1
|
Carter SWD, Fee EL, Usuda H, Oguz G, Ramasamy A, Amin Z, Agnihotri B, Wei Q, Xiawen L, Takahashi T, Takahashi Y, Ikeda H, Kumagai Y, Saito Y, Saito M, Mattar C, Evans MI, Illanes SE, Jobe AH, Choolani M, Kemp MW. Antenatal steroids elicited neurodegenerative-associated transcriptional changes in the hippocampus of preterm fetal sheep independent of lung maturation. BMC Med 2024; 22:338. [PMID: 39183288 PMCID: PMC11346182 DOI: 10.1186/s12916-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Antenatal steroid therapy for fetal lung maturation is routinely administered to women at risk of preterm delivery. There is strong evidence to demonstrate benefit from antenatal steroids in terms of survival and respiratory disease, notably in infants delivered at or below 32 weeks' gestation. However, dosing remains unoptimized and lung benefits are highly variable. Current treatment regimens generate high-concentration, pulsatile fetal steroid exposures now associated with increased risk of childhood neurodevelopmental diseases. We hypothesized that damage-associated changes in the fetal hippocampal transcriptome would be independent of preterm lung function. METHODS Date-mated ewes carrying a single fetus at 122 ± 2dGA (term = 150dGA) were randomized into 4 groups: (i) Saline Control Group, 4×2ml maternal saline intramuscular(IM) injections at 12hr intervals (n = 11); or (ii) Dex High Group, 2×12mg maternal IM dexamethasone phosphate injections at 12hr intervals followed by 2×2ml IM saline injections at 12hr intervals (n = 12; representing a clinical regimen used in Singapore); or (iii) Dex Low Group, 4×1.5mg maternal IM dexamethasone phosphate injections 12hr intervals (n = 12); or (iv) Beta-Acetate Group, 1×0.125mg/kg maternal IM betamethasone acetate injection followed by 3×2ml IM sterile normal saline injections 12hr intervals (n = 8). Lambs were surgically delivered 48hr after first maternal injection at 122-125dGA, ventilated for 30min to establish lung function, and euthanised for necropsy and tissue collection. RESULTS Preterm lambs from the Dex Low and Beta-Acetate Groups had statistically and biologically significant lung function improvements (measured by gas exchange, lung compliance). Compared to the Saline Control Group, hippocampal transcriptomic data identified 879 differentially significant expressed genes (at least 1.5-fold change and FDR < 5%) in the steroid-treated groups. Pulsatile dexamethasone-only exposed groups (Dex High and Dex Low) had three common positively enriched differentially expressed pathways related in part to neurodegeneration ("Prion Disease", "Alzheimer's Disease", "Arachidonic Acid metabolism"). Adverse changes were independent of respiratory function during ventilation. CONCLUSIONS Our data suggests that exposure to antenatal steroid therapy is an independent cause of damage- associated transcriptomic changes in the brain of preterm, fetal sheep. These data highlight an urgent need for careful reconsideration and balancing of how antenatal steroids are used, both for patient selection and dosing regimens.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Zubair Amin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Biswas Agnihotri
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Qin Wei
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Liu Xiawen
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Citra Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mark I Evans
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Sebastián E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Reproductive Biology Program, Center for Biomedical Research and Innovation, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Alan H Jobe
- Centre for Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Women and Infants Research Foundation, Perth, WA, Australia
| |
Collapse
|
2
|
Barnes-Davis ME, Williamson BJ, Kline JE, Kline-Fath BM, Tkach J, He L, Yuan W, Parikh NA. Structural connectivity at term equivalent age and language in preterm children at 2 years corrected. Brain Commun 2024; 6:fcae126. [PMID: 38665963 PMCID: PMC11043656 DOI: 10.1093/braincomms/fcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We previously reported interhemispheric structural hyperconnectivity bypassing the corpus callosum in children born extremely preterm (<28 weeks) versus term children. This increased connectivity was positively associated with language performance at 4-6 years of age in our prior work. In the present study, we aim to investigate whether this extracallosal connectivity develops in extremely preterm infants at term equivalent age by leveraging a prospective cohort study of 350 very and extremely preterm infants followed longitudinally in the Cincinnati Infant Neurodevelopment Early Prediction Study. For this secondary analysis, we included only children born extremely preterm and without significant brain injury (n = 95). We use higher-order diffusion modelling to assess the degree to which extracallosal pathways are present in extremely preterm infants and predictive of later language scores at 22-26 months corrected age. We compare results obtained from two higher-order diffusion models: generalized q-sampling imaging and constrained spherical deconvolution. Advanced MRI was obtained at term equivalent age (39-44 weeks post-menstrual age). For structural connectometry analysis, we assessed the level of correlation between white matter connectivity at the whole-brain level at term equivalent age and language scores at 2 years corrected age, controlling for post-menstrual age, sex, brain abnormality score and social risk. For our constrained spherical deconvolution analyses, we performed connectivity-based fixel enhancement, using probabilistic tractography to inform statistical testing of the hypothesis that fibre metrics at term equivalent age relate to language scores at 2 years corrected age after adjusting for covariates. Ninety-five infants were extremely preterm with no significant brain injury. Of these, 53 had complete neurodevelopmental and imaging data sets that passed quality control. In the connectometry analyses adjusted for covariates and multiple comparisons (P < 0.05), the following tracks were inversely correlated with language: bilateral cerebellar white matter and middle cerebellar peduncles, bilateral corticospinal tracks, posterior commissure and the posterior inferior fronto-occipital fasciculus. No tracks from the constrained spherical deconvolution/connectivity-based fixel enhancement analyses remained significant after correction for multiple comparisons. Our findings provide critical information about the ontogeny of structural brain networks supporting language in extremely preterm children. Greater connectivity in more posterior tracks that include the cerebellum and connections to the regions of the temporal lobes at term equivalent age appears to be disadvantageous for language development.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Beth M Kline-Fath
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jean Tkach
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children’s Hospital Medical Center, Pediatric Neuroimaging Research Consortium, Cincinnati, OH, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Jobe AH, Goldenberg RL, Kemp MW. Antenatal corticosteroids: an updated assessment of anticipated benefits and potential risks. Am J Obstet Gynecol 2024; 230:330-339. [PMID: 37734637 DOI: 10.1016/j.ajog.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Antenatal steroid therapy is increasingly central to the obstetrical management of women at imminent risk of preterm birth. For women likely to deliver between 24 and 34 weeks' gestation, antenatal steroid therapy is the standard of care, conferring sizable benefits and few risks in high-resource environments when appropriately targeted. Recent studies have focused on antenatal steroid use in periviable and late preterm populations, and in term cesarean deliveries. As a result, antenatal steroid therapy has now been applied from 22 to 39+6 weeks of estimated gestational age. There is also an increased appreciation that the vast majority of randomized control data informing the use of antenatal steroids are derived from predominantly high-resource, White populations. Accordingly, a sizable amount of work has recently been undertaken to test how to safely use antenatal steroids in low- and middle-resource environments, wherein the often high rates of preterm birth make these low-cost, easily administered interventions an attractive proposition. It is likely underappreciated by the obstetrical and neonatal communities that the overall efficacy of antenatal steroid therapy is highly variable (including when preterm risk is accurately assessed), the treatment regimens used are largely arbitrary, dosing is suprapharmacologic for effect, and the benefit-risk balance is significantly and differentially modified by gestation. It is also very likely that the patients consenting to receive these treatments are similarly unaware of the complex balance of potential benefits and harms. Although a small number of follow-up studies present a generally benign picture of long-term antenatal steroid risk, several large, population-based retrospective studies have identified associations between antenatal steroid use, childhood mental disease, and newborn infections that warrant urgent attention. Of particular contemporary importance are emergent efforts to optimize antenatal steroid regimens on the basis of the pharmacokinetics and pharmacodynamics of the agents themselves, the need for better targeting of these potent drugs, and clear articulation of the potential benefits and harms of antenatal steroid use at differing stages of pregnancy and in different delivery contexts.
