1
|
Umatani C. Neuromodulation in the fish brain for reproductive success. Gen Comp Endocrinol 2024:114658. [PMID: 39701428 DOI: 10.1016/j.ygcen.2024.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In most teleosts, appropriate sexual behaviors and sexual maturation are essential for reproductive success. Most fish display their unique behavioral patterns for mating. These behaviors are thought to be regulated in the brain by sex steroid hormones since sexual behaviors are displayed only by sexually mature fish. In addition, recent studies have reported that neuropeptides, which are peptides released from neurons and modulate neural activities via their specific receptors in the brain, also play a key role in regulating sexual behavior. On the other hand, not only sexual behavior but also feeding behavior is important for reproductive function since sexual maturation requires sufficient nutrition. Especially feeding-related peptides, a type of neuropeptides, are thought to modulate feeding behavior. Thus, it is conceivable that neuropeptides are crucial modulators in the brain for reproductive success. This review summarizes recent advances in the knowledge of the neuromodulatory systems involved in sexual and feeding behaviors by neuropeptides and gonadal hormones.
Collapse
Affiliation(s)
- Chie Umatani
- Division of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Ding M, Han L, Miao J, Wang X, Wang L, Pan L. Estrogen receptor knockdown suggests its role in gonadal development regulation in Manila clam Ruditapes philippinarum. J Steroid Biochem Mol Biol 2024; 243:106594. [PMID: 39084493 DOI: 10.1016/j.jsbmb.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The estrogen receptor (ER), a ligand-dependent transcription factor, is critical for vertebrate reproduction. However, its role in bivalves is not well understood, with ongoing debates regarding its function in regulating reproduction similarly to vertebrates. To investigate ER's function, we conducted a 21-day RNA interference experiment focusing on its role in gonadal development in bivalves. Histological analyses revealed that ER inhibition significantly suppressed ovarian development in females and, conversely, promoted gonadal development in males. Additionally, levels of 17β-estrogen (E2) were markedly reduced in the gonads of both sexes following ER suppression. Transcriptomic analysis from RNA-seq of testes and ovaries after ER interference showed changes in the expression of key genes such as Vtg, CYP17, 3β-HSD, and 17β-HSD. These genes are involved in the estrogen signaling pathway and steroid hormone biosynthesis. Furthermore, ER suppression significantly affected the expression of genes linked to gametogenesis and the reproductive cycle. Our findings highlight ER's crucial, yet complex and sex-specific roles in gonadal development in bivalves, emphasizing the need for further detailed studies.
Collapse
Affiliation(s)
- Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Qinhuangdao Marine Environmental Monitoring Central Station of SOA, Qinhuangdao 066002, PR China
| | - Lianxue Han
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Xuening Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
3
|
Su M, Zhong Y, Chen Y, Xiang J, Ye Z, Liao S, Ye S, Zhang J. Assessment of environmental exposure to betamethasone on the reproductive function of female Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116651. [PMID: 38959790 DOI: 10.1016/j.ecoenv.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhiyin Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shujia Liao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Chen Y, Zhang Y, Jiang Q, Tang C, Wang Q, He C, Zuo Z, Yang C. Effects of whole life-cycle exposure to carbaryl on reproduction of female marine medaka (Oryzias melastigma) and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174789. [PMID: 39047820 DOI: 10.1016/j.scitotenv.2024.174789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Carbaryl is widely used as a highly effective insecticide which harms the marine environment. This study aimed to assess the reproductive toxicity of chronic carbaryl exposure on female marine medaka and their female offspring. After a 180-day exposure from embryonic period to adulthood, females exhibited reduced attraction to males, decreased ovulation, increased gonadosomatic index and a higher proportion of mature and atretic follicles. These reproductive toxic effects of carbaryl may stem from changes in hormone levels and transcription levels of key genes along the HPG axis. Furthermore, maternal carbaryl exposure had detrimental effects on the offspring. F1 females showed the reproductive disorders similar to those observed in F0 females. The significant changes in the transcription levels of DNA methyltransferase and demethylase genes in the F0 and F1 generations of ovaries indicate changes in their DNA methylation levels. The changes in DNA methylation levels in F1 female marine medaka may lead to changes in the expression of certain reproductive key genes, such as an increase in the transcription level of cyp19a, which may be the reason for F1 reproductive toxicity. These findings indicate that maternal exposure may induce severe generational toxicity through alterations in DNA methylation levels. This study assesses the negative impacts of whole life-cycle carbaryl exposure on the reproductive and developmental processes of female marine medaka and its female offspring, while offering data to support the evaluation of the ecological risk posed by carbaryl in marine ecosystems.
Collapse
Affiliation(s)
- Yuxin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yuxuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qun Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
5
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. Biol Sex Differ 2024; 15:58. [PMID: 39044232 PMCID: PMC11267845 DOI: 10.1186/s13293-024-00632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. METHODS This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. RESULTS We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. CONCLUSIONS This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Abigail R Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, 61820, USA.
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
6
|
Ai N, Han CR, Zhao H, Cheng SY, Ge W. Disruption of Thyroid Hormone Receptor Thrab Leads to Female Infertility in Zebrafish. Endocrinology 2024; 165:bqae037. [PMID: 38527850 PMCID: PMC11491821 DOI: 10.1210/endocr/bqae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
Thyroid hormones (THs) T4 and T3 are vital for development, growth, and metabolism. Thyroid dysfunction can also cause problems in fertility, suggesting involvement of THs in reproduction. In zebrafish, there exist 2 forms of TH receptor alpha gene (thraa and thrab). Disruption of these genes by CRISPR/Cas9 showed no reproductive irregularities in the thraa mutant; however, inactivation of the thrab gene resulted in female infertility. Although young female mutants (thrabm/m) showed normal ovarian development and folliculogenesis before sexual maturation, they failed to release eggs during oviposition after sexual maturation. This spawning failure was due to oviductal blockage at the genital papilla. The obstruction of the oviduct subsequently caused an accumulation of the eggs in the ovary, resulting in severe ovarian hypertrophy, abdominal distention, and disruption of folliculogenesis. Gene expression analysis showed expression of both TH receptors and estrogen receptors in the genital papilla, suggesting a direct TH action and potential interactions between thyroid and estrogen signaling pathways in controlling genital papilla development and function. In addition to their actions in the reproductive tracts, THs may also have direct effects in the ovary, as suggested by follicle atresia and cessation of folliculogenesis in the heterozygous mutant (thrab+/m), which was normal in all aspects of female reproduction in young and sexually mature fish but exhibited premature ovarian failure in aged females. In summary, this study provides substantial evidence for roles of THs in controlling the development and functions of both reproductive tract and ovary.
