the technologies for detection and enrichment of CTCs as well as clinical applications involving CTCs.
Collapse
Affiliation(s)
- Huizhu Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
21
|
Modification of Hemodialysis Membranes for Efficient Circulating Tumor Cell Capture for Cancer Therapy. Molecules 2021; 26:molecules26164845. [PMID: 34443432 PMCID: PMC8398911 DOI: 10.3390/molecules26164845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Background: It is well known that more than 90% of cancer deaths are due to metastases. However, the entire tumorigenesis process is not fully understood, and it is evident that cells spreading from the primary tumor play a key role in initiating the metastatic process. Tumor proliferation and invasion also elevate the concentration of regular and irregular metabolites in the serum, which may alter the normal function of the entire human homeostasis and possibly causes cancer metabolism syndrome, also referred to as cachexia. Methods: We report on the modification of commercially available hemodialysis membranes to selectively capture circulating tumor cells from the blood stream by means of immobilized human anti-EpCAM antibodies on the inner surface of the fibers. All critical steps are described that required in situ addition of the immuno-affinity feature to hemodialyzer cartridges in order to capture EpCAM positive circulating tumor cells, which represents ~80% of cancer cell types. Results: The cell capture efficiency of the suggested technology was demonstrated by spiking HCT116 cancer cells both into buffer solution and whole blood and run through on the modified cartridge. Flow cytometry was used to quantitatively evaluate the cell clearance performance of the approach. Conclusions: The suggested modification has no significant effect on the porous structure of the hemodialysis membranes; it keeps its cytokine removal capability, addressing cachexia simultaneously with CTC removal.
Collapse
|
22
|
Lee HJ, Kim GH, Park SJ, Kwon CH, Lee MW, Lee BE, Baek DH, I H. Clinical Significance of TWIST-Positive Circulating Tumor Cells in Patients with Esophageal Squamous Cell Carcinoma. Gut Liver 2021; 15:553-561. [PMID: 33293482 PMCID: PMC8283289 DOI: 10.5009/gnl20194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Background/Aims Unlike other gastrointestinal tract cancers, there are relatively few reports on the clinical significance of circulating tumor cells (CTCs) and TWIST, a marker of epithelial-mesenchymal transition, in patients with esophageal squamous cell carcinoma (ESCC). This study aimed to evaluate the clinical significance of TWIST expression in CTCs in patients with ESCC. Methods Peripheral blood samples for CTC analyses were prospectively obtained from 52 patients with ESCC prior to treatment between September 2017 and September 2019. CTCs were detected using a centrifugal microfluidic system based on a fluid-assisted separation technique, and CTCs positive for TWIST on immunostaining were defined as TWIST (+) CTCs. Results Of the 52 patients with ESCC, CTCs and TWIST (+) CTCs were detected in 44 patients (84.6%) and 39 patients (75.0%), respectively. The CTC and TWIST (+) CTC counts were significantly higher in patients aged >65 years and those who had a large tumor (>3 cm) than in those aged ≤65 years and those who had a small tumor (≤3 cm), respectively. There were no differences in CTC and TWIST (+) CTC counts according to tumor location, histologic grade, or TNM stage. TWIST (+) CTCs were significantly associated with histologic grade; a proportion of TWIST (+) CTCs ≥0.5 was significantly associated with advanced histologic grade. Other clinicopathologic characteristics such as sex, age, tumor location, tumor size, and TNM stages were not significantly associated with TWIST (+) CTCs. Conclusions Our study showed that TWIST (+) CTCs were frequently detected in patients with ESCC, and a high proportion of TWIST (+) CTCs was associated with poor differentiation.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Su Jin Park
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Chae Hwa Kwon
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Moon Won Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Bong Eun Lee
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Dong Hoon Baek
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, Korea
| | - Hoseok I
- Department of Thoracic Surgery, Pusan National University College of Medicine, Busan, Korea
| |
Collapse
|
23
|
Molecular Tumor Subtypes of HPV-Positive Head and Neck Cancers: Biological Characteristics and Implications for Clinical Outcomes. Cancers (Basel) 2021; 13:cancers13112721. [PMID: 34072836 PMCID: PMC8198180 DOI: 10.3390/cancers13112721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023] Open
Abstract
Until recently, research on the molecular signatures of Human papillomavirus (HPV)-associated head and neck cancers mainly focused on their differences with respect to HPV-negative head and neck squamous cell carcinomas (HNSCCs). However, given the continuing high incidence level of HPV-related HNSCC, the time is ripe to characterize the heterogeneity that exists within these cancers. Here, we review research thus far on HPV-positive HNSCC molecular subtypes, and their relationship with clinical characteristics and HPV integration into the host genome. Different omics data including host transcriptomics and epigenomics, as well as HPV characteristics, can provide complementary viewpoints. Keratinization, mesenchymal differentiation, immune signatures, stromal cells and oxidoreductive processes all play important roles.