Collapse
Affiliation(s)
- Alan H Jobe
- Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Robert L Goldenberg
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
4
|
Dong XY, Qi JH, Zhuo QC, Ding YJ, Qiao X, Wang Y, Yang DJ, Li D, Li L, Jiang HY, Liu QY, Li ZL, Zhang X, Zhang BJ, Yu YH. Association of antenatal corticosteroids with mortality and morbidities in very preterm infants born to women with hypertensive disorders of pregnancy: a multicenter prospective cohort study. BMC Pregnancy Childbirth 2024; 24:109. [PMID: 38317068 PMCID: PMC10840159 DOI: 10.1186/s12884-023-06195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) is the most common cause of indicated preterm delivery, but the impact of prenatal steroid exposure on the outcomes of preterm infants born to HDP mothers, who may be at risk for intrauterine hypoxia-ischemia, remains uncertain. The study objective is to evaluate the mortality and morbidities in HDP for very preterm infants (VPIs) exposed to different course of ANS. METHODS This is a prospective cohort study comprising infants with < 32 weeks gestation born to women with HDP only from 1 Jan. 2019 to 31 Dec. 2021 within 40 participating neonatal intensive care units (NICUs) in Sino-northern network. ANS courses included completed, partial, repeated, and no ANS. Univariate and multivariable analyses were performed on administration of ANS and short-term outcomes before discharge. RESULTS Among 1917 VPIs born to women with HDP only, 987(51.4%) received a complete course of ANS within 48 h to 7 days before birth, 560(29.2%) received partial ANS within 24 h before delivery, 100(5.2%) received repeat ANS and 270 (14.1%) did not receive any ANS. Compared to infants who received complete ANS, infants unexposed to ANS was associated with higher odds of death (AOR 1.85; 95%CI 1.10, 3.14), Severe Neurological Injury (SNI) or death (AOR 1.68; 95%CI 1.29,3.80) and NEC or death (AOR 1.78; 95%CI 1.55, 2.89), the repeated ANS group exhibits a significant negative correlation with the duration of oxygen therapy days (correlation coefficient - 18.3; 95%CI-39.2, -2.1). However, there were no significant differences observed between the full course and partial course groups in terms of outcomes. We can draw similar conclusions in the non-SGA group, while the differences are not significant in the SGA group. From KM curve, it showed that the repeated group had the highest survival rate, but the statistical analysis did not indicate a significant difference. CONCLUSIONS Even partial courses of ANS administered within 24 h before delivery proved to be protective against death and other morbidities. The differences mentioned above are more pronounced in the non-SGA group. Repeat courses demonstrate a trend toward protection, but this still needs to be confirmed by larger samples.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- Department of Pediatrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jian-Hong Qi
- Department of Neonatology, Shandong University; Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, HuaiYin District, Jinan, Shandong, 250021, China
| | - Qing-Cui Zhuo
- Department of Neonatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Jie Ding
- Department of Neonatology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xin Qiao
- Department of Neonatology, Jinan Maternity and Child Healthcare Hospital, Jinan, China
| | - Yan Wang
- Department of Neonatology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - De-Juan Yang
- Department of Neonatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dan Li
- Department of Neonatology, Liaocheng People's Hospital, Liaocheng, China
| | - Li Li
- Department of Neonatology, Linyi People's Hospital, Linyi, China
| | - Hai-Yan Jiang
- Department of Pediatrics, The Third Hospital of Baogang Group, Baotou, China
| | - Qiong-Yu Liu
- Department of Neonatology, Women and Children's Healthcare Hospital of Linyi, Linyi, China
| | - Zhong-Liang Li
- Department of Neonatology, W.F. Maternal and Child Health Hospital, Weifang, China
| | - Xiang Zhang
- Department of Neonatology, Hebei Petro China Central Hospital, Langfang, China
| | - Bing-Jin Zhang
- Department of Neonatology, Shengli Olifield Central Hospital, Yantai, China
| | - Yong-Hui Yu
- Department of Neonatology, Shandong University; Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, HuaiYin District, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Chawanpaiboon S, Chukaew R, Pooliam J. A comparison of 2 doses of antenatal dexamethasone for the prevention of respiratory distress syndrome: an open-label, noninferiority, pragmatic randomized trial. Am J Obstet Gynecol 2024; 230:260.e1-260.e19. [PMID: 37442247 DOI: 10.1016/j.ajog.2023.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Antenatal corticosteroids have been used for the prevention of respiratory complications, intraventricular hemorrhage, necrotizing enterocolitis, and other adverse neonatal outcomes for over 50 years, with limited evidence about their optimal doses. Higher steroid doses or frequencies of antenatal corticosteroids in preterm newborns pose adverse effects such as prolonged adrenal suppression, negative effects on fetal programming and metabolism, and increased risks of neurodevelopmental and neuropsychological impairments. Conversely, lower doses of antenatal corticosteroids may be an effective alternative to induce fetal lung maturation with less risk to the fetus. Late preterm births represent the largest population of all preterm neonates, with a respiratory distress syndrome risk of 8.83%. Therefore, determining the optimal antenatal corticosteroid dosage is of particular importance for this population. OBJECTIVE This study aimed to compare the efficacy of 5-mg and 6-mg dexamethasone in preventing neonatal respiratory distress syndrome in women with preterm births at 320 to 366 weeks of gestation. STUDY DESIGN This was an open-label, randomized, controlled, noninferiority trial. Singleton pregnant women (n=370) at 320 to 366 weeks of gestation with spontaneous preterm labor or preterm premature rupture of membranes were enrolled. They were randomly assigned (1:1) to a 5-mg or 6-mg dexamethasone group. Dexamethasone was administered intramuscularly every 12 hours for 4 doses or until delivery. The primary outcome was the reduction in neonatal respiratory distress syndrome cases, whereas the secondary outcomes were any adverse maternal or neonatal events. RESULTS Between December 2020 and April 2022, 370 eligible women, anticipating deliveries within the gestational range of 32 0/7 to 36 6/7 weeks, willingly participated in the study. They were evenly split, with 185 women assigned to the 5-mg group and 185 to the 6-mg group. The study revealed that the demographic profiles of the participants in the 2 groups were remarkably similar, with no statistically significant disparities (P>.05). It is noteworthy that most of these women gave birth after 34 weeks of gestation. Despite a substantial proportion not completing the full course of steroid treatment, the 5-mg dose exhibited noninferiority compared with the 6-mg dose of dexamethasone, as indicated by a modest proportional difference of 0.5% (95% confidence interval, -2.8 to 43.9). Neonatal respiratory distress syndrome occurred in a relatively low percentage of newborns in both groups, affecting 2.2% in the 5-mg group and 1.6% in the 6-mg group. Notably, the risk difference of 0.6% fell comfortably within the predefined noninferiority threshold of 10%. CONCLUSION Our study suggests that a 5-mg dexamethasone dose is noninferior to a standard 6-mg dose in preventing neonatal respiratory distress syndrome in preterm births.
Collapse
Affiliation(s)
- Saifon Chawanpaiboon
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Ronnakorn Chukaew
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Julaporn Pooliam
- Clinical Epidemiological Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Kumagai Y, Kemp MW, Usuda H, Takahashi T, Takahashi Y, Hamada H, Schmidt AF, Hanita T, Watanabe S, Sato S, Ikeda H, Fee EL, Furfaro L, Newnham JP, Jobe AH, Yaegashi N, Saito M. A Reduction in Antenatal Steroid Dose Was Associated with Reduced Cardiac Dysfunction in a Sheep Model of Pregnancy. Reprod Sci 2023; 30:3222-3234. [PMID: 37264260 PMCID: PMC10643432 DOI: 10.1007/s43032-023-01264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Despite widespread use, dosing regimens for antenatal corticosteroid (ACS) therapy are poorly unoptimized. ACS therapy exerts a programming effect on fetal development, which may be associated with an increased risk of cardiovascular disease. Having demonstrated that low-dose steroid therapy is an efficacious means of maturing the preterm lung, we hypothesized that a low-dose steroid exposure would exert fewer adverse functional and transcriptional changes on the fetal heart. We tested this hypothesis using low-dose steroid therapy (10 mg delivered to the ewe over 36 h via constant infusion) and compared cardiac effects with those of a higher dose treatment (30 mg delivered to the ewe over 24 h by intramuscular injection; simulating currently employed clinical ACS regimens). Fetal cardiac function was assessed by ultrasound on the day of ACS treatment initiation. Transcriptomic analyses were performed on fetal myocardial tissue. Relative to saline control, fetuses in the higher-dose clinical treatment group had significantly lower ratios between early diastolic ventricular filling and ventricular filling during atrial systole, and showed the differential expression of myocardial hypertrophy-associated transcripts including βMHC, GADD45γ, and PPARγ. The long-term implications of these changes remain unstudied. Irrespective, optimizing ACS dosing regimens to maximize respiratory benefit while minimizing adverse effects on key organ systems, such as the heart, offers a means of improving the acute and long-term outcomes associated with this important obstetric therapy.