Collapse
Affiliation(s)
- Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
7
|
Kayo D, Kimura S, Yamazaki T, Naruse K, Takeuchi H, Ansai S. Spatio-temporal control of targeted gene expression in combination with CRISPR/Cas and Tet-On systems in Medaka. Genesis 2024; 62:e23519. [PMID: 37226848 DOI: 10.1002/dvg.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Spatial and temporal control of transgene expression is a powerful approach to understand gene functions in specific cells and tissues. The Tet-On system is a robust tool for controlling transgene expression spatially and temporally; however, few studies have examined whether this system can be applied to postembryonic stages of Medaka (Oryzias latipes) or other fishes. Here, we first improved a basal promoter sequence on the donor vector for a nonhomologous end joining (NHEJ)-based knock-in (KI) system. Next, using transgenic Medaka for establishing the Tet-On system by KI, we demonstrated that doxycycline administration for four or more days by feeding can be a stable and efficient method to achieve expression of the transduced reporter gene in adult fish. From these analyses, we propose an optimized approach for a spatio-temporal gene-expression system in the adult stage of Medaka and other small fishes.
Collapse
Affiliation(s)
- Daichi Kayo
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Sayaka Kimura
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Touko Yamazaki
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
8
|
Parker CG, Gruenhagen GW, Hegarty BE, Histed AR, Streelman JT, Rhodes JS, Johnson ZV. Adult sex change leads to extensive forebrain reorganization in clownfish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577753. [PMID: 38352560 PMCID: PMC10862741 DOI: 10.1101/2024.01.29.577753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of neurosexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
Collapse
Affiliation(s)
- Coltan G. Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - George W. Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brianna E. Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Abigail R. Histed
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Jeffrey T. Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Justin S. Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, Illinois, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Zachary V. Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Shaw K, Lu C, Liu X, Trudeau VL. Arginine vasopressin injection rescues delayed oviposition in cyp19a1b-/- mutant female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1308675. [PMID: 38144569 PMCID: PMC10739748 DOI: 10.3389/fendo.2023.1308675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
In zebrafish, estrogens produced in the ovaries via Cyp19a1a activity are required for both sexual differentiation of the ovary during early development as well as maintenance of the ovarian state during adulthood. The importance of Cyp19a1b that is highly expressed in the brain for female reproduction is still under study. We previously reported that female cyp19a1b -/- mutant zebrafish have significantly lower brain estradiol levels and impaired spawning behavior characterized by an increased latency to oviposition during dyadic sexual behavior encounters. In the current study, we provide evidence that the delayed oviposition in female cyp19a1b -/- mutants is linked to impaired arginine vasopressin (Avp) signaling. Droplet digital PCR experiments revealed that levels of the estrogen receptors, avp, and oxytocin (oxt) are lower in the hypothalamus of mutant females compared to wildtype fish. We then used acute intraperitoneal injections of Avp and Oxt, along with mixtures of their respective receptor antagonists, to determine that Avp can uniquely rescue the delayed oviposition in female cyp19a1b -/- mutants. Using immunohistochemistry, we demonstrated that Cyp19a1b-expressing radial glial cell (RGC) fibers surround and are in contact with Avp-immunopositive neurons in the preoptic areas of the brain. This could provide the neuroanatomical proximity for RGC-derived estrogens to diffuse to and activate estrogen receptors and regulate avp expression levels. Together these findings identify a positive link between Cyp19a1b and Avp for female zebrafish sexual behavior. They also suggest that the female cyp19a1b -/- mutant behavioral phenotype is likely a consequence of impaired processing of Avp-dependent social cues important for mate identification and assessment.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
11
|
Fleming T, Tachizawa M, Nishiike Y, Koiwa A, Homan Y, Okubo K. Estrogen-dependent expression and function of secretogranin 2a in female-specific peptidergic neurons. PNAS NEXUS 2023; 2:pgad413. [PMID: 38111823 PMCID: PMC10726998 DOI: 10.1093/pnasnexus/pgad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Secretogranin 2 (Scg2) is a member of the secretogranin/chromogranin family of proteins that is involved in neuropeptide and hormone packaging to secretory granules and serves as a precursor for several secreted pleiotropic peptides. A recent study in zebrafish showed that the teleost Scg2 orthologs, scg2a and scg2b, play an important role in mating behavior, but its modes of action and regulatory mechanisms remain unclear. In this study, we identify scg2a in another teleost species, medaka, by transcriptomic analysis as a gene that is expressed in an ovarian secretion-dependent manner in a group of neurons relevant to female sexual receptivity, termed FeSP neurons. Investigation of scg2a expression in the FeSP neurons of estrogen receptor (Esr)-deficient medaka revealed that it is dependent on estrogen signaling through Esr2b, the major determinant of female-typical mating behavior. Generation and characterization of scg2a-deficient medaka showed no overt changes in secretory granule packaging in FeSP neurons. This, along with the observation that Scg2a and neuropeptide B, a major neuropeptide produced by FeSP neurons, colocalize in a majority of secretory granules, suggests that Scg2a mainly serves as a precursor for secreted peptides that act in conjunction with neuropeptide B. Further, scg2a showed sexually biased expression in several brain nuclei implicated in mating behavior. However, we found no significant impact of scg2a deficiency on the performance of mating behavior in either sex. Collectively, our results indicate that, although perhaps not essential for mating behavior, scg2a acts in an estrogen/Esr2b signaling-dependent manner in neurons that are relevant to female sexual receptivity.
Collapse
Affiliation(s)
- Thomas Fleming
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masaya Tachizawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ai Koiwa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuki Homan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Mosavi S, Rostami A, Pooladi M, ShojaeiBaghini M, Poudineh S, Poudineh M, Behzadi E. Icariin, A Novel Promising Complementary Therapeutic Strategy in the Management of Female Infertility: A Literature Review:. Galen Med J 2023; 12:e2528. [PMID: 37706169 PMCID: PMC10497255 DOI: 10.31661/gmj.v12i.2528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 09/15/2023] Open
Abstract
The prevalence of pre-menopausal female infertility is increasing considerably due to various causes such as environmental pollutants, increased administration of chemotherapeutics and radiation exposure, microbial infections, and genetic/epigenetic alterations. However, the current therapeutical strategies remain unfavorite as the disadvantages are strongly challenging. Icariin (ICI) is a phytoestrogen that exerts some promising properties in order to alleviate female infertility. Therefore, the current literature review aimed to evaluate the conducted studies regarding the beneficial impacts of ICI on the female reproductive system and female fecundity. The findings of the present study revealed that ICI is able to modulate the levels of reproductive hormones as it causes a significant decrement in the levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) while increasing the levels of estrogen and progesterone. Furthermore, the administration of ICI results in a dramatic alteration in the expression of sex steroids’ receptors, particularly in female reproductive tissues. In addition, preserving ovarian follicular reserve, improving the ovarian and uterine histoarchitecture, elongating the estrous cycle duration, and eventually advancing the female fecundity are other major effects of ICI on the female reproductive system. Despite these desired beneficial properties, the current knowledge appears to be insufficient, hence further investigations, particularly on humans, are encouraged. To the best of our knowledge, this review provides a comprehensive information regarding the beneficial effects of Icariin on female infertility for the firs time.
