1
|
Thakur S, Rohilla J, Sharma S, Singh R, Kamboj R, Kaur V. Photosensitizing CNTs by organotin(IV) compounds: generation of reactive oxygen species and degradation of amoxicillin. Dalton Trans 2024; 53:18283-18295. [PMID: 39446127 DOI: 10.1039/d4dt02490g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work is based on probing photosensitization in carbon nanotubes (CNTs) by organotin(IV) compounds to fabricate a hybrid material with excellent photocatalytic activity and generation of reactive oxygen species. Two organotin(IV) compounds (compounds 1 and 2) were synthesized and characterized by spectroscopic and spectrometric studies, elemental analysis and single crystal X-ray diffraction followed by their impregnation inside the CNTs. The so obtained hybrid materials (1@CNT and 2@CNT) were characterized by FTIR, TGA, FE-SEM, HR-TEM, PXRD and XPS analysis, and assessed for photosensitization and generation of reactive oxygen species. The enhanced photocatalytic activity of the fabricated materials in comparison to bare CNTs is attributed to the reduction of band gap and suppression of rapid recombination rates due to the encapsulation of photogenerated electrons. The generation of reactive species in photocatalyst 1@CNT was validated by the degradation of Amoxicillin (AMX) under optimized conditions for catalytic dosage, H2O2 concentration, response time and pH. The material 1@CNT could degrade ca. 83% of AMX by generating free radicals (˙OH and ˙O2-) under visible light irradiation at pH 6 as investigated by UV-visible spectroscopy and supported by EPR and DFT studies. Furthermore, the structural stability and sustained photocatalytic properties of 1@CNT over four cycles highlight its potential as an eco-friendly solution for degrading environmental toxins.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| | - Jyoti Rohilla
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| | - Sahil Sharma
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Raman Kamboj
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
2
|
Ali MA, Maafa IM. Photodegradation of Amoxicillin in Aqueous Systems: A Review. Int J Mol Sci 2024; 25:9575. [PMID: 39273523 PMCID: PMC11395481 DOI: 10.3390/ijms25179575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other related pollutants using several methods that include adsorption, photolysis, photocatalytic degradation, photoelectrocatalytic degradation, and electrochemical conversion. AMX can be eliminated efficiently from the environment using photodegradation, either by photolysis or a photocatalytic process. Several types of semiconductor NMs have been used to eliminate AMX and other related drugs present in wastewater. This review spans the photodegradation studies conducted during the years 2018-2024 to degrade and eliminate AMX in aquatic systems. Several studies have been reported to eliminate AMX from different water streams. These studies are categorized into TiO2-containing and non-TiO2-based catalysts for better comparison. A section on photolysis is also included, showing the use of UV alone or with H2O2 or PS without using any nanomaterial. A tabulated summary of both types of catalysts showing the catalysts, reaction conditions, and degradation efficiency is presented. Researchers have used a variety of reaction conditions that include radiation types (UV, solar, and visible), pH of the solution, concentration of AMX, number of nanomaterials, presence of other additives and activators such as H2O2 as oxidant, and the influence of different salts like NaCl and CaCl2 on the photodegradation efficiency. TiO2 was the best nanomaterial found that achieved the highest degradation of AMX in ultraviolet irradiation. TiO2 doped with other nanomaterials showed very good performance under visible light. WO3 was also used by several investigators and found quite effective for AMX degradation. Other metal oxides used for AMX elimination were derived from molybdenum, zinc, manganese, copper, cerium, silver, etc. Some researchers have used UV and/or visible irradiation or sunlight, without using solid catalysts, in the presence of oxidants such as H2O2. A summarized description of earlier published reviews is also presented.