Collapse
|
24
|
Nordgård O, Brendsdal Forthun R, Lapin M, Grønberg BH, Kalland KH, Kopperud RK, Thomsen LCV, Tjensvoll K, Gilje B, Gjertsen BT, Hovland R. Liquid Biopsies in Solid Cancers: Implementation in a Nordic Healthcare System. Cancers (Basel) 2021; 13:cancers13081861. [PMID: 33924696 PMCID: PMC8069797 DOI: 10.3390/cancers13081861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary We here review liquid biopsy methods and their use in the diagnostics and treatment of patients with solid cancers. More specifically, circulating tumor DNA, circulating tumor cells, and their current and future clinical applications are considered. Important factors for further integration of liquid biopsy methods in clinical practice are discussed, with a special focus on a Nordic Healthcare system. Abstract Liquid biopsies have emerged as a potential new diagnostic tool, providing detailed information relevant for characterization and treatment of solid cancers. We here present an overview of current evidence supporting the clinical relevance of liquid biopsy assessments. We also discuss the implementation of liquid biopsies in clinical studies and their current and future clinical role, with a special reference to the Nordic healthcare systems. Our considerations are restricted to the most established liquid biopsy specimens: circulating tumor DNA (ctDNA) and circulating tumor cells (CTC). Both ctDNA and CTCs have been used for prognostic stratification, treatment choices, and treatment monitoring in solid cancers. Several recent publications also support the role of ctDNA in early cancer detection. ctDNA seems to provide more robust clinically relevant information in general, whereas CTCs have the potential to answer more basic questions related to cancer biology and metastasis. Epidermal growth factor receptor-directed treatment of non-small-cell lung cancer represents a clinical setting where ctDNA already has entered the clinic. The role of liquid biopsies in treatment decisions, standardization of methods, diagnostic performance and the need for further research, as well as cost and regulatory issues were identified as factors that influence further integration in the clinic. In conclusion, substantial evidence supports the clinical utility of liquid biopsies in cancer diagnostics, but further research is still required for a more general application in clinical practice.
Collapse
Affiliation(s)
- Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
- Correspondence:
| | - Rakel Brendsdal Forthun
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway; (R.B.F.); (R.H.)
- Section of Cancer Genomics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Morten Lapin
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
- Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Karl Henning Kalland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Reidun Kristin Kopperud
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
| | - Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
| | - Kjersti Tjensvoll
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway; (R.B.F.); (R.H.)
- Section of Cancer Genomics, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
25
|
Detection of clustered circulating tumour cells in early breast cancer. Br J Cancer 2021; 125:23-27. [PMID: 33762721 PMCID: PMC8257701 DOI: 10.1038/s41416-021-01327-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 01/16/2023] Open
Abstract
Circulating tumour cell (CTC) clusters have been proposed to be major players in the metastatic spread of breast cancer, particularly during advanced disease stages. Yet, it is unclear whether or not they manifest in early breast cancer, as their occurrence in patients with metastasis-free primary disease has not been thoroughly evaluated. In this study, exploiting nanostructured titanium oxide-coated slides for shear-free CTC identification, we detect clustered CTCs in the curative setting of multiple patients with early breast cancer prior to surgical treatment, highlighting their presence already at early disease stages. These results spotlight an important aspect of metastasis biology and the possibility to intervene with anti-cluster therapeutics already during the early manifestation of breast cancer.