Collapse
Affiliation(s)
- Sima Mosavi
- Department of Obstetrics and Gynecology, School of medicine, Urmia university of medical sciences, Urmia, Iran
| | - Amirabbas Rostami
- Department of Internal Medicine, Faculty of General Medicine, Yerevan State Medical University aer Mkhitar Heratsi, Yerevan, Armenia
| | - Marzieh Pooladi
- Department of Anatomical Sciences, School Of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Poudineh
- School of Medicine, Mashhad Azad University, Mashhad, Iran
| | | | - Esmaeil Behzadi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Oka Y. Neural Control of Sexual Behavior in Fish. Zoolog Sci 2023; 40:128-140. [PMID: 37042692 DOI: 10.2108/zs220108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 03/17/2023]
Abstract
Many vertebrate species show breeding periods and exhibit series of characteristic species-specific sexual behaviors only during the breeding period. Here, secretion of gonadal sex hormones from the mature gonads has been considered to facilitate sexual behaviors. Thus, the sexual behavior has long been considered to be regulated by neural and hormonal mechanisms. In this review, we discuss recent progress in the study of neural control mechanisms of sexual behavior with a focus on studies using fish, which have often been the favorite animals used by many researchers who study instinctive animal behaviors. We first discuss control mechanisms of sexual behaviors by sex steroids in relation to the anatomical studies of sex steroid-concentrating neurons in various vertebrate brains, which are abundantly distributed in evolutionarily conserved areas such as preoptic area (POA) and anterior hypothalamus. We then focus on another brain area called the ventral telencephalic area, which has also been suggested to contain sex steroid-concentrating neurons and has been implicated in the control of sexual behaviors, especially in teleosts. We also discuss control of sex-specific behaviors and sexual preference influenced by estrogenic signals or by olfactory/pheromonal signals. Finally, we briefly summarize research on the modulatory control of motivation for sexual behaviors by a group of peptidergic neurons called terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which are known to be especially developed in fishes among various vertebrate species.
Collapse
Affiliation(s)
- Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Royan MR, Kayo D, Weltzien FA, Fontaine R. Sexually Dimorphic Regulation of Gonadotrope Cell Hyperplasia in Medaka Pituitary via Mitosis and Transdifferentiation. Endocrinology 2023; 164:7040530. [PMID: 36791137 PMCID: PMC9994597 DOI: 10.1210/endocr/bqad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The 2 pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), regulate the reproductive function in all vertebrates. While many studies have investigated the regulation of gonadotropin production and release by sex steroid feedback, its role on the regulation of gonadotrope cell number remains unclear. Using medaka as a model and an optimized protocol to restore physiological sex steroids levels following gonadectomy, we show that gonadal sex steroids not only decrease fshb transcript levels, but also Fsh cell number in both sexes. We then investigated the origin of Fsh cell hyperplasia induced by gonadectomy. In both sexes, bromodeoxyuridine incubation shows that this is achieved via Fsh cell mitosis. In situ hybridization reveals that new Fsh cells also originate from transdifferentiating Tsh cells in females, but not in males. Both phenomena are inhibited by sex steroid supplementation via feeding. In males (but not females), gonadectomy (without recovery with sex steroid supplementation) also reduces sox2 transcript levels and Sox2-immunopositive population size, suggesting that Sox2 progenitors may be recruited to produce new Fsh cells. Opposite to Fsh cells, gonadectomy decreases lhb levels in both sexes, and levels are not restored by sex steroid supplementation. In addition, the regulation of Lh cell number also seems to be sex dependent. Removal of gonadal sex steroids stimulates Lh cell mitosis in male (like Fsh cells) but not in females. To conclude, our study provides the first evidence on sexually dimorphic mechanisms used in the fish pituitary to remodel gonadotrope populations in response to sex steroids.
Collapse
Affiliation(s)
- Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Daichi Kayo
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Japan
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Romain Fontaine
- Correspondence: Romain Fontaine, PhD, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Oluf Thesens Vei 22, 1432 Ås, Norway.
| |
Collapse
|
15
|
Guan X, Liu D, Zhou H, Dai C, Wang T, Fang Y, Jia Y, Li K. Melatonin improves pregnancy outcomes in adenomyosis mice by restoring endometrial receptivity via NF-κB/apoptosis signaling. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1317. [PMID: 36660689 PMCID: PMC9843420 DOI: 10.21037/atm-22-5493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Background Adenomyosis is a common gynecological disease which seriously impacts female fertility and is increasing in incidence in women of childbearing age. Melatonin has beneficial effects on reproductive processes. However, its impact on the uterine receptivity of patients with adenomyosis remains unclear. In this study, we investigated the effect of melatonin on uterine receptivity and pregnancy outcomes in an adenomyosis mouse model. Methods We induced an adenomyosis mouse model by oral administration of tamoxifen to neonatal female CD-1 mice, then conducted a melatonin injection experiment to investigate its effect on implantation rates (n=6 each). In a second experiment, the endometrium in the implantation state was collected to identify the local action of melatonin on adenomyosis mice (n=6 each), and in a parallel study, the pregnancy rate and number of offspring were recorded (n=6 each). Results The number of implantation sites in the adenomyosis model mice was much less than in control group (5.0±2.10 vs. 13.3±2.38, P<0.0001), and 30 mg/kg of melatonin significantly improved this (9.0±0.63 vs. 5.0±2.10, P=0.002). Additionally, melatonin administration ameliorated the impaired endometrial receptivity [leukemia inhibitory factor (LIF), integrin β3, homeobox A10 (HoxA10), and HoxA11], and improved the endometrium development [endometrial area (EA) and endometrial thickness index (ETI)] and pregnancy outcomes. Furthermore, the expression of implantation-related genes (Era, Pra, and P53), inflammatory factors [tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)], oxidative stress associated genes (Gpx1 and Sod1), and apoptosis-related genes or proteins (Bax, Bcl-2, caspase-3, and cleaved caspase-3) was detected. The results showed higher local levels of reactive oxygen species (ROS) and inflammatory cytokines in the uterus of an adenomyosis model mice induced endometrial cells apoptosis and tissue damage, changed the uterine microenvironment, affected embryo implantation, and reduced the fertility of adenomyosis. Interestingly, melatonin significantly mitigated adenomyosis-induced changes by inhibiting the nuclear factor kappa B (NF-κB) signaling pathway, increasing the vascular endothelial growth factor (VEGF) expression, decreasing the endometrial cells apoptosis, and improving pregnancy outcomes. Conclusions Melatonin treatment restored impaired uterine development and endometrial receptivity of adenomyosis mice by improving the endometrial microenvironment via the NF-κB/apoptosis signaling pathway. Our results provided new insight into melatonin-based therapy for adenomyosis-related infertility.