Collapse
Affiliation(s)
- Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- College of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haruo Usuda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Yuki Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Hirotaka Hamada
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Takushi Hanita
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shimpei Watanabe
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Lucy Furfaro
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Nobuo Yaegashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Garrud TAC, Teulings NEWD, Niu Y, Skeffington KL, Beck C, Itani N, Conlon FG, Botting KJ, Nicholas LM, Tong W, Derks JB, Ozanne SE, Giussani DA. Molecular mechanisms underlying adverse effects of dexamethasone and betamethasone in the developing cardiovascular system. FASEB J 2023; 37:e22887. [PMID: 37132324 PMCID: PMC10946807 DOI: 10.1096/fj.202200676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
Antenatal glucocorticoids accelerate fetal lung maturation and reduce mortality in preterm babies but can trigger adverse effects on the cardiovascular system. The mechanisms underlying off-target effects of the synthetic glucocorticoids mostly used, Dexamethasone (Dex) and Betamethasone (Beta), are unknown. We investigated effects of Dex and Beta on cardiovascular structure and function, and underlying molecular mechanism using the chicken embryo, an established model system to isolate effects of therapy on the developing heart and vasculature, independent of effects on the mother or placenta. Fertilized eggs were treated with Dex (0.1 mg kg-1 ), Beta (0.1 mg kg-1 ), or water vehicle (Control) on embryonic day 14 (E14, term = 21 days). At E19, biometry, cardiovascular function, stereological, and molecular analyses were determined. Both glucocorticoids promoted growth restriction, with Beta being more severe. Beta compared with Dex induced greater cardiac diastolic dysfunction and also impaired systolic function. While Dex triggered cardiomyocyte hypertrophy, Beta promoted a decrease in cardiomyocyte number. Molecular changes of Dex on the developing heart included oxidative stress, activation of p38, and cleaved caspase 3. In contrast, impaired GR downregulation, activation of p53, p16, and MKK3 coupled with CDK2 transcriptional repression linked the effects of Beta on cardiomyocyte senescence. Beta but not Dex impaired NO-dependent relaxation of peripheral resistance arteries. Beta diminished contractile responses to potassium and phenylephrine, but Dex enhanced peripheral constrictor reactivity to endothelin-1. We conclude that Dex and Beta have direct differential detrimental effects on the developing cardiovascular system.
Collapse
Affiliation(s)
- Tessa A. C. Garrud
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Noor E. W. D. Teulings
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Fiona G. Conlon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Lisa M. Nicholas
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
| | - Wen Tong
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jan B. Derks
- Department of Perinatal MedicineUniversity Medical CentreUtrechtNetherlands
| | - Susan E. Ozanne
- Institute of Metabolic Science‐Metabolic Research Laboratories, MRC Metabolic Diseases UnitUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- BHF Cardiovascular Centre for Research ExcellenceUniversity of CambridgeCambridgeUK
- Strategic Research Initiative in ReproductionUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
8
|
Usuda H, Fee EL, Carter S, Furfaro L, Takahashi T, Takahashi Y, Newnham JP, Milad MA, Saito M, Jobe AH, Kemp MW. Low-dose antenatal betamethasone treatment achieves preterm lung maturation equivalent to that of the World Health Organization dexamethasone regimen but with reduced endocrine disruption in a sheep model of pregnancy. Am J Obstet Gynecol 2022; 227:903.e1-903.e16. [PMID: 35792176 DOI: 10.1016/j.ajog.2022.06.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The intramuscular administration of antenatal steroids to women at risk of preterm delivery achieves high maternal and fetal plasma steroid concentrations, which are associated with adverse effects and may reduce treatment efficacy. We have demonstrated that antenatal steroid efficacy is independent of peak maternofetal steroid levels once exposure is maintained above a low threshold. OBJECTIVE This study aimed to test, using a sheep model of pregnancy, whether the low-dose antenatal steroid regimen proposed as part of the Antenatal Corticosteroids for Improving Outcomes in Preterm Newborns trial would achieve preterm lung maturation equivalent to that of the existing World Health Organization dexamethasone treatment regimen, but with reduced risk of adverse outcomes. STUDY DESIGN Following ethical review and approval, date-mated ewes with single fetuses received intramuscular injections of either (1) four 6-mg maternal intramuscular injections of dexamethasone phosphate every 12 hours (n=22), (2) 4 2-mg maternal intramuscular injections of betamethasone phosphate every 12 hours (n=21), or (3) 4 2-mL maternal intramuscular injections of saline every 12 hours (n=16). Of note, 48 hours after first injection, (124±1 day), lambs were delivered, ventilated for 30 minutes, and euthanized for sampling. Arterial blood gas, respiratory, hematological, and biochemical data were analyzed for between-group differences with analysis of variance according to distribution and variance, with P<.05 taken as significant. RESULTS After 30 minutes of ventilation, lambs from both steroid-treated groups had significant and equivalent improvements in lung function relative to saline control (P<.05). There was no significant difference in arterial blood pH, pO2, pCO2, lung compliance, ventilator efficiency index, or lung volume at necropsy with a static pressure of 40 cmH2O. The messenger RNA expression of surfactant protein (Sp)a, Spb, Spc, Spd, aquaporin (Aqp)1, Aqp5, and sodium channel epithelial 1 subunit beta (Scnn1b) was equivalent between both steroid groups. Maternal and fetal plasma neutrophil, glucose, and fetal plasma C-peptide levels were significantly elevated in the dexamethasone group, relative to the betamethasone group. Fetal plasma insulin-like growth factor 1 was significantly reduced in the dexamethasone group compared with the betamethasone group (P<0.05). Fetal adrenocorticotropic hormone (r=0.53), maternal glucose value (r=-0.52), and fetal glucose values (r=-0.42) were correlated with maternal weight in the betamethasone group (P<.05), whereas fetal pCO2 and pO2 were not correlated. There was no significant difference between male and female lamb outcomes in any groups for any of the items evaluated. CONCLUSION This study reported that in preterm lambs, a low-dose treatment regimen of 8 mg betamethasone achieves lung maturation equivalent to that of a 24-mg dexamethasone-based regimen, but with smaller perturbations to the maternofetal hypothalamic-pituitary-adrenal axis. These data suggested that given steroid pharmacokinetic differences between sheep and humans, a betamethasone dose of 2 mg may remain above the minimum dose necessary for robust maturation of the preterm lung. Maternal weight-adjusted betamethasone doses might also be a key to reducing perturbations to the maternofetal hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lucy Furfaro
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Mark A Milad
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Masatoshi Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Alan H Jobe
- Milad Pharmaceutical Consulting LLC, Plymouth, MI
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan; Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical School, Cincinnati, OH; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.
| |
Collapse
|
9
|
Schmidt AF, Schnell DJ, Eaton KP, Chetal K, Kannan PS, Miller LA, Chougnet CA, Swarr DT, Jobe AH, Salomonis N, Kamath-Rayne BD. Fetal maturation revealed by amniotic fluid cell-free transcriptome in rhesus macaques. JCI Insight 2022; 7:162101. [PMID: 35980752 PMCID: PMC9675452 DOI: 10.1172/jci.insight.162101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
Accurate estimate of fetal maturity could provide individualized guidance for delivery of complicated pregnancies. However, current methods are invasive, have low accuracy, and are limited to fetal lung maturation. To identify diagnostic gestational biomarkers, we performed transcriptomic profiling of lung and brain, as well as cell-free RNA from amniotic fluid of preterm and term rhesus macaque fetuses. These data identify potentially new and prior-associated gestational age differences in distinct lung and neuronal cell populations when compared with existing single-cell and bulk RNA-Seq data. Comparative analyses found hundreds of genes coincidently induced in lung and amniotic fluid, along with dozens in brain and amniotic fluid. These data enable creation of computational models that accurately predict lung compliance from amniotic fluid and lung transcriptome of preterm fetuses treated with antenatal corticosteroids. Importantly, antenatal steroids induced off-target gene expression changes in the brain, impinging upon synaptic transmission and neuronal and glial maturation, as this could have long-term consequences on brain development. Cell-free RNA in amniotic fluid may provide a substrate of global fetal maturation markers for personalized management of at-risk pregnancies.