Collapse
|
26
|
De Rosa V, Fonti R, Del Vecchio S, Iommelli F. Non-invasive detection of epithelial mesenchymal transition phenotype and metastatic dissemination of lung cancer by liquid biopsy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:36-47. [PMID: 36046089 PMCID: PMC9400761 DOI: 10.37349/etat.2021.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
The occurrence of phenotype switch from an epithelial to a mesenchymal cell state during the activation of the epithelial mesenchymal transition (EMT) program in cancer cells has been closely associated with the generation of invasive tumor cells that contribute to metastatic dissemination and treatment failure. Liquid biopsy represents an emergent non-invasive tool that may improve our understanding of the molecular events leading to cancer progression and initiating the metastatic cascade through the dynamic analysis of tumor-derived components isolated from body fluids. The present review will primarily focus on the applications of liquid biopsy in lung cancer patients for identifying EMT signature, elucidating molecular mechanisms underlying the acquisition of an invasive phenotype and detecting new targets for therapy.
Collapse
Affiliation(s)
- Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Rosa Fonti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|
27
|
Badia-Ramentol J, Linares J, Gómez-Llonin A, Calon A. Minimal Residual Disease, Metastasis and Immunity. Biomolecules 2021; 11:130. [PMID: 33498251 PMCID: PMC7909268 DOI: 10.3390/biom11020130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Progression from localized to metastatic disease requires cancer cells spreading to distant organs through the bloodstream. Only a small proportion of these circulating tumor cells (CTCs) survives dissemination due to anoikis, shear forces and elimination by the immune system. However, all metastases originate from CTCs capable of surviving and extravasating into distant tissue to re-initiate a tumor. Metastasis initiation is not always immediate as disseminated tumor cells (DTCs) may enter a non-dividing state of cell dormancy. Cancer dormancy is a reversible condition that can be maintained for many years without being clinically detectable. Subsequently, late disease relapses are thought to be due to cancer cells ultimately escaping from dormant state. Cancer dormancy is usually associated with minimal residual disease (MRD), where DTCs persist after intended curative therapy. Thus, MRD is commonly regarded as an indicator of poor prognosis in all cancers. In this review, we examine the current understanding of MRD and immunity during cancer progression to metastasis and discuss clinical perspectives for oncology.
Collapse
Affiliation(s)
| | | | | | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (J.B.-R.); (J.L.); (A.G.-L.)
| |
Collapse
|
28
|
Clinical utility of circulating tumor-associated cells to predict and monitor chemo-response in solid tumors. Cancer Chemother Pharmacol 2020; 87:197-205. [PMID: 33170321 PMCID: PMC7870597 DOI: 10.1007/s00280-020-04189-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Purpose Selection of cytotoxic chemotherapy agents (CCA) based on pre-treatment evaluation of drug sensitivities is a desirable but unmet goal for personalized anticancer treatment strategies. Prior attempts to correlate in vitro Chemo-Response Profiles (CRP) of tumor explants or Circulating Tumor Cells (CTCs) with clinical outcomes have been largely unsuccessful. Methods We present results from a large cohort (n = 5090, three Arms) of patients with various solid organ tumors, where CRP of Circulating Tumor-Associated Cells (C-TACs) was determined against cancer-specific CCA panels to generate a database of 56,466 unique CRP. Results In Arm 1 (n = 230), 93.7% concordance was observed between CRP of C-TACs and concurrently obtained Tumor tissue Derived Cells (TDCs). In arm 2 (n = 2201, pretreated), resistance of C-TACs to ≥ 1 CCA was observed in 79% of cases. In a blinded subset analysis of 143 pretreated patients with radiologically ascertained disease progression, CRP of C-TACs was 87% concordant with in vivo treatment failure. In Arm 3 (n = 2734, therapy naïve), innate resistance of C-TACs to ≥ 1 CCA was observed in 61% of cases. In a blinded subset analysis of 77 therapy naïve patients, in vitro chemo-sensitivity of C-TACs was concordant with radiologically ascertained treatment response to first line CCA in 97% of cases. Conclusion To our knowledge, this is the first expansive and in-depth study demonstrating that real-time CRP of C-TACs is a viable approach for non-invasive assessment of response to CCA in solid organ cancers. Electronic supplementary material The online version of this article (10.1007/s00280-020-04189-8) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Circulating Tumor Cells: From the Laboratory to the Cancer Clinic. Cancers (Basel) 2020; 12:cancers12103065. [PMID: 33092279 PMCID: PMC7589818 DOI: 10.3390/cancers12103065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
|
30
|
Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020; 8:E401. [PMID: 33050151 PMCID: PMC7601142 DOI: 10.3390/biomedicines8100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) originates in the glandular compartment of the exocrine pancreas. Histologically, PDAC tumors are characterized by a parenchyma that is embedded in a particularly prominent stromal component or desmoplastic stroma. The unique characteristics of the desmoplastic stroma shape the microenvironment of PDAC and modulate the reciprocal interactions between cancer and stromal cells in ways that have profound effects in the pathophysiology and treatment of this disease. Here, we review some of the most recent findings regarding the regulation of PDAC cell invasion by the unique microenvironment of this tumor, and how new knowledge is being translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Sandhya Bodapati
- College of Osteopathic Medicine, Pacific Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kathryn T. Chen
- Department of Surgery, Division of Surgical Oncology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Begoña Díaz
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Hurtado P, Martínez-Pena I, Piñeiro R. Dangerous Liaisons: Circulating Tumor Cells (CTCs) and Cancer-Associated Fibroblasts (CAFs). Cancers (Basel) 2020; 12:E2861. [PMID: 33027902 PMCID: PMC7599894 DOI: 10.3390/cancers12102861] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The crosstalk between cancer cells and the tumor microenvironment (TME) is a key determinant of cancer metastasis. Cancer-associated fibroblasts (CAFs), one of the main cellular components of TME, promote cancer cell invasion and dissemination through mechanisms including cell-cell interactions and the paracrine secretion of growth factors, cytokines and chemokines. During metastasis, circulating tumor cells (CTCs) are shed from the primary tumor to the bloodstream, where they can be detected as single cells or clusters. The current knowledge about the biology of CTC clusters positions them as key actors in metastasis formation. It also indicates that CTCs do not act alone and that they may be aided by stromal and immune cells, which seem to shape their metastatic potential. Among these cells, CAFs are found associated with CTCs in heterotypic CTC clusters, and their presence seems to increase their metastatic efficiency. In this review, we summarize the current knowledge on the role that CAFs play on metastasis and we discuss their implication on the biogenesis, metastasis-initiating capacity of CTC clusters, and clinical implications. Moreover, we speculate about possible therapeutic strategies aimed to limit the metastatic potential of CTC clusters involving the targeting of CAFs as well as their difficulties and limitations.
Collapse
Affiliation(s)
- Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (P.H.); (I.M.-P.)
| | - Inés Martínez-Pena
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (P.H.); (I.M.-P.)
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (P.H.); (I.M.-P.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain
| |
Collapse
|
32
|
Popper H. Primary tumor and metastasis-sectioning the different steps of the metastatic cascade. Transl Lung Cancer Res 2020; 9:2277-2300. [PMID: 33209649 PMCID: PMC7653118 DOI: 10.21037/tlcr-20-175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients with lung cancer in the majority die of metastases. Treatment options include surgery, chemo- and radiotherapy, targeted therapy by tyrosine kinase inhibitors (TKIs), and immuno-oncologic treatment. Despite the success with these treatment options, cure of lung cancer is achieved in only a very small proportion of patients. In most patients’ recurrence and metastasis will occur, and finally kill the patient. Metastasis is a multistep procedure. It requires a change in adhesion of tumor cells for detachment from their neighboring cells. The next step is migration either as single cells [epithelial-mesenchymal transition (EMT)], or as cell clusters (hybrid-EMT or bulk migration). A combination of genetic changes is required to facilitate migration. Then tumor cells have to orient themselves along matrix proteins, detect oxygen concentrations, prevent attacks by immune cells, and induce a tumor-friendly switch of stroma cells (macrophages, myofibroblasts, etc.). Having entered the blood stream tumor cells need to adapt to shear stress, avoid being trapped by coagulation, but also use coagulation in small veins for adherence to endothelia, and express homing molecules for extravasation. Within a metastatic site, tumor cells need a well-prepared niche to establish a metastatic focus. Tumor cells again have to establish a vascular net for maintaining nutrition and oxygen supply, communicate with stroma cells, grow out and set further metastases. In this review the different steps will be discussed with a focus on pulmonary carcinomas. The vast amount of research manuscripts published so far are not easy to analyze: in most reports’ single steps of the metastatic cascade are interpreted as evidence for the whole process; for example, migration is interpreted as evidence for metastasis. In lung cancer most often latency periods are shorter, in between 1–5 years. In other cases, despite widespread migration occurs, tumor cells die within the circulation and do not reach a metastatic site. Therefore, migration is a requisite, but does not necessarily predict metastasis. The intention of this review is to point to these different aspects and hopefully provoke research directed into a more functional analysis of the metastatic process.