Collapse
Affiliation(s)
- Xiaohong Guan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Liu
- Center for Assisted Reproduction Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong Zhou
- Center for Assisted Reproduction Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chaoqun Dai
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Fang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanping Jia
- Center for Assisted Reproduction Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kunming Li
- Center for Assisted Reproduction Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Effects of phytoestrogens on reproductive organ health. Arch Pharm Res 2022; 45:849-864. [DOI: 10.1007/s12272-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
17
|
Zhang S, Fu Z, Xu Y, Zhao X, Sun M, Feng X. The masculinization steroid milieu caused by fluorene-9-bisphenol disrupts sex-typical courtship behavior in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114174. [PMID: 36228360 DOI: 10.1016/j.ecoenv.2022.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In vertebrates, the behavior of congenital sex differences between males and females is highly dependent on steroid signals and hormonal milieu. The presence of endocrine disrupting chemicals (EDCs) in the environment generally plays a similar role to sex hormones, so its interference with aquatic organism population stability can not be ignored and is worth studying. Fluorene-9-bisphenol (BHPF) has been clarified as an endocrine disruptor on organisms by several studies but its mechanism in perturbation of courtship behavior of female zebrafish is not clear. Here, we proposed an automated multi-zebrafish tracking method quantifying the courtship process and reported that zebrafish females exposed to BHPF, are not receptive to males but rather court females, and lose normal ovarian function with an altered sex steroid milieu. Our results showed that BHPF damaged 17β-estradiol synthesis by down-regulation of sox3 and cyp19a1a, linking apoptosis with ovary development and female fecundity. The down-regulated expression of estrogen signaling through an estrogen receptor, esr2b, caused the induction of masculinization of female courtship behavior and sexual preference in zebrafish females after BHPF treatment. This process might be mediated by inhibiting the transcription of a neuropeptide B (npb) in the brain. Our study reveals that the estrogen signaling pathway may play an important role in classical courtship behavior and sexual preference of zebrafish. This study provided evidence that anti-estrogenic chemical exposure caused adverse effects on the regulation of the brain-gonad-estrogen axis of aquatic organisms, which should be of concern and highlighted the importance of controlling environmental contamination.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Yixin Xu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Matsuo M, Matsuyama M, Kobayashi T, Kanda S, Ansai S, Kawakami T, Hosokawa E, Daido Y, Kusakabe TG, Naruse K, Fukamachi S. Retinal Cone Mosaic in sws1-Mutant Medaka ( Oryzias latipes), A Teleost. Invest Ophthalmol Vis Sci 2022; 63:21. [DOI: 10.1167/iovs.63.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Megumi Matsuo
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoshi Ansai
- Laboratory of Bioresources/NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Taichi Kawakami
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Erika Hosokawa
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Yutaka Daido
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Takehiro G. Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources/NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
19
|
Zhou Y, Zhu K, Wang Q, Chen M, He C, Yang C, Zuo Z. Aryl hydrocarbon receptor agonist diuron and its metabolites cause reproductive disorders in male marine medaka (Oryzias melastigma). CHEMOSPHERE 2022; 305:135388. [PMID: 35718029 DOI: 10.1016/j.chemosphere.2022.135388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Diuron, a widely used phenylurea herbicide, has been frequently detected in marine organism and seawater all over the world. But the understanding of potential damage of diuron on reproduction in marine fish is currently not enough. Herein, marine medaka (Oryzias melastigma) were continuously exposed to 0, 5, 50, 500, and 5000 ng/L diuron from embryo (0 dpf) to adult (180 dpf) stage. The results suggested that diuron had an adverse influence on male reproduction for marine medaka, including decreased gonado somatic index, histological changes of testes, decreased mobility of sperm, and reduced fecundity through disrupting the balance of sex hormone and genes expression related to hypothalamus-pituitary-gonadal-liver (HPGL) axis. The reduced fecundity was reflected in abnormal sexual behaviors, further inhibited growth and development of F1 embryo and larvae. Moreover, the proportion of diuron metabolites (DCPMU and DCPU) was increased in fish, but the proportion of diuron was decreased with the increasing of exposure concentration. Diuron, DCPMU, and DCPU was identified as aryl hydrocarbon receptor agonist (AhR) agonist using in silico and in vivo models. DCPMU and DCPU induced the gene expression of AhR signaling and metabolizing enzymes (such as cyp1a1) in the livers. A great deal of major metabolites affected various organs related to HPGL axis of male marine medaka and led to serious reproductive disorders. Consequently, it reveals that long-term exposure to environmentally relevant concentrations of diuron and even AhR agonist pesticides pose a potential ecological risk for marine fish.
Collapse
Affiliation(s)
- Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Meng Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
20
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
21
|
Wang L, Cen S, Shi X, Zhang H, Wu L, Tian X, Ma W, Li X, Ma X. Molecular characterization and functional analysis of Esr1 and Esr2 in gonads of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2022; 222:106147. [PMID: 35714971 DOI: 10.1016/j.jsbmb.2022.106147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022]
Abstract
Estrogens and their receptors play crucial roles in regulating the gonadal development of vertebrates. To clarify the roles of estrogen receptors in the gonadal development of turtles, estrogen receptors (Esr1 and Esr2) in Chinese soft-shelled turtle (Pelodiscus sinensis) were identified and characterized, and their function in gonads was investigated by intraperitoneal injection of agonist propylpyrazoletriol (PPT) and diarylpropionitrile (DPN), and antagonist ICI 182,780 (ICI). Ps-Esr1 encoded a 588 amino acid protein and Ps-Esr2 encoded a 556 amino acid protein. The two receptors contained classic domains, including the DNA-binding domain and ligand-binding domain, and amino acid sequences showed high homology with other turtles. Ps-Esr1 showed the highest expression in the testis, followed by the ovary and liver. However, Ps-Esr2 showed the highest expression in the ovary, followed by the brain and testis. Ps-Esr1 expression showed an up-regulation trend in gonadal differentiation. Histomorphometric analysis showed that the number of follicles increased in female juvenile turtles treated with DPN or PPT. In addition, Tsc2, GnRH, and Fshβ were up-regulated in ovaries of turtles treated with agonists, while Sycp3 and Picalm were up-regulated in testes of turtles treated with agonists. Treatment with the antagonist decreased the number of sperm in matured turtles. Stra8, Scyp3, Dmc1, Picalm, Evl, Boule, and Cdk1 were up-regulated in testis after antagonist treatment. The results indicated that Esr1 might play an important role in gonadal differentiation, and the two estrogen receptors might be involved in the spermatogenesis of the turtle. These results could provide a reference for further research on the function of the estrogen signal in male vertebrates.