Collapse
Affiliation(s)
- Augusto F. Schmidt
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel J. Schnell
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth P. Eaton
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paranthaman S. Kannan
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A. Miller
- California National Primate Research Center, UCD, Davis, California, USA
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Daniel T. Swarr
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Alan H. Jobe
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Bioinformatics, University of Cincinnati School of Medicine, Cincinnati Ohio, USA
| | - Beena D. Kamath-Rayne
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Global Child Health and Life Support, American Academy of Pediatrics, Itasca, Illinois, USA
| |
Collapse
|
10
|
Williams MJ, Ramson JA, Brownfoot FC. Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth. Cochrane Database Syst Rev 2022; 8:CD006764. [PMID: 35943347 PMCID: PMC9362990 DOI: 10.1002/14651858.cd006764.pub4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Despite the widespread use of antenatal corticosteroids to prevent respiratory distress syndrome (RDS) in preterm infants, there is currently no consensus as to the type of corticosteroid to use, dose, frequency, timing of use or the route of administration. OBJECTIVES: To assess the effects on fetal and neonatal morbidity and mortality, on maternal morbidity and mortality, and on the child and adult in later life, of administering different types of corticosteroids (dexamethasone or betamethasone), or different corticosteroid dose regimens, including timing, frequency and mode of administration. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth Group's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (9 May 2022) and reference lists of retrieved studies. SELECTION CRITERIA We included all identified published and unpublished randomised controlled trials or quasi-randomised controlled trials comparing any two corticosteroids (dexamethasone or betamethasone or any other corticosteroid that can cross the placenta), comparing different dose regimens (including frequency and timing of administration) in women at risk of preterm birth. We planned to exclude cross-over trials and cluster-randomised trials. We planned to include studies published as abstracts only along with studies published as full-text manuscripts. DATA COLLECTION AND ANALYSIS At least two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. We assessed the certainty of the evidence using GRADE. MAIN RESULTS We included 11 trials (2494 women and 2762 infants) in this update, all of which recruited women who were at increased risk of preterm birth or had a medical indication for preterm birth. All trials were conducted in high-income countries. Dexamethasone versus betamethasone Nine trials (2096 women and 2319 infants) compared dexamethasone versus betamethasone. All trials administered both drugs intramuscularly, and the total dose in the course was consistent (22.8 mg or 24 mg), but the regimen varied. We assessed one new study to have no serious risk of bias concerns for most outcomes, but other studies were at moderate (six trials) or high (two trials) risk of bias due to selection, detection and attrition bias. Our GRADE assessments ranged between high- and low-certainty, with downgrades due to risk of bias and imprecision. Maternal outcomes The only maternal primary outcome reported was chorioamnionitis (death and puerperal sepsis were not reported). Although the rate of chorioamnionitis was lower with dexamethasone, we did not find conclusive evidence of a difference between the two drugs (risk ratio (RR) 0.71, 95% confidence interval (CI) 0.48 to 1.06; 1 trial, 1346 women; moderate-certainty evidence). The proportion of women experiencing maternal adverse effects of therapy was lower with dexamethasone; however, there was not conclusive evidence of a difference between interventions (RR 0.63, 95% CI 0.35 to 1.13; 2 trials, 1705 women; moderate-certainty evidence). Infant outcomes We are unsure whether the choice of drug makes a difference to the risk of any known death after randomisation, because the 95% CI was compatible with both appreciable benefit and harm with dexamethasone (RR 1.03, 95% CI 0.66 to 1.63; 5 trials, 2105 infants; moderate-certainty evidence). The choice of drug may make little or no difference to the risk of RDS (RR 1.06, 95% CI 0.91 to 1.22; 5 trials, 2105 infants; high-certainty evidence). While there may be little or no difference in the risk of intraventricular haemorrhage (IVH), there was substantial unexplained statistical heterogeneity in this result (average (a) RR 0.71, 95% CI 0.28 to 1.81; 4 trials, 1902 infants; I² = 62%; low-certainty evidence). We found no evidence of a difference between the two drugs for chronic lung disease (RR 0.92, 95% CI 0.64 to 1.34; 1 trial, 1509 infants; moderate-certainty evidence), and we are unsure of the effects on necrotising enterocolitis, because there were few events in the studies reporting this outcome (RR 5.08, 95% CI 0.25 to 105.15; 2 studies, 441 infants; low-certainty evidence). Longer-term child outcomes Only one trial consistently followed up children longer term, reporting at two years' adjusted age. There is probably little or no difference between dexamethasone and betamethasone in the risk of neurodevelopmental disability at follow-up (RR 1.02, 95% CI 0.85 to 1.22; 2 trials, 1151 infants; moderate-certainty evidence). It is unclear whether the choice of drug makes a difference to the risk of visual impairment (RR 0.33, 95% CI 0.01 to 8.15; 1 trial, 1227 children; low-certainty evidence). There may be little or no difference between the drugs for hearing impairment (RR 1.16, 95% CI 0.63 to 2.16; 1 trial, 1227 children; moderate-certainty evidence), motor developmental delay (RR 0.89, 95% CI 0.66 to 1.20; 1 trial, 1166 children; moderate-certainty evidence) or intellectual impairment (RR 0.97, 95% CI 0.79 to 1.20; 1 trial, 1161 children; moderate-certainty evidence). However, the effect estimate for cerebral palsy is compatible with both an important increase in risk with dexamethasone, and no difference between interventions (RR 2.50, 95% CI 0.97 to 6.39; 1 trial, 1223 children; low-certainty evidence). No trials followed the children beyond early childhood. Comparisons of different preparations and regimens of corticosteroids We found three studies that included a comparison of a different regimen or preparation of either dexamethasone or betamethasone (oral dexamethasone 32 mg versus intramuscular dexamethasone 24 mg; betamethasone acetate plus phosphate versus betamethasone phosphate; 12-hourly betamethasone versus 24-hourly betamethasone). The certainty of the evidence for the main outcomes from all three studies was very low, due to small sample size and risk of bias. Therefore, we were limited in our ability to draw conclusions from any of these studies. AUTHORS' CONCLUSIONS Overall, it remains unclear whether there are important differences between dexamethasone and betamethasone, or between one regimen and another. Most trials compared dexamethasone versus betamethasone. While for most infant and early childhood outcomes there may be no difference between these drugs, for several important outcomes for the mother, infant and child the evidence was inconclusive and did not rule out significant benefits or harms. The evidence on different antenatal corticosteroid regimens was sparse, and does not support the use of one particular corticosteroid regimen over another.
Collapse
Affiliation(s)
- Myfanwy J Williams
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
11
|
Taleghani AA, Bhriguvanshi A, Kamath-Rayne BD, Liu C, Narendran V. Timing of Antenatal Steroid Administration and Effects on the Newborn Infant: A Retrospective Study. Am J Perinatol 2022; 39:1065-1073. [PMID: 33285604 DOI: 10.1055/s-0040-1721495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The timing of antenatal steroids (ANS) on short- and long-term effects on newborn infants was evaluated. STUDY DESIGN This study was conducted at the University of Cincinnati Medical Center Level-III Neonatal Intensive Care Unit by reviewing the medical records of all women with history of ANS exposure from January 2015 to December 2018. We compared outcomes of newborns delivered within the ideal therapeutic window of 24 hours to 7 days (within window [WW]) after administration to those exposed and delivered outside the therapeutic window (outside window primary group [OWP]). Outcomes included anthropometrics, blood sugars, thyroid hormone profile, and neonatal morbidities. RESULTS A total of 669 patients were identified as having received at least two doses of ANS. Two-thirds of them delivered within the ideal therapeutic window. Significant differences were found in anthroprometrics including lower birth weight, shorter length, and smaller head circumferences in those born within the window compared with those outside the window. Derangements in glucose homeostasis requiring treatment and elevations of thyroid stimulating hormone (TSH) were seen in infants born outside the ideal therapeutic window compared with those born within the therapeutic window. No differences were found in neonatal morbidities including severe intraventricular hemorrhage (sIVH), necrotizing enterocolitis (NEC), need for resuscitation, exogenous surfactant administration, continuous positive airway pressure (CPAP), mechanical ventilation, bronchopulmonary dysplasia (BPD), or periventricular leukomalacia (PVL). After controlling for selected covariates, only birth length was different between the groups. CONCLUSION Effects on anthropometrics, glucose homeostasis, and thyroid function support the need to develop new or refine existing risk stratification systems to time the administration of antenatal steroids. Better targeting of women and fetuses may confer the benefits of systemic corticosteroids while mitigating the risks of adverse effects. KEY POINTS · The timing of antenatal steroids on short and long-term effects on newborn infants was evaluated.. · Differences were found in anthroprometrics, glucoses, and thyroid function.. · No differences were found in neonatal morbidities..