Collapse
Affiliation(s)
- Helmut Popper
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
33
|
Exploration of Circulating Tumour Cell (CTC) Biology: A Paradigm Shift in Liquid Biopsy. Indian J Clin Biochem 2020; 36:131-142. [PMID: 33867703 PMCID: PMC7994460 DOI: 10.1007/s12291-020-00923-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
Circulating tumour cells (CTCs), are disseminated tumour cells found in the blood in solid tumour malignancies. Identification of CTCs act as emerging tools in the field of the Liquid Biopsy. Majority of the studies focused on detection and enumeration of CTCs due to technological challenges those results from the rarity of CTCs in the blood. Enumeration of CTCs has already proven their value as prognostic as well as predictive biomarkers for disease prognosis. However, recent advances in technology permitted to study the molecular and functional features of CTCs and these features have the potential to change the diagnostic, prognostic and predictive landscape in oncology. In this review, we summarize the paradigm shift in the field of liquid biopsy-based cancer diagnostics using CTC isolation and detection. We have discussed recent advances in the technologies for molecular characterization of CTCs which have aided a shift from CTC enumeration to an in-depth analysis of the CTC genome, transcriptomes, proteins, epigenomes along with various functional features. Finally, as a prognosticating strategy, the potentials of CTCs as a tool of liquid biopsy to predict micrometastasis, monitor prognosis and how to use them as an additional tool for cancer staging has been discussed.
Collapse
|
34
|
Mentis AFA, Grivas PD, Dardiotis E, Romas NA, Papavassiliou AG. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell Mol Life Sci 2020; 77:3671-3690. [PMID: 32333084 PMCID: PMC11104835 DOI: 10.1007/s00018-020-03529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) are regarded as harbingers of metastases. Their ability to predict response to therapy, relapse, and resistance to treatment has proposed their value as putative diagnostic and prognostic indicators. CTCs represent one of the zeniths of cancer evolution in terms of cell survival; however, the triggers of CTC generation, the identification of potentially metastatic CTCs, and the mechanisms contributing to their heterogeneity and aggressiveness represent issues not yet fully deciphered. Thus, prior to enabling liquid biopsy applications to reach clinical prime time, understanding how the above mechanistic information can be applied to improve treatment decisions is a key challenge. Here, we provide our perspective on how CTCs can provide mechanistic insights into tumor pathogenesis, as well as on CTC clinical value. In doing so, we aim to (a) describe how CTCs disseminate from the primary tumor, and their link to epithelial-mesenchymal transition (EMT); (b) trace the route of CTCs through the circulation, focusing on tumor self-seeding and the possibility of tertiary metastasis; (c) describe possible mechanisms underlying the enhanced metastatic potential of CTCs; (d) discuss how CTC could provide further information on the tissue of origin, especially in cancer of unknown primary origin. We also provide a comprehensive review of meta-analyses assessing the prognostic significance of CTCs, to highlight the emerging role of CTCs in clinical oncology. We also explore how cell-free circulating tumor DNA (ctDNA) analysis, using a combination of genomic and phylogenetic analysis, can offer insights into CTC biology, including our understanding of CTC heterogeneity and tumor evolution. Last, we discuss emerging technologies, such as high-throughput quantitative imaging, radiogenomics, machine learning approaches, and the emerging breath biopsy. These technologies could compliment CTC and ctDNA analyses, and they collectively represent major future steps in cancer detection, monitoring, and management.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Thessaly, Larissa, Greece
| | - Petros D Grivas
- Division of Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nicholas A Romas
- Department of Urology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg. 16, 11527, Athens, Greece.