Collapse
Affiliation(s)
- Luming Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shuangshuang Cen
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Haoran Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
22
|
Xiao H, Xu Z, Zhu X, Wang J, Zheng Q, Zhang Q, Xu C, Tao W, Wang D. Cortisol safeguards oogenesis by promoting follicular cell survival. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1563-1577. [PMID: 35167018 DOI: 10.1007/s11427-021-2051-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The role of glucocorticoids in oogenesis remains to be elucidated. cyp11c1 encodes the key enzyme involved in the synthesis of cortisol, the major glucocorticoid in teleosts. In our previous study, we mutated cyp11c1 in tilapia and analyzed its role in spermatogenesis. In this study, we analyzed its role in oogenesis. cyp11c1+/- XX tilapia showed normal ovarian morphology but poor egg quality, as indicated by the mortality of embryos before 3 d post fertilization, which could be partially rescued by the supplement of exogenous cortisol to the mother fish. Transcriptome analyses revealed reduced expression of maternal genes in the eggs of the cyp11c1+/- XX fish. The cyp11c1-/- females showed impaired vitellogenesis and arrested oogenesis due to significantly decreased serum cortisol. Further analyses revealed decreased serum E2 level and expression of amh, an important regulator of follicular cell development, and increased follicular cell apoptosis in the ovaries of cyp11c1-/- XX fish, which could be rescued by supplement of either exogenous cortisol or E2. Luciferase assays revealed a direct regulation of cortisol and E2 on amh transcription via GRs or ESRs. Taken together, our results demonstrate that cortisol safeguards oogenesis by promoting follicular cell survival probably via Amh signaling.
Collapse
Affiliation(s)
- Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhen Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jingrong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Kayo D, Kanda S, Okubo K. Allogeneic testes transplanted into partially castrated adult medaka (Oryzias latipes) can produce donor-derived offspring by natural mating over a prolonged period. ZOOLOGICAL LETTERS 2022; 8:10. [PMID: 35879745 PMCID: PMC9310406 DOI: 10.1186/s40851-022-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Generally, successful testis transplantation has been considered to require immune suppression in the recipient to avoid rejection of the transplanted tissue. In the present study, we demonstrate in medaka that allogeneic adult testicular tissue will engraft in adult recipients immediately after partial castration without the use of immunosuppressive drugs. The allografted testes are retained in the recipient's body for at least 3 months and are able to produce viable sperm that yield offspring after natural mating. Some recipients showed a high frequency (over 60%) of offspring derived from spermatozoa produced by the transplanted testicular tissue. Histological analyses showed that allografted testicular tissues included both germ cells and somatic cells that had become established within an immunocompetent recipient testis. The relative simplicity of this testis transplantation approach will benefit investigations of the basic processes of reproductive immunology and will improve the technique of gonadal tissue transplantation.
Collapse
Affiliation(s)
- Daichi Kayo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Present address: Laboratory of Molecular Ethology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
24
|
Yamaguchi A, Tsunematsu T, Motojima Y, Toriyama K, Horinouchi A, Ishii Y, Murata H, Yoshikawa S, Nyuji M, Shimizu A. Pituitary luteinizing hormone synthesis starts in aromatase (cyp19a1b)-positive cells expressing esr1 and esr2b at the onset of puberty in Takifugu rubripes (fugu). Cell Tissue Res 2022; 389:259-287. [PMID: 35552517 DOI: 10.1007/s00441-022-03629-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Unlike mammals, teleost fish have high aromatase activity (AA) in the pituitary. However, the cells responsible for oestradiol synthesis and the local physiological roles of this hormone remain unclear. Hence, we investigated the effects of age and development on steroidogenic activity, mRNA expression, and cyp19a1b localization in the pituitary gland of the Japanese pufferfish Takifugu rubripes. Under aquaculture conditions, AA was highest after puberty, and the mRNA expression levels of cyp19a1b and the oestrogen receptors esr1 and 2b and the level of serum testosterone (T) were significantly increased after puberty compared with the other developmental stages in male and female pufferfish. Immunohistochemistry using multiple antibodies and in situ hybridization analysis revealed that Cyp19a1b colocalizes with luteinizing hormone (LH) in pituitary cells. Furthermore, Esr1 was localized in the nuclei of all hormone-producing cells, whereas Esr2b was localized only in the nuclei of Cyp19- and LH-positive cells. The administration of an aromatizable androgen (T) or oestrogen (E2) to reproductively inactive females induced LH synthesis in vivo. We prepared spheroids from pituitary cells to investigate the role of local E2 in LH synthesis in vitro. Immunohistochemical analysis of spheroids showed that T-induced LH synthesis could be blocked by an aromatase inhibitor and/or an ER antagonist but not an AR antagonist. Taken together, these findings suggest that LH synthesis is initiated in cyp19a1b-, esr1-, and esr2b-expressing cells at the onset of puberty under the control of steroidal feedback, and both feedback and local oestrogen may be involved in controlling LH synthesis in these cells.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Tomoko Tsunematsu
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshihiro Motojima
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kanako Toriyama
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Asami Horinouchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukari Ishii
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hanezu Murata
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sota Yoshikawa
- Nagasaki Prefectural Institute of Fisheries, 1551-4, Taira, Nagasaki-shi, Nagasaki, 851-2213, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Present address: Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki, 851-2213, Japan
| | - Akio Shimizu
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| |
Collapse
|
25
|
Park CG, Ryu CS, Sung B, Manz A, Kong H, Kim YJ. Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106105. [PMID: 35151072 DOI: 10.1016/j.aquatox.2022.106105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, extensive efforts have focused on developing in vitro platforms mimicking fish livers to better understand the acute or chronic effects of toxicants on lower aquatic vertebrates. Fish liver cell lines have emerged as a promising culture system for these in vitro platforms because they complement the currently limited in vitro tools that mostly consist of mammalian cell lines and adhere to the 3Rs: replacement, reduction, and refinement of living animal tests. However, monolayer cell lines have lower transcriptional and physiological responses upon exposure to toxic chemicals than freshly isolated primary cells. To overcome this challenge, we utilized a three-dimensional (3D) spheroid-based in vitro platform, in which hepatocyte cells had self-organized into spheroid forms via E-cadherin bonds. This platform exhibited augmented transcriptomic and phenotypic regulation of liver cells in comparison to monolayer cells. We examined the organoid platform using the zebrafish liver (ZFL) cell line as a model system. ZFL cells spontaneously clustered into 3D spheroids with long-term viability by optimizing cell seeding density on a non-adherent substrate. Interestingly, 3D ZFL spheroids treated with estrogenic chemicals were activated to synthesize a higher level of vitellogenin (Vtg) than monolayer cells. Whole-transcriptome sequencing analysis confirmed that 3D ZFL spheroids had greater transcriptional regulation of genes related to reproductive toxicological response and liver functions, such as the urea cycle, estrogen receptors, and vitellogenin, compared to monolayer cells. These results may contribute to the engineering of novel 3D in vitro platforms for screening harmful chemicals and improving understanding of the underlying liver toxicity mechanisms at the molecular and cellular levels.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Baeckkyoung Sung