Collapse
Affiliation(s)
- Afshin A Taleghani
- Department of Pharmacy Services, University of Cincinnati Medical Center, Cincinnati, Ohio.,University of Cincinnati, James L. Winkle College of Pharmacy, Cincinnati, Ohio
| | | | | | - Chunyan Liu
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vivek Narendran
- Department of Pharmacy Services, University of Cincinnati Medical Center, Cincinnati, Ohio.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
12
|
Takahashi T, Takahashi Y, Fee EL, Saito M, Yaegashi N, Usuda H, Bridges JP, Milad MA, Furfaro L, Carter S, Schmidt AF, Newnham JP, Jobe AH, Kemp MW. Continuous but not pulsed low-dose fetal betamethasone exposures extend the durability of antenatal steroid therapy. Am J Physiol Lung Cell Mol Physiol 2022; 322:L784-L793. [PMID: 35380907 DOI: 10.1152/ajplung.00018.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antenatal steroid (ANS) therapy is standard care for women at imminent risk of preterm labor. Despite extensive and long-standing use, 40-50% of babies exposed antenatally to steroids do not derive benefit; remaining undelivered 7d or more after ANS treatment is associated with a lack of treatment benefit, and increased risk of harms. We used a pregnant sheep model to evaluate the impact of continuous vs. pulsed ANS treatments on fetal lung maturation at an extended, eight-day treatment to delivery interval. Continuous low-dose ANS treatments for more than 72 hours in duration improved fetal lung maturation at eight days after treatment initiation. If fetal ANS exposure was interrupted, the beneficial ANS effect was lost. Truncated treatments, including that simulating the current clinical treatment regimen, did not improve lung function. Variable fetal lung maturation was correlated to the amount of saturated phosphatidylcholine present in the lung fluid. These data demonstrate that: i) the durability of ANS therapy may be enhanced by employing an extended, low-dose treatment regimen with reducing total dose; and ii) interrupting the continuity of fetal exposure by allowing it to fall below a minimal threshold was associated with comparably poor functional maturation of the preterm ovine lung.
Collapse
Affiliation(s)
- Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuo Yaegashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - James P Bridges
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark A Milad
- Milad Pharmaceutical Consulting LLC, Plymouth, MI, United States
| | - Lucy Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Augusto F Schmidt
- Department of Neonatology, Pulmonary Biology and Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, United States.,Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan Hall Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Department of Neonatology, Pulmonary Biology and Pediatrics, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, United States
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
Hantoushzadeh S, Saleh M, Aghajanian S. Which corticosteroid is a better option for antenatal fetal lung maturation? Pediatr Res 2022; 92:915. [PMID: 35064232 PMCID: PMC8781712 DOI: 10.1038/s41390-022-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Sedigheh Hantoushzadeh
- grid.411705.60000 0001 0166 0922Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Maternal-Fetal Neonatal Research Center, Tehran University of Medical Sciences, Valiasr Hospital, Tehran, Iran
| | - Maasoumeh Saleh
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran.
| | - Sepehr Aghajanian
- grid.411705.60000 0001 0166 0922Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
14
|
Hantoushzadeh S, Saleh M, Maleki A. Effects of antenatal corticosteroids on maternal cardiovascular system, an underestimated notion in pregnant women. BJOG 2021; 129:834-835. [PMID: 34791782 DOI: 10.1111/1471-0528.16995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Sedigheh Hantoushzadeh
- Department of Obstetrics and Gynaecology, Maternal-Fetal Neonatal Research Centre, Tehran University of Medical Sciences, Valiasr Hospital, Tehran, Iran
| | - Maasoumeh Saleh
- Department of Obstetrics and Gynaecology, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Arezou Maleki
- Department of Obstetrics and Gynaecology, Maternal-Fetal Neonatal Research Centre, Tehran University of Medical Sciences, Valiasr Hospital, Tehran, Iran
| |
Collapse
|
15
|
Ivy JR, Carter RN, Zhao JF, Buckley C, Urquijo H, Rog-Zielinska EA, Panting E, Hrabalkova L, Nicholson C, Agnew EJ, Kemp MW, Morton NM, Stock SJ, Wyrwoll C, Ganley IG, Chapman KE. Glucocorticoids regulate mitochondrial fatty acid oxidation in fetal cardiomyocytes. J Physiol 2021; 599:4901-4924. [PMID: 34505639 DOI: 10.1113/jp281860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. KEY POINTS: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Roderic N Carter
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jin-Feng Zhao
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Charlotte Buckley
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Helena Urquijo
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Eva A Rog-Zielinska
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Emma Panting
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.,School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Lenka Hrabalkova
- The Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cara Nicholson
- The Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Emma J Agnew
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.,Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sarah J Stock
- The Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.,Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Western Australia, Australia.,The Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Caitlin Wyrwoll
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Ian G Ganley
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.,School of Human Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
16
|
Hieronymus K, Dorschner B, Schulze F, Vora NL, Parker JS, Winkler JL, Rösen-Wolff A, Winkler S. Validation of reference genes for whole blood gene expression analysis in cord blood of preterm and full-term neonates and peripheral blood of healthy adults. BMC Genomics 2021; 22:489. [PMID: 34193041 PMCID: PMC8244134 DOI: 10.1186/s12864-021-07801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality, but research efforts in neonatology are complicated due to the unavailability of large volume blood samples. Whole blood assays can be used to overcome this problem by performing both functional and gene expression studies using small amounts of blood. Gene expression studies using RT-qPCR estimate mRNA-levels of target genes normalized to reference genes. The goal of this study was to identify and validate stable reference genes applicable to cord blood samples obtained from developing neonates of different gestational age groups as well as to adult peripheral blood samples. Eight reference gene candidates (ACTB, B2M, GAPDH, GUSB, HPRT, PPIB, RPLP0, RPL13) were analyzed using the three published software algorithms Bestkeeper, GeNorm and NormFinder. Results A normalization factor consisting of ACTB and PPIB allows for comparative expression analyses of neonatal samples from different gestational age groups. Normalization factors consisting of GAPDH and PPIB or ACTB and GAPDH are suitable when samples from preterm and full-term neonates and adults are compared. However, all candidate reference genes except RPLP0 exhibited significant intergroup gene expression variance and a higher gene expression towards an older age which resulted in a small but statistically significant systematic bias. Systematic analysis of RNA-seq data revealed new reference gene candidates with potentially superior stability. Conclusions The current study identified suitable normalization factors and proposed the use of the additional single gene RPLP0 to avoid systematic bias. This combination will enable comparative analyses not only between neonates of different gestational ages, but also between neonates and adults, as it facilitates more detailed investigations of developmental gene expression changes. The use of software algorithms did not prevent unintended systematic bias. This generally highlights the need for careful validation of such results to prevent false interpretation of potential age-dependent changes in gene expression. To identify the most stable reference genes in the future, RNA-seq based global approaches are recommended. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07801-0.
Collapse
Affiliation(s)
- Kristin Hieronymus
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Benjamin Dorschner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer Lucia Winkler
- Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
17
|
Schuh MP, Alkhudairy L, Potter A, Potter SS, Chetal K, Thakkar K, Salomonis N, Kopan R. The Rhesus Macaque Serves As a Model for Human Lateral Branch Nephrogenesis. J Am Soc Nephrol 2021; 32:1097-1112. [PMID: 33789950 PMCID: PMC8259676 DOI: 10.1681/asn.2020101459] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Most nephrons are added in late gestation. Truncated extrauterine nephrogenesis in premature infants results in fewer nephrons and significantly increased risk for CKD in adulthood. To overcome the ethical and technical difficulties associated with studies of late-gestation human fetal kidney development, third-trimester rhesus macaques served as a model to understand lateral branch nephrogenesis (LBN) at the molecular level. METHODS Immunostaining and 3D rendering assessed morphology. Single-cell (sc) and single-nucleus (sn) RNA-Seq were performed on four cortically enriched fetal rhesus kidneys of 129-131 days gestational age (GA). An integrative bioinformatics strategy was applied across single-cell modalities, species, and time. RNAScope validation studies were performed on human archival tissue. RESULTS Third-trimester rhesus kidney undergoes human-like LBN. scRNA-Seq of 23,608 cells revealed 37 transcriptionally distinct cell populations, including naïve nephron progenitor cells (NPCs), with the prior noted marker genes CITED1, MEOX1, and EYA1 (c25). These same populations and markers were reflected in snRNA-Seq of 5972 nuclei. Late-gestation rhesus NPC markers resembled late-gestation murine NPC, whereas early second-trimester human NPC markers aligned to midgestation murine NPCs. New, age-specific rhesus NPCs (SHISA8) and ureteric buds (POU3F4 and TWIST) predicted markers were verified in late-gestation human archival samples. CONCLUSIONS Rhesus macaque is the first model of bona fide LBN, enabling molecular studies of late gestation, human-like nephrogenesis. These molecular findings support the hypothesis that aging nephron progenitors have a distinct molecular signature and align to their earlier human counterparts, with unique markers highlighting LBN-specific progenitor maturation.