| |
Collapse
|
35
|
Campenni M, May AN, Boddy A, Harris V, Nedelcu AM. Agent-based modelling reveals strategies to reduce the fitness and metastatic potential of circulating tumour cell clusters. Evol Appl 2020; 13:1635-1650. [PMID: 32821275 PMCID: PMC7428819 DOI: 10.1111/eva.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis-the ability of cancer cells to disperse throughout the body and establish new tumours at distant locations-is responsible for most cancer-related deaths. Although both single and clusters of circulating tumour cells (CTCs) have been isolated from cancer patients, CTC clusters are generally associated with higher metastatic potential and worse prognosis. From an evolutionary perspective, being part of a cluster can provide cells with several benefits both in terms of survival (e.g. protection) and reproduction (group dispersal). Thus, strategies aimed at inducing cluster dissociation could decrease the metastatic potential of CTCs. However, finding agents or conditions that induce the dissociation of CTC clusters is hampered by the fact that their detection, isolation and propagation remain challenging. Here, we used a mechanistic agent-based model to (a) investigate the response of CTC clusters of various sizes and densities to different challenges-in terms of cell survival and cluster stability, and (b) make predictions as to the combination of factors and parameter values that could decrease the fitness and metastatic potential of CTC clusters. Our model shows that the resilience and stability of CTC clusters are dependent on both their size and density. Also, CTC clusters of distinct sizes and densities respond differently to changes in resource availability, with high-density clusters being least affected. In terms of responses to microenvironmental threats (such as drugs), increasing their intensity is, generally, least effective on high-density clusters. Lastly, we found that combining various levels of resource availability and threat intensity can be more effective at decreasing the survival of CTC clusters than each factor alone. We suggest that the complex effects that cluster density and size showed on both the resilience and stability of the CTC clusters are likely to have significant consequences for their metastatic potential and responses to therapies.
Collapse
Affiliation(s)
- Marco Campenni
- BiosciencesUniversity of ExeterPenrynUK
- Department of PsychologyArizona State UniversityTempeAZUSA
| | - Alexander N. May
- Research Casting InternationalQuinte WestONCanada
- Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Amy Boddy
- Biodesign InstituteArizona State UniversityTempeAZUSA
- Department of AnthropologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | | | | |
Collapse
|
36
|
Deb B, Kumar P. Tumor Heterogeneity and Phenotypic Plasticity in Bladder Carcinoma. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Rao V, Arakeri G, Subash A, Bagadia RK, Thakur S, Kudpaje AS, Nayar R, Patil S, Paiva Fonseca F, Gomez RS, Brennan PA. Circulating tumour cells in head and neck cancers: Biological insights. J Oral Pathol Med 2020; 49:842-848. [PMID: 32526815 DOI: 10.1111/jop.13075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumour metastasis is one of the leading cause of cancer-related mortality. Circulating tumour cells (CTCs) have been implicated in loco-regional and distant metastasis and its role is being extensively studied in various malignancies, including those from the head and neck region. The main challenge in understanding their significance lies in the rarity of these cells in the blood. However, newer technologies have attempted to overcome these pitfalls. This review explores the evolution of CTC research and other related areas, including its biological significance, sustainability within the circulating vascular environment and possible clinical implications.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Gururaj Arakeri
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India.,Department of Oral and maxillofacial Surgery, Navodaya Dental College and Hospital, Raichur, India
| | - Anand Subash
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Ritvi K Bagadia
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Shalini Thakur
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Akshay S Kudpaje
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Ravi Nayar
- Department of Head and Neck Surgical Oncology & Robotic Surgery, HCG Cancer Hospital, Bengaluru, India
| | - Shekar Patil
- Department of Medical Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo S Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter A Brennan
- Department of Oral & Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|
38
|
Circulating tumor cell clusters and circulating tumor cell-derived explant models as a tool for treatment response. Biotechniques 2020; 69:362-363. [PMID: 32418441 DOI: 10.2144/btn-2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of Circulating Tumor Cells in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:117-134. [PMID: 32304083 DOI: 10.1007/978-3-030-35805-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
40
|
Relevance of CTC Clusters in Breast Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:93-115. [PMID: 32304082 DOI: 10.1007/978-3-030-35805-1_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is the major cause of mortality in patients with breast cancer; however, the mechanisms of tumor cell dissemination and metastasis formation are not well established yet. The study of circulating tumour cells (CTCs), the metastatic precursors of distant disease, may help in this search. CTCs can be found in the blood of cancer patients as single cells or as tumor cell aggregates, known as CTC clusters. CTC clusters have differential biological features such as an enhanced survival and metastatic potential, and they hold great promises for the evaluation of prognosis, diagnosis and therapy of the metastatic cancer. The analysis of CTC clusters offers new insights into the mechanism of metastasis and can guide towards the development of new diagnostic and therapeutic strategies to suppress cancer metastasis. This has become possible thanks to the development of improved technologies for detection of CTCs and CTC clusters. However, more efficient methods are needed in order to address important questions regarding the metastatic potential of CTC and future clinical applications. In this chapter, we explore the current knowledge on the role of CTC clusters in breast cancer metastasis, their origin, metastatic advantages and clinical importance.