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea
| | - Andreas Manz
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Ikegami K, Kajihara S, Umatani C, Nakajo M, Kanda S, Oka Y. Estrogen upregulates the firing activity of hypothalamic gonadotropin-releasing hormone (GnRH1) neurons in the evening in female medaka. J Neuroendocrinol 2022; 34:e13101. [PMID: 35132714 DOI: 10.1111/jne.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
The reproductive function of vertebrates is regulated by the hypothalamic-pituitary-gonadal axis. In sexually mature females, gonadotropin-releasing hormone (GnRH) neurons in the preoptic area (POA) are assumed to be responsible for a cyclic large increase in GnRH release, the GnRH surge, triggering a luteinizing hormone (LH) surge, which leads to ovulation. Precise temporal regulation of the preovulatory GnRH/LH surge is important for successful reproduction because ovulation should occur after follicular development. The time course of the circulating level of estrogen is correlated with the ovulatory cycle throughout vertebrates. However, the neural mechanisms underlying estrogen-induced preovulatory GnRH surge after folliculogenesis still remain unclear, especially in non-mammals. Here, we used a versatile non-mammalian model medaka for the analysis of the involvement of estrogen in the regulation of POA-GnRH (GnRH1) neurons. Electrophysiological analysis using a whole brain-pituitary in vitro preparation, which maintains the hypophysiotropic function of GnRH1 neurons intact, revealed that 17β-estradiol (E2 ) administration recovers the ovariectomy-induced lowered GnRH1 neuronal activity in the evening, indicating the importance of E2 for upregulation of GnRH1 neuronal activity. The importance of E2 was also confirmed by the fact that GnRH1 neuronal activity was low in short-day photoperiod-conditioned females (low E2 model). However, E2 failed to upregulate the firing activity of GnRH1 neurons in the morning, suggesting the involvement of additional time-of-day signal(s) for triggering GnRH/LH surges at an appropriate timing. We also provide morphological evidence for the localization of estrogen receptor subtypes in GnRH1 neurons. In conclusion, we propose a working hypothesis in which both estrogenic and time-of-day signals act in concert to timely upregulate the firing activity of GnRH1 neurons that trigger the GnRH surge at an appropriate timing in a female-specific manner. This neuroendocrinological mechanism is suggested to be responsible for the generation of ovulatory cycles in female teleosts in general.
Collapse
Affiliation(s)
- Kana Ikegami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sho Kajihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikoto Nakajo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Jiang DN, Peng YX, Liu XY, Mustapha UF, Huang YQ, Shi HJ, Li MH, Li GL, Wang DS. Homozygous Mutation of gsdf Causes Infertility in Female Nile Tilapia ( Oreochromis niloticus). Front Endocrinol (Lausanne) 2022; 13:813320. [PMID: 35242110 PMCID: PMC8886716 DOI: 10.3389/fendo.2022.813320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gonadal somatic cell-derived factor (Gsdf) is a member of the TGF-β superfamily, which exists mainly in fishes. Homozygous gsdf mutations in Japanese medaka and zebrafish resulted in infertile females, and the reasons for their infertility remain unknown. This study presents functional studies of Gsdf in ovary development using CRISPR/Cas9 in Nile tilapia (Oreochromis niloticus). The XX wild type (WT) female fish regularly reproduced from 12 months after hatching (mah), while the XX gsdf-/- female fish never reproduced and were infertile. Histological observation showed that at 24 mah, number of phase IV oocyte in the XX gsdf-/- female fish was significantly lower than that of the WT fish, although their gonadosomatic index (GSI) was similar. However, the GSI of the XX gsdf-/- female at 6 mah was higher than that of the WT. The mutated ovaries were hyperplastic with more phase I oocytes. Transcriptome analysis identified 344 and 51 up- and down-regulated genes in mutants compared with the WT ovaries at 6 mah. Some TGF-β signaling genes that are critical for ovary development in fish were differentially expressed. Genes such as amh and amhr2 were up-regulated, while inhbb and acvr2a were down-regulated in mutant ovaries. The cyp19a1a, the key gene for estrogen synthesis, was not differentially expressed. Moreover, the serum 17β-estradiol (E2) concentrations between XX gsdf-/- and WT were similar at 6 and 24 mah. Results from real-time PCR and immunofluorescence experiments were similar and validated the transcriptome data. Furthermore, Yeast-two-hybrid assays showed that Gsdf interacts with TGF-β type II receptors (Amhr2 and Bmpr2a). Altogether, these results suggest that Gsdf functions together with TGF-β signaling pathway to control ovary development and fertility. This study contributes to knowledge on the function of Gsdf in fish oogenesis.
Collapse
Affiliation(s)
- Dong-Neng Jiang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - You-Xing Peng
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Xing-Yong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Umar Farouk Mustapha
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yuan-Qing Huang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Hong-Juan Shi
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Ming-Hui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guang-Li Li
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Umatani C, Yoshida N, Yamamoto E, Akazome Y, Mori Y, Kanda S, Okubo K, Oka Y. Co-existing Neuropeptide FF and Gonadotropin-Releasing Hormone 3 Coordinately Modulate Male Sexual Behavior. Endocrinology 2022; 163:6486464. [PMID: 34962983 DOI: 10.1210/endocr/bqab261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Nagisa Yoshida
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Eri Yamamoto
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yasutaka Mori
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Kaitetzidou E, Gilfillan GD, Antonopoulou E, Sarropoulou E. Sex-biased dynamics of three-spined stickleback (Gasterosteus aculeatus) gene expression patterns. Genomics 2021; 114:266-277. [PMID: 34933072 DOI: 10.1016/j.ygeno.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
The study of the differences between sexes presents an excellent model to unravel how phenotypic variation is achieved from a similar genetic background. Sticklebacks are of particular interest since evidence of a heteromorphic chromosome pair has not always been detected. The present study investigated sex-biased mRNA and small non-coding RNA (sncRNA) expression patterns in the brain, adipose tissues, and gonads of the three-spined stickleback. The sncRNA analysis indicated that regulatory functions occurred mainly in the gonads. Alleged miRNA-mRNA interactions were established and a mapping bias of differential expressed transcripts towards chromosome 19 was observed. Key players previously shown to control sex determination and differentiation in other fish species but also genes like gapdh were among the transcripts identified. This is the first report in the three-spined stickleback demonstrating tissue-specific expression comprising both mRNA and sncRNA between sexes, emphasizing the importance of mRNA-miRNA interactions as well as new presumed genes not yet identified to have gender-specific roles.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece.