Collapse
Affiliation(s)
- Meredith P. Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lyan Alkhudairy
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - S. Steven Potter
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
18
|
Ali H, Salama H, Robertson N, Olukade T, Al-Obaidly S, Al-Qubaisi M, Al Rifai H. Antenatal corticosteroids and short-term neonatal outcomes in term and near-term infants of diabetic mothers. Analysis of the Qatar PEARL-peristat registry. J Perinat Med 2021; 49:377-382. [PMID: 33098633 DOI: 10.1515/jpm-2020-0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES A recent discussion surrounding the extension of antenatal corticosteroid (ACS) use beyond 34 weeks of gestation did not include the subgroup of infants of diabetic mothers (IDM). We aimed to examine the association between ACS exposure and outcomes in neonates born at term and at near-term gestation in a large cohort of IDMs. METHODS We selected 13976 eligible near-term and term infants who were included in the PEARL-Peristat Perinatal Registry Study (PPS). We assessed the association of ACS exposure with neonatal outcomes in a multivariate regression model that controlled for diabetes mellitus (DM) and other perinatal variables. RESULTS The incidence of DM was 28% (3,895 of 13,976) in the cohort. Caesarean section was performed in one-third of the study population. The incidence of ACS exposure was low (1.8%) and typically occurred>2 weeks before delivery. The incidence rates of respiratory distress syndrome (RDS)/ transient tachypnoea of newborns (TTN), all-cause neonatal intensive care unit (NICU) admissions, NICU admissions for hypoglycaemia, and low 5-min Apgar scores were 3.5, 8.8, 1.3, and 0.1%, respectively. In a multivariate regression model, ACS was associated with a slight increase in NICU admissions (OR: 1.44; 95% CI: 1.04-2.03; p=0.028), but not with RDS/TTN. CONCLUSIONS Although the low exposure rate was a limitation, ACS administration did not reduce respiratory morbidity in near-term or term IDMs. It was independently associated with an increase in NICU admissions. Randomized controlled trials are required to assess the efficacy and safety of ACS administration in diabetic mothers at late gestation.
Collapse
Affiliation(s)
- Haytham Ali
- Sidra Medical and Research Center, Doha, Qatar
| | - Husam Salama
- Department of Neonatalogy, Hamad Medical Corp, Doha, Qatar
| | - Nicola Robertson
- Department of Obstetrics and Gynaeocology, University College Hospital, London, United Kingdom of Great Britain and Northern Ireland
| | - Tawa Olukade
- Department of Obstetrics and Gynecology, Hamad Medical Corp, Doha, Qatar
| | - Sawsan Al-Obaidly
- Department of Obstetrics and Gynecology, Hamad Medical Corp, Doha, Qatar
| | - Mai Al-Qubaisi
- Department of Obstetrics and Gynecology, Hamad Medical Corp, Doha, Qatar
| | - Hilal Al Rifai
- Department of Neonatology, Hamad Medical Corp, Doha, Qatar
| |
Collapse
|
19
|
Jobe AH, Kemp M, Schmidt A, Takahashi T, Newnham J, Milad M. Antenatal corticosteroids: a reappraisal of the drug formulation and dose. Pediatr Res 2021; 89:318-325. [PMID: 33177675 PMCID: PMC7892336 DOI: 10.1038/s41390-020-01249-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
We review the history of antenatal corticosteroid therapy (ACS) and present recent experimental data to demonstrate that this, one of the pillars of perinatal care, has been inadequately evaluated to minimize fetal exposure to these powerful medications. There have been concerns since 1972 that fetal exposures to ACS convey risk. However, this developmental modulator, with its multiple widespread biologic effects, has not been evaluated for drug choice, dose, or duration of treatment, despite over 30 randomized trials. The treatment used in the United States is two intramuscular doses of a mixture of 6 mg betamethasone phosphate (Beta P) and 6 mg betamethasone acetate (Beta Ac). To optimize outcomes with ACS, the goal should be to minimize fetal drug exposure. We have determined that the minimum exposure needed for fetal lung maturation in sheep, monkeys, and humans (based on published cord blood corticosteroid concentrations) is about 1 ng/ml for a 48-h continuous exposure, far lower than the concentration reached by the current dosing. Because the slowly released Beta Ac results in prolonged fetal exposure, a drug containing Beta Ac is not ideal for ACS use. IMPACT: Using sheep and monkey models, we have defined the minimum corticosteroid exposure for a fetal lung maturation. These results should generate new clinical trials of antenatal corticosteroids (ACS) at much lower fetal exposures to ACS, possibly given orally, with fewer risks for the fetus.
Collapse
Affiliation(s)
- Alan H. Jobe
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia ,grid.24827.3b0000 0001 2179 9593Perinatal Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH USA
| | - Matthew Kemp
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia ,grid.412757.20000 0004 0641 778XCentre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan ,grid.1025.60000 0004 0436 6763School of Veterinary and Life Sciences, Murdoch University, Perth, WA Australia
| | - Augusto Schmidt
- grid.26790.3a0000 0004 1936 8606Division of Neonatology, Department of Pediatrics, University of Miami, Miami, FL USA
| | - Tsukasa Takahashi
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia ,grid.412757.20000 0004 0641 778XCentre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John Newnham
- grid.1012.20000 0004 1936 7910Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA Australia
| | - Mark Milad
- Milad Pharmaceutical Consulting, Plymouth, MI USA
| |
Collapse
|
20
|
Schmidt AF, Kannan PS, Bridges J, Presicce P, Jackson CM, Miller LA, Kallapur SG, Chougnet CA, Jobe AH. Prenatal inflammation enhances antenatal corticosteroid-induced fetal lung maturation. JCI Insight 2020; 5:139452. [PMID: 33328385 PMCID: PMC7819743 DOI: 10.1172/jci.insight.139452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Respiratory complicˆations are the major cause of morbidity and mortality among preterm infants, which is partially prevented by the administration of antenatal corticosteroids (ACS). Most very preterm infants are exposed to chorioamnionitis, but short- and long-term effects of ACS treatment in this setting are not well defined. In low-resource settings, ACS increased neonatal mortality by perhaps increasing infection. We report that treatment with low-dose ACS in the setting of inflammation induced by intraamniotic lipopolysaccharide (LPS) in rhesus macaques improves lung compliance and increases surfactant production relative to either exposure alone. RNA sequencing shows that these changes are mediated by suppression of proliferation and induction of mesenchymal cellular death via TP53. The combined exposure results in a mature-like transcriptomic profile with inhibition of extracellular matrix development by suppression of collagen genes COL1A1, COL1A2, and COL3A1 and regulators of lung development FGF9 and FGF10. ACS and inflammation also suppressed signature genes associated with proliferative mesenchymal progenitors similar to the term gestation lung. Treatment with ACS in the setting of inflammation may result in early respiratory advantage to preterm infants, but this advantage may come at a risk of abnormal extracellular matrix development, which may be associated with increased risk of chronic lung disease.