Collapse
Affiliation(s)
- Mohammad Ashraf Ali
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
4
|
Zulfiqar N, Nadeem R, Musaimi OAI. Photocatalytic Degradation of Antibiotics via Exploitation of a Magnetic Nanocomposite: A Green Nanotechnology Approach toward Drug-Contaminated Wastewater Reclamation. ACS OMEGA 2024; 9:7986-8004. [PMID: 38405456 PMCID: PMC10882661 DOI: 10.1021/acsomega.3c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
In the quest for eco-conscious innovations, this research was designed for the sustainable synthesis of magnetite (Fe3O4) nanoparticles, using ferric chloride hexahydrate salt as a precursor and extract of Eucalyptus globulus leaves as both a reducing and capping agent, which are innovatively applied as a photocatalyst for the photocatalytic degradation of antibiotics "ciprofloxacin and amoxicillin". Sugar cane bagasse biomass, sugar cane bagasse pyrolyzed biochar, and magnetite/sugar cane bagasse biochar nanocomposite were also synthesized via environmentally friendly organized approaches. The optimum conditions for the degradation of ciprofloxacin and amoxicillin were found to be pH 6 for ciprofloxacin and 5 for amoxicillin, dosage of the photocatalyst (0.12 g), concentration (100 mg/L), and irradiation time (240 min). The maximum efficiencies of percentage degradation for ciprofloxacin and amoxicillin were found to be (73.51%) > (63.73%) > (54.57%) and (74.07%) > (61.55%) > (50.66%) for magnetic nanocomposites, biochar, and magnetic nanoparticles, respectively. All catalysts demonstrated favorable performance; however, the "magnetite/SCB biochar" nanocomposite exhibited the most promising results among the various catalysts employed in the photocatalytic degradation of antibiotics. Kinetic studies for the degradation of antibiotics were also performed, and notably, the pseudo-first-order chemical reaction showed the best results for the degradation of antibiotics. Through a comprehensive and comparative analysis of three unique photocatalysts, this research identified optimal conditions for efficient treatment of drug-contaminated wastewater, thus amplifying the practical significance of the findings. The recycling of magnetic nanoparticles through magnetic separation, coupled with their functional modification for integration into composite materials, holds significant application potential in the degradation of antibiotics.
Collapse
Affiliation(s)
- Noor Zulfiqar
- Department
of Chemistry, Faculty of Science, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Raziya Nadeem
- Department
of Chemistry, Faculty of Science, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Othman AI Musaimi
- School
of Pharmacy, Faculty of Medical Sciences, Newcastle upon Tyne NE1
7RU, U.K.
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
5
|
Wang W, Yang D, Mou Y, Liao L, Wang S, Guo L, Wang X, Li Z, Zhou W. Construction of 2D/2D Mesoporous WO 3/CeO 2 Laminated Heterojunctions for Optimized Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111798. [PMID: 37299701 DOI: 10.3390/nano13111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Photocatalytic elimination of antibiotics from the environment and drinking water is of great significance for human health. However, the efficiency of photoremoval of antibiotics such as tetracycline is severely limited by the prompt recombination of electron holes and slow charge migration efficacy. Fabrication of low-dimensional heterojunction composites is an efficient method for shortening charge carrier migration distance and enhancing charge transfer efficiency. Herein, 2D/2D mesoporous WO3/CeO2 laminated Z-scheme heterojunctions were successfully prepared using a two-step hydrothermal process. The mesoporous structure of the composites was proved by nitrogen sorption isotherms, in which sorption-desorption hysteresis was observed. The intimate contact and charge transfer mechanism between WO3 nanoplates and CeO2 nanosheets was investigated using high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy measurements, respectively. Photocatalytic tetracycline degradation efficiency was noticeably promoted by the formation of 2D/2D laminated heterojunctions. The improved photocatalytic activity could be attributed to the formation of Z-scheme laminated heterostructure and 2D morphology favoring spatial charge separation, confirmed by various characterizations. The optimized 5WO3/CeO2 (5 wt.% WO3) composites can degrade more than 99% of tetracycline in 80 min, achieving a peak TC photodegradation efficiency of 0.0482 min-1, which is approximately 3.4 times that of pristine CeO2. A Z-scheme mechanism is proposed for photocatalytic tetracycline by from WO3/CeO2 Z-scheme laminated heterojunctions based on the experimental results.
Collapse
Affiliation(s)
- Wenjie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Decai Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yifan Mou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liping Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Punathil Meethal R, Jalalzai P, Kumar S, Peter J, Klipp A, Kim TG, Park JG. Benzethonium chloride as a tungsten corrosion inhibitor in neutral and alkaline media for the post-chemical mechanical planarization application