| |
Collapse
|
30
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
31
|
Hosoya O, Chung M, Ansai S, Takeuchi H, Miyaji M. A modified Tet-ON system minimizing leaky expression for cell-type specific gene induction in medaka fish. Dev Growth Differ 2021; 63:397-405. [PMID: 34375435 DOI: 10.1111/dgd.12743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
The Tet-ON system is an important molecular tool for temporally and spatially-controlled inducible gene expression. Here, we developed a Tet-ON system to induce transgene expression specifically in the rod photoreceptors of medaka fish. Our modified reverse tetracycline-controlled transcriptional transactivator (rtTAm) with 5 amino acid substitutions dramatically improved the leakiness of the transgene in medaka fish. We generated a transgenic line carrying a self-reporting vector with the rtTAm gene driven by the Xenopus rhodopsin promoter and a tetracycline response element (TRE) followed by the green fluorescent protein (GFP) gene. We demonstrated that GFP fluorescence was restricted to the rod photoreceptors in the presence of doxycycline in larval fish (9 days post-fertilization). The GFP fluorescence intensity was enhanced with longer durations of doxycycline treatment up to 72 h and in a dose-dependent manner (5-45 μg/ml). These findings demonstrate that the Tet-ON system using rtTAm allows for spatiotemporal control of transgene expression, at least in the rod photoreceptors, in medaka fish.
Collapse
Affiliation(s)
- Osamu Hosoya
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Myung Chung
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Lu J, Fang W, Huang J, Li S. The application of genome editing technology in fish. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:326-346. [PMID: 37073287 PMCID: PMC10077250 DOI: 10.1007/s42995-021-00091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
33
|
Nishiike Y, Miyazoe D, Togawa R, Yokoyama K, Nakasone K, Miyata M, Kikuchi Y, Kamei Y, Todo T, Ishikawa-Fujiwara T, Ohno K, Usami T, Nagahama Y, Okubo K. Estrogen receptor 2b is the major determinant of sex-typical mating behavior and sexual preference in medaka. Curr Biol 2021; 31:1699-1710.e6. [PMID: 33639108 DOI: 10.1016/j.cub.2021.01.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023]
Abstract
Male and female animals typically display innate sex-specific mating behaviors, which, in vertebrates, are highly dependent on sex steroid signaling. While estradiol-17β (E2) signaling through estrogen receptor 2 (ESR2) serves to defeminize male mating behavior in rodents, the available evidence suggests that E2 signaling is not required in teleosts for either male or female mating behavior. Here, we report that female medaka deficient for Esr2b, a teleost ortholog of ESR2, are not receptive to males but rather court females, despite retaining normal ovarian function with an unaltered sex steroid milieu. Thus, contrary to both prevailing views in rodents and teleosts, E2/Esr2b signaling in the brain plays a decisive role in feminization and demasculinization of female mating behavior and sexual preference in medaka. Further behavioral testing showed that mutual antagonism between E2/Esr2b signaling and androgen receptor-mediated androgen signaling in adulthood induces and actively maintains sex-typical mating behaviors and preference. Our results also revealed that the female-biased sexual dimorphism in esr2b expression in the telencephalic and preoptic nuclei implicated in mating behavior can be reversed between males and females by altering the sex steroid milieu in adulthood, likely via mechanisms involving direct E2-induced transcriptional activation. In addition, Npba, a neuropeptide mediating female sexual receptivity, was found to act downstream of E2/Esr2b signaling in these brain nuclei. Collectively, these functional and regulatory mechanisms of E2/Esr2b signaling presumably underpin the neural mechanism for induction, maintenance, and reversal of sex-typical mating behaviors and sexual preference in teleosts, at least in medaka.
Collapse
Affiliation(s)
- Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Rie Togawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Keiko Yokoyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kiyoshi Nakasone
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Masayoshi Miyata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Todo
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaoru Ohno
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Usami
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yoshitaka Nagahama
- Division of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
34
|
Zheng Z, Liu M, Meng F, Zhang W, Zhang L. Differential distribution and potential regulatory roles of estrogen receptor 2a and 2b in the pituitary of ricefield eel Monopterus albus. Gen Comp Endocrinol 2020; 298:113554. [PMID: 32687932 DOI: 10.1016/j.ygcen.2020.113554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Estrogens play important regulatory roles in the pituitary of vertebrates. Two forms of estrogen receptor 2 (Esr2), namely Esr2a and Esr2b, are identified in teleosts, but their differential roles remain to be fully elucidated. In the present study, expression and potential functional roles of Esr2a and Esr2b were characterized in ricefield eels. esr2a and esr2b mRNA were broadly distributed in tissues, with high levels observed in the brain, pituitary, and gonads. In order to examine the cellular localization of Esr2a and Esr2b in the pituitary, specific antisera against ricefield eel Esr2a and Esr2b were generated, respectively. Interestingly, immunohistochemistry and Western blot analysis revealed that Esr2a and Esr2b were differentially distributed in the pituitary, with the former localized to the adenohypophysis while the latter to the neurohypophysis. Dual fluorescent immunostaining showed that immunoreactive Esr2a was present in Gh and Prl cells, but not in Lh and Fsh cells. Estradiol (E2) stimulated lhb and prl gene expression in dispersed pituitary cells of intersexual ricefield eels, but had no effects on gh, fshb, and gnrhr2 gene expression and Gh release. Results of the present study are helpful for further understanding the roles and mechanisms of estrogen signals in the pituitary.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Minqi Liu
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Feiyan Meng
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
35
|