Collapse
Affiliation(s)
- Augusto F. Schmidt
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paranthaman S. Kannan
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Bridges
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Pietro Presicce
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A. Miller
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UCD, Davis, California, USA
| | - Suhas G. Kallapur
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alan H. Jobe
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Variability in the efficacy of a standardized antenatal steroid treatment was independent of maternal or fetal plasma drug levels: evidence from a sheep model of pregnancy. Am J Obstet Gynecol 2020; 223:921.e1-921.e10. [PMID: 32445634 DOI: 10.1016/j.ajog.2020.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Administration of antenatal steroids is standard of care for women assessed to be at imminent risk of preterm delivery. There is a marked variation in antenatal steroid dosing strategy, selection for treatment criteria, and agent choice worldwide. This, combined with very limited optimization of antenatal steroid use per se, means that treatment efficacy is highly variable, and the rate of respiratory distress syndrome is decreased to perhaps as low as 40%. In some cases, antenatal steroid use is associated with limited benefit and potential harm. OBJECTIVE We hypothesized that individual differences in maternofetal steroid exposure would contribute to observed variability in antenatal steroid treatment efficacy. Using a chronically catheterized sheep model of pregnancy, we aimed to explore the relationship between maternofetal steroid exposure and antenatal steroid treatment efficacy as determined by functional lung maturation in preterm lambs undergoing ventilation. STUDY DESIGN Ewes carrying a single fetus underwent surgery to catheterize a fetal and maternal jugular vein at 119 days' gestation. Animals recovered for 24 hours before being randomized to either (1) a single maternal intramuscular injection of 2 mL saline (negative control group, n=10) or (2) a single maternal intramuscular injection of 0.25 mg/kg betamethasone phosphate plus acetate (antenatal steroid group, n=20). Serial maternal and fetal plasma samples were collected from each animal after 48 hours before fetuses were delivered and ventilated for 30 minutes. Total and free plasma betamethasone concentration was measured by mass spectrometry. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction. RESULTS One animal from the control group and one animal from the antenatal steroid group did not complete their treatment protocol and were removed from analyses. Animals in the antenatal steroid group were divided into a responder subgroup (n=12/19) and a nonresponder subgroup (n=7/19) using a cutoff of partial pressure of arterial CO2 at 30-minute ventilation within 2 standard deviations of the mean value from saline-treated negative control group animals. Although antenatal steroid improved fetal lung maturation in the undivided antenatal steroid group and in the responder subgroup both physiologically (blood gas- and ventilation-related data) and biochemically (messenger ribonucleic acid expression related to fetal lung maturation), these values did not improve relative to saline-treated control group animals in the antenatal steroid nonresponder subgroup. No differences in betamethasone distribution, clearance, or protein binding were identified between the antenatal steroid responder and nonresponder subgroups. CONCLUSION This study correlated individual maternofetal steroid exposures with preterm lung maturation as determined by pulmonary ventilation. Herein, approximately 40% of preterm lambs exposed to antenatal steroids had lung maturation that was not significantly different to saline-treated control group animals. These nonresponsive animals received maternal and fetal betamethasone exposures identical to animals that had a significant improvement in functional lung maturation. These data suggest that the efficacy of antenatal steroid therapy is not solely determined by maternofetal drug levels and that individual fetal or maternal factors may play a role in determining treatment outcomes in response to glucocorticoid signaling.
Collapse
|
22
|
Barnes-Davis ME, Williamson BJ, Merhar SL, Holland SK, Kadis DS. Extremely preterm children exhibit altered cortical thickness in language areas. Sci Rep 2020; 10:10824. [PMID: 32616747 PMCID: PMC7331674 DOI: 10.1038/s41598-020-67662-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
Children born extremely preterm (< 28 weeks gestation, EPT) are at increased risk for language and other neurocognitive deficits compared to term controls (TC). Prior studies have reported both increases and decreases in cortical thickness in EPT across the cerebrum. These studies have not formally normalized for intracranial volume (ICV), which is especially important as EPT children often have smaller stature, head size, and ICV. We previously reported increased interhemispheric functional and structural connectivity in a well-controlled group of school-aged EPT children with no known brain injury or neurological deficits. Functional and structural hyperconnectivity between left and right temporoparietal regions was positively related with language scores in EPT, which may be reflected in measures of cortical thickness. To characterize possible language network cortical thickness effects, 15 EPT children and 15 TC underwent standardized assessments of language and structural magnetic resonance imaging at 4 to 6 years of age. Images were subjected to volumetric and cortical thickness analyses using FreeSurfer. Whole-brain analyses of cortical thickness were conducted both with and without normalization by ICV. Non-normalized results showed thinner temporal cortex for EPT, while ICV-normalized results showed thicker cortical regions in the right temporal lobe (FDRq = 0.05). Only ICV-normalized results were significantly related to language scores, with right temporal cortical thickness being positively correlated with performance.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA. .,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
| | | | - Stephanie L Merhar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Scott K Holland
- Medpace Imaging Core Laboratory, Medpace Inc, Cincinnati, USA.,Department of Physics, University of Cincinnati, Cincinnati, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Bridges JP, Sudha P, Lipps D, Wagner A, Guo M, Du Y, Brown K, Filuta A, Kitzmiller J, Stockman C, Chen X, Weirauch MT, Jobe AH, Whitsett JA, Xu Y. Glucocorticoid regulates mesenchymal cell differentiation required for perinatal lung morphogenesis and function. Am J Physiol Lung Cell Mol Physiol 2020; 319:L239-L255. [PMID: 32460513 DOI: 10.1152/ajplung.00459.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While antenatal glucocorticoids are widely used to enhance lung function in preterm infants, cellular and molecular mechanisms by which glucocorticoid receptor (GR) signaling influences lung maturation remain poorly understood. Deletion of the glucocorticoid receptor gene (Nr3c1) from fetal pulmonary mesenchymal cells phenocopied defects caused by global Nr3c1 deletion, while lung epithelial- or endothelial-specific Nr3c1 deletion did not impair lung function at birth. We integrated genome-wide gene expression profiling, ATAC-seq, and single cell RNA-seq data in mice in which GR was deleted or activated to identify the cellular and molecular mechanisms by which glucocorticoids control prenatal lung maturation. GR enhanced differentiation of a newly defined proliferative mesenchymal progenitor cell (PMP) into matrix fibroblasts (MFBs), in part by directly activating extracellular matrix-associated target genes, including Fn1, Col16a4, and Eln and by modulating VEGF, JAK-STAT, and WNT signaling. Loss of mesenchymal GR signaling blocked fibroblast progenitor differentiation into mature MFBs, which in turn increased proliferation of SOX9+ alveolar epithelial progenitor cells and inhibited differentiation of mature alveolar type II (AT2) and AT1 cells. GR signaling controls genes required for differentiation of a subset of proliferative mesenchymal progenitors into matrix fibroblasts, in turn, regulating signals controlling AT2/AT1 progenitor cell proliferation and differentiation and identifying cells and processes by which glucocorticoid signaling regulates fetal lung maturation.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Parvathi Sudha
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dakota Lipps
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Andrew Wagner
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Minzhe Guo
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yina Du
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kari Brown
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alyssa Filuta
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph Kitzmiller
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Courtney Stockman
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alan H Jobe
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
24
|
Ninan K, Morfaw F, Murphy KE, Beyene J, McDonald SD. Neonatal and Maternal Outcomes of Lower Versus Standard Doses of Antenatal Corticosteroids for Women at Risk of Preterm Delivery: A Systematic Review of Randomized Controlled Trials. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 43:74-81. [PMID: 32660867 DOI: 10.1016/j.jogc.2020.02.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Our objective was to systematically review randomized and quasi-randomized trials on the neonatal and maternal effects of lower doses of antenatal corticosteroids (<24 mg of betamethasone or dexamethasone) compared with standard double doses of antenatal corticosteroids (24 mg of betamethasone or dexamethasone) administered to women at risk of preterm delivery. DATA SOURCES Medline, Embase, CINAHL, Web of Science, Cochrane CENTRAL, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and the Australia New Zealand Clinical Trials Registry were searched from inception to December 8, 2019. STUDY SELECTION A total of 2401 titles, abstracts, and protocols were independently screened by two reviewers, and subsequently 113 full-text articles were reviewed. DATA EXTRACTION Our primary outcomes were perinatal death and severe respiratory distress syndrome. DATA SYNTHESIS We identified one large in-progress trial comparing 11.4 mg versus 22.8 mg betamethasone and one published randomized controlled trial that compared a lower dose of dexamethasone (16 mg) to a standard dose of betamethasone (24 mg). The only relevant data from the published trial suggests minor changes in fetal heart rate variability between baseline and 24- to 48-hour follow-up between the two groups. Data for other outcomes had to be excluded due to the administration of weekly courses of antenatal corticosteroids. CONCLUSIONS Randomized trial data comparing lower doses of antenatal corticosteroids to standard double doses are scarce. Given concerns regarding current antenatal corticosteroids dosing patterns, there is an urgent need for randomized controlled trials examining lower versus standard double doses of antenatal corticosteroids.