Collapse
|
41
|
Amintas S, Bedel A, Moreau-Gaudry F, Boutin J, Buscail L, Merlio JP, Vendrely V, Dabernat S, Buscail E. Circulating Tumor Cell Clusters: United We Stand Divided We Fall. Int J Mol Sci 2020; 21:E2653. [PMID: 32290245 PMCID: PMC7177734 DOI: 10.3390/ijms21072653] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
The presence of circulating tumor cells (CTCs) and CTC clusters, also known as tumor microemboli, in biological fluids has long been described. Intensive research on single CTCs has made a significant contribution in understanding tumor invasion, metastasis tropism, and intra-tumor heterogeneity. Moreover, their being minimally invasive biomarkers has positioned them for diagnosis, prognosis, and recurrence monitoring tools. Initially, CTC clusters were out of focus, but major recent advances in the knowledge of their biogenesis and dissemination reposition them as critical actors in the pathophysiology of cancer, especially metastasis. Increasing evidence suggests that "united" CTCs, organized in clusters, resist better and carry stronger metastatic capacities than "divided" single CTCs. This review gathers recent insight on CTC cluster origin and dissemination. We will focus on their distinct molecular package necessary to resist multiple cell deaths that all circulating cells normally face. We will describe the molecular basis of their increased metastatic potential as compared to single CTCs. We will consider their clinical relevance as prognostic biomarkers. Finally, we will propose future directions for research and clinical applications in this promising topic in cancer.
Collapse
Affiliation(s)
- Samuel Amintas
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Aurélie Bedel
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - François Moreau-Gaudry
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Julian Boutin
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Louis Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, 31000 Toulouse, France; (L.B.); (E.B.)
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, 31000 Toulouse, France
| | - Jean-Philippe Merlio
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Véronique Vendrely
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Sandrine Dabernat
- INSERM U1035, Université de Bordeaux, 33000 Bordeaux, France; (S.A.); (A.B.); (F.M.-G.); (J.B.); (J.-P.M.); (V.V.)
- Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000 Bordeaux, France
| | - Etienne Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, 31000 Toulouse, France; (L.B.); (E.B.)
- INSERM UMR-1220, IRSD University of Toulouse III, 31000 Toulouse, France
| |
Collapse
|
42
|
Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020; 12:E867. [PMID: 32260071 PMCID: PMC7225923 DOI: 10.3390/cancers12040867] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases and cancer recurrence are the main causes of cancer death. Circulating Tumor Cells (CTCs) and disseminated tumor cells are the drivers of cancer cell dissemination. The assessment of CTCs' clinical role in early metastasis prediction, diagnosis, and treatment requires more information about their biology, their roles in cancer dormancy, and immune evasion as well as in therapy resistance. Indeed, CTC functional and biochemical phenotypes have been only partially characterized using murine metastasis models and liquid biopsy in human patients. CTC detection, characterization, and enumeration represent a promising tool for tailoring the management of each patient with cancer. The comprehensive understanding of CTCs will provide more opportunities to determine their clinical utility. This review provides much-needed insights into this dynamic field of translational cancer research.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Mehdi Azizi
- Proteomics Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| | - Maryam Heidarifard
- Drug Applied Research Center, Tabriz University of Medical Sciences, 51368 Tabriz, Iran;
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran; (H.D.-M.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES, EA2415, 34093 Montpellier, France (L.E.C.-H.)