Bhandari RK, Wang X, Saal FSV, Tillitt DE. Transcriptome analysis of testis reveals the effects of developmental exposure to bisphenol a or 17α-ethinylestradiol in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105553. [PMID: 32622090 PMCID: PMC7387123 DOI: 10.1016/j.aquatox.2020.105553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 06/04/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can induce abnormalities in organisms via alteration of molecular pathways and subsequent disruption of endocrine functions. Bisphenol A (BPA) and 17α-ethinylestradiol (EE2) are ubiquitous EDCs in the environment. Many aquatic organisms, including fish, are often exposed to varying concentrations of BPA and EE2 throughout their lifespan. Both BPA and EE2 can activate estrogenic signaling pathways and cause adverse effects on reproduction via alteration of pathways associated with steroidogenesis. However, transcriptional pathways that are affected by chronic exposure to these two ubiquitous environmental estrogens during embryonic, larval, and juvenile stages are not clearly understood. In the present study, we examined transcriptional alterations in the testis of medaka fish (Oryzias latipes) chronically exposed to a low concentration of BPA or EE2. Medaka were exposed to BPA (10 μg/L) or EE2 (0.01 μg/L) from 8 h post-fertilization (as embryos) to adulthood 50 days post fertilization (dpf), and transcriptional alterations in the testis were examined by RNA sequencing (RNA-seq). Transcriptomic profiling revealed 651 differentially expressed genes (DEGs) between BPA-exposed and control testes, while 1475 DEGs were found between EE2-exposed and control testes. Gene ontology (GO) analysis showed a significant enrichment of "intracellular receptor signaling pathway", "response to steroid hormone" and "hormone-mediated signaling pathway" in the BPA-induced DEGs, and of "cilium organization", "microtubule-based process" and "organelle assembly" in the EE2-induced DEGs. Pathway analysis showed significant enrichment of "integrin signaling pathway" in both treatment groups, and of "cadherin signaling pathway", "Alzheimer disease-presenilin pathway" in EE2-induced DEGs. Single nucleotide polymorphism (SNP) and insertion-deletion (Indel) analysis found no significant differences in mutation rates with either BPA or EE2 treatments. Taken together, global gene expression differences in testes of medaka during early stages of gametogenesis were responsive to chronic BPA and EE2 exposure.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biology Department, University of North Carolina Greensboro, Greensboro, NC 27412, United States; Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States; United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, United States.
| | - Xuegeng Wang
- Biology Department, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Donald E Tillitt
- United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, United States
| |
Collapse
|
36
|
Maruska KP, Butler JM, Anselmo C, Tandukar G. Distribution of aromatase in the brain of the African cichlid fish
Astatotilapia burtoni
: Aromatase expression, but not estrogen receptors, varies with female reproductive‐state. J Comp Neurol 2020; 528:2499-2522. [DOI: 10.1002/cne.24908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Chase Anselmo
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Ganga Tandukar
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Biology Program University of Louisiana at Monroe Monroe Louisiana USA
| |
Collapse
|
37
|
Fontaine R, Ager-Wick E, Hodne K, Weltzien FA. Plasticity in medaka gonadotropes via cell proliferation and phenotypic conversion. J Endocrinol 2020; 245:21-37. [PMID: 31977313 PMCID: PMC7040568 DOI: 10.1530/joe-19-0405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 01/30/2023]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhβ, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Eirill Ager-Wick
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjetil Hodne
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Correspondence should be addressed to F-A Weltzien:
| |
Collapse
|
38
|
Maeng S, Yoon SW, Kim EJ, Nam YK, Sohn YC. Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena. Dev Reprod 2020; 23:333-344. [PMID: 31993539 PMCID: PMC6985291 DOI: 10.12717/dr.2019.23.4.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
Abstract
In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in
mediation of estrogenic signaling pathways. In the present study, we report the
cDNA cloning, expression analysis, and transcriptional activity of ERβ1
subtype from medaka Oryzias dancena. The deduced O.
dancena ERβ1 (odERβ1; 519 amino acids) contained six
characteristic A/B to E/F domains with very short activation function 2 region
(called AF2). A phylogenetic analysis indicated that odERβ1 was highly
conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed
that the odERβ1 transcripts were widely distributed in
the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle.
Further, the relatively higher odERβ1 expressions in the
ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused
odERβ1 expression vector was transfected into HEK293 cells, an
immunoreactivity for odERβ1 was mainly detected in the nucleus part.
Finally, an estrogen responsive element driven luciferase reporter assays
demonstrated that the transcriptional activity of odERβ1 significantly
increased by estradiol-17β (E2) in a dose dependent manner
(p<0.05). However, fold-activation of odERβ1
in the presence of E2 was markedly weak, when it compared with those of
O. latipes ERβ1. Taken together, these data suggest
that odERβ1 represents a functional variant of teleost ERβ subtype
and provides a basic tool allowing future studies examining the function of F
domain of ERβ1 subtype and expanding our knowledge of ERβ
evolution.
Collapse
Affiliation(s)
- Sejung Maeng
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sung Woo Yoon
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Eun Jeong Kim
- Dept. of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea
| | - Yoon Kwon Nam
- Dept. of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea
| | - Young Chang Sohn
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
39
|
Kayo D, Oka Y, Kanda S. Examination of methods for manipulating serum 17β-Estradiol (E2) levels by analysis of blood E2 concentration in medaka (Oryzias latipes). Gen Comp Endocrinol 2020; 285:113272. [PMID: 31525376 DOI: 10.1016/j.ygcen.2019.113272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/05/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
It is widely known that reproduction in vertebrates is regulated by the hypothalamus-pituitary-gonadal (HPG) axis. Although the mechanism of the HPG axis has been well documented in mammals, it cannot be always applied to that in non-mammalian species, which is a great disadvantage in understanding reproduction of vertebrates in general. Recently, transgenic and genome editing tools have rapidly been developed in small teleosts, and thus these species are expected to be useful for the understanding of general mechanism of reproduction in vertebrates. One of the major sex steroid hormones in female vertebrates 17β-Estradiol (E2) plays crucial roles in the formation of sexual dimorphism and the HPG axis regulation. In spite of the importance of E2 in reproductive regulation, only a few studies have analyzed blood E2 levels in small teleosts that are easily amenable to genetic manipulation. In the present study, we analyzed blood E2 concentration in medaka and demonstrated that female medaka show diurnal changes in blood E2 concentration. We then examined the best method for manipulating the circulating E2. First, we found that ovariectomy (OVX) drastically removes endogenous E2 in a day in female medaka. We examined different methods for E2 administration and revealed that feeding administration of E2-containing food is the most convenient and physiological method for mimicking the diurnal E2 changes of female medaka. On the other hand, the medaka exposed to E2 containing water showed high blood E2 concentrations, which exceeds those of environmental water, suggesting that E2 may cause bioconcentration.
Collapse
Affiliation(s)
- Daichi Kayo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Present address: Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|