Collapse
Affiliation(s)
- Kiran Ninan
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON
| | - Frederick Morfaw
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON
| | - Kellie E Murphy
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON
| | - Joseph Beyene
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON
| | - Sarah D McDonald
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, ON; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON; Department of Radiology, McMaster University, Hamilton, ON.
| |
Collapse
|
25
|
Jobe AH, Milad MA, Peppard T, Jusko WJ. Pharmacokinetics and Pharmacodynamics of Intramuscular and Oral Betamethasone and Dexamethasone in Reproductive Age Women in India. Clin Transl Sci 2020; 13:391-399. [PMID: 31808984 PMCID: PMC7070803 DOI: 10.1111/cts.12724] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023] Open
Abstract
High-dose betamethasone and dexamethasone are standard of care treatments for women at risk of preterm delivery to improve neonatal respiratory and mortality outcomes. The dose in current use has never been evaluated to minimize exposures while assuring efficacy. We report the pharmacokinetics and pharmacodynamics (PDs) of oral and intramuscular treatments with single 6 mg doses of dexamethasone phosphate, betamethasone phosphate, or a 1:1 mixture of betamethasone phosphate and betamethasone acetate in reproductive age South Asian women. Intramuscular or oral betamethasone has a terminal half-life of 11 hours, about twice as long as the 5.5 hours for oral and intramuscular dexamethasone. The 1:1 mixture of betamethasone phosphate and betamethasone acetate shows an immediate release of betamethasone followed by a slow release where plasma betamethasone can be measured out to 14 days after the single dose administration, likely from a depo formed at the injection site by the acetate. PD responses were: increased glucose, suppressed cortisol, increased neutrophils, and suppressed basophils, CD3CD4 and CD3CD8 lymphocytes. PD responses were comparable for betamethasone and dexamethasone, but with longer times to return to baseline for betamethasone. The 1:1 mixture of betamethasone phosphate and betamethasone acetate caused much longer adrenal suppression because of the slow release. These results will guide the development of better treatment strategies to minimize fetal and maternal drug exposures for women at risk of preterm delivery.
Collapse
Affiliation(s)
- Alan H. Jobe
- Division of Pulmonary BiologyCincinnati Children's Hospital Medical CenterUniversity of CincinnatiCincinnatiOhioUSA
| | - Mark A. Milad
- Milad Pharmaceutical Consulting LLCPlymouthMichiganUSA
| | | | - William J. Jusko
- State University of New YorkSchool of Pharmacy and Pharmaceutical SciencesUniversity of BuffaloBuffaloNew YorkUSA
| |
Collapse
|
26
|
Jobe AH. Antenatal Corticosteroids-A Concern for Lifelong Outcomes. J Pediatr 2020; 217:184-188. [PMID: 31606149 DOI: 10.1016/j.jpeds.2019.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH.
| |
Collapse
|
27
|
Kemp MW, Saito M, Schmidt AF, Usuda H, Watanabe S, Sato S, Hanita T, Kumagai Y, Takahashi T, Musk GC, Furfaro L, Stinson L, Fee EL, Eddershaw PJ, Payne MS, Smallwood K, Bridges J, Newnham JP, Jobe AH. The duration of fetal antenatal steroid exposure determines the durability of preterm ovine lung maturation. Am J Obstet Gynecol 2020; 222:183.e1-183.e9. [PMID: 31494126 DOI: 10.1016/j.ajog.2019.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Antenatal corticosteroids (ACS) are the standard of care for maturing the fetal lung and improving outcomes for preterm infants. Antenatal corticosteroid dosing remains nonoptimized, and there is little understanding of how different treatment-to-delivery intervals may affect treatment efficacy. The durability of a lung maturational response is important because the majority of women treated with antenatal corticosteroids do not deliver within the widely accepted 1- to 7-day window of treatment efficacy. OBJECTIVE We used a sheep model to test the duration of fetal exposures for efficacy at delivery intervals from 1 to 10 days. MATERIALS AND METHODS For infusion studies, ewes with single fetuses were randomized to receive an intravenous bolus and maintenance infusion of betamethasone phosphate to target 1-4 ng/mL fetal plasma betamethasone for 36 hours, with delivery at 2, 4 ,or 7 days posttreatment or sterile saline solution as control. Animals receiving the clinical treatment were randomised to receive either a single injection of 0.25 mg/kg with a 1:1 mixture of betamethasone phosphate + betamethasone acetate with delivery at either 1 or 7 days posttreatment, or 2 treatments of 0.25 mg/kg betamethasone phosphate + betamethasone acetate spaced at 24 hours (giving ∼48 hours of fetal steroid exposure) with delivery at 2, 5, 7, or 10 days posttreatment. Negative control animals were treated with saline solution. All lambs were delivered at 121 ± 3 days gestational age and ventilated for 30 minutes to assess lung function. RESULTS Preterm lambs delivered at 1 or 2 days post-antenatal corticosteroid treatment had significant improvements in lung maturation for both intravenous and single-dose intramuscular treatments. After 2 days, the efficacy of 36-hour betamethasone phosphate infusions was lost. The single dose of 1:1 betamethasone phosphate + betamethasone acetate also was ineffective at 7 days. In contrast, animals treated with 2 doses had significant improvements in lung maturation at 2, 5, and 7 days, with treatment efficacy reduced by 10 days. CONCLUSION In preterm lambs, the durability of antenatal corticosteroids treatment depends on the duration of fetal exposure and is independent of the intravenous or intramuscular maternal route of administration. For acute 24- to 48-hour posttreatment deliveries, a 24-hour fetal antenatal corticosteroids exposure was sufficient for lung maturation. A fetal exposure duration of at least 48 hours was necessary to maintain long-term treatment durability. A single-dose ACS treatment should be sufficient for women delivering within <48 hours of antenatal corticosteroids treatment.
Collapse
Affiliation(s)
- Matthew W Kemp
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | | | - Haruo Usuda
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Shimpei Watanabe
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Takushi Hanita
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gabrielle C Musk
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lucy Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa Stinson
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Kiara Smallwood
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - James Bridges
- Cincinnati Children's Hospital Medical Centre, Cincinnati, OH
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Alan H Jobe
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia; Cincinnati Children's Hospital Medical Centre, Cincinnati, OH
| |
Collapse
|
28
|
Kumagai Y, Kemp MW, Yaegashi N, Saito M. Contemporary Challenges and Developments: Antenatal Corticosteroid Therapy. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2019. [DOI: 10.1007/s13669-019-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
30
|
Schmidt AF, Kemp MW, Milad M, Miller LA, Bridges JP, Clarke MW, Kannan PS, Jobe AH. Oral dosing for antenatal corticosteroids in the Rhesus macaque. PLoS One 2019; 14:e0222817. [PMID: 31536601 PMCID: PMC6752828 DOI: 10.1371/journal.pone.0222817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/06/2019] [Indexed: 02/04/2023] Open
Abstract
Antenatal corticosteroids (ACS) are standard of care for women at risk of preterm delivery, although choice of drug, dose or route have not been systematically evaluated. Further, ACS are infrequently used in low resource environments where most of the mortality from prematurity occurs. We report proof of principle experiments to test betamethasone-phosphate (Beta-P) or dexamethasone-phosphate (Dex-P) given orally in comparison to the clinical treatment with the intramuscular combination drug beta-phosphate plus beta-acetate in a Rhesus Macaque model. First, we performed pharmacokinetic studies in non-pregnant monkeys to compare blood levels of the steroids using oral dosing with Beta-P, Dex-P and an effective maternal intramuscular dose of the beta-acetate component of the clinical treatment. We then evaluated maternal and fetal blood steroid levels with limited fetal sampling under ultrasound guidance in pregnant macaques. We found that oral Beta is more slowly cleared from plasma than oral Dex. The blood levels of both drugs were lower in maternal plasma of pregnant than in non-pregnant macaques. Using the pharmacokinetic data, we treated groups of 6–8 pregnant monkeys with oral Beta-P, oral Dex-P, or the maternal intramuscular clinical treatment and saline controls and measured pressure-volume curves to assess corticosteroid effects on lung maturation at 5d. Oral Beta-P improved the pressure-volume curves similarly to the clinical treatment. Oral Dex-P gave more variable and nonsignificant responses. We then compared gene expression in the fetal lung, liver and hippocampus between oral Beta-P and the clinical treatment by RNA-sequencing. The transcriptomes were largely similar with small gene expression differences in the lung and liver, and no differences in the hippocampus between the groups. As proof of principle, ACS therapy can be effective using inexpensive and widely available oral drugs. Clinical dosing strategies must carefully consider the pharmacokinetics of oral Beta-P or Dex-P to minimize fetal exposure while achieving the desired treatment responses.
Collapse
Affiliation(s)
- Augusto F. Schmidt
- Department of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Mark Milad
- Milad Pharmaceutical consulting LLC, Plymouth, Michigan, United States of America
| | - Lisa A. Miller
- California National Primate Research Center, University of California, Davis, Davis, California, United States of America
| | - James P. Bridges
- Department of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Michael W. Clarke
- Metabolomics Australia, Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Paranthaman S. Kannan
- Department of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Alan H. Jobe
- Department of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- University of Western Australia, Perth, Australia
- * E-mail:
| |
Collapse
|