| |
Collapse
|
43
|
Vishwakarma R, McManus KJ. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes. Cancers (Basel) 2020; 12:cancers12040824. [PMID: 32235397 PMCID: PMC7226245 DOI: 10.3390/cancers12040824] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chromosome instability (CIN) refers to an ongoing rate of chromosomal changes and is a driver of genetic, cell-to-cell heterogeneity. It is an aberrant phenotype that is intimately associated with cancer development and progression. The presence, extent, and level of CIN has tremendous implications for the clinical management and outcomes of those living with cancer. Despite its relevance in cancer, there is still extensive misuse of the term CIN, and this has adversely impacted our ability to identify and characterize the molecular determinants of CIN. Though several decades of genetic research have provided insight into CIN, the molecular determinants remain largely unknown, which severely limits its clinical potential. In this review, we provide a definition of CIN, describe the two main types, and discuss how it differs from aneuploidy. We subsequently detail its impact on cancer development and progression, and describe how it influences metastatic potential with reference to cancer prognosis and outcomes. Finally, we end with a discussion of how CIN induces genetic heterogeneity to influence the use and efficacy of several precision medicine strategies, including patient and risk stratification, as well as its impact on the acquisition of drug resistance and disease recurrence.
Collapse
Affiliation(s)
- Raghvendra Vishwakarma
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
44
|
Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19:341. [PMID: 31866766 PMCID: PMC6918690 DOI: 10.1186/s12935-019-1067-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which function as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as multicellular groupings-CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical application of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and organoid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diagnosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.
Collapse
Affiliation(s)
- Chang Yang
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Bai-Rong Xia
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Wei-Lin Jin
- 2Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China.,3National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China
| | - Ge Lou
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| |
Collapse
|
45
|
De T, Goyal S, Balachander G, Chatterjee K, Kumar P, Babu K G, Rangarajan A. A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. J Clin Med 2019; 8:E1473. [PMID: 31527416 PMCID: PMC6780381 DOI: 10.3390/jcm8091473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023] Open
Abstract
The majority of the cancer-associated deaths is due to metastasis-the spread of tumors to other organs. Circulating tumor cells (CTCs), which are shed from the primary tumor into the circulation, serve as precursors of metastasis. CTCs have now gained much attention as a new prognostic and diagnostic marker, as well as a screening tool for patients with metastatic disease. However, very little is known about the biology of CTCs in cancer metastasis. An increased understanding of CTC biology, their heterogeneity, and interaction with other cells can help towards a better understanding of the metastatic process, as well as identify novel drug targets. Here we present a novel ex vivo 3D system for culturing CTCs from breast cancer patient blood samples using porous poly(ε-caprolactone) (PCL) scaffolds. As a proof of principle study, we show that ex vivo culture of 12/16 (75%) advanced stage breast cancer patient blood samples were enriched for CTCs identified as CK+ (cytokeratin positive) and CD45- (CD45 negative) cells. The deposition of extracellular matrix proteins on the PCL scaffolds permitted cellular attachment to these scaffolds. Detection of Ki-67 and bromodeoxyuridine (BrdU) positive cells revealed proliferating cell population in the 3D scaffolds. The CTCs cultured without prior enrichment exhibited dynamic differences in epithelial (E) and mesenchymal (M) composition. Thus, our 3D PCL scaffold system offers a physiologically relevant model to be used for studying CTC biology as well as for individualized testing of drug susceptibility. Further studies are warranted for longitudinal monitoring of epithelial-mesenchymal transition (EMT) in CTCs for clinical association.
Collapse
Affiliation(s)
- Tamasa De
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | - Shina Goyal
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India.
| | - Gowri Balachander
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore.
| | - Kaushik Chatterjee
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560066, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| | - Govind Babu K
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore 560029, India.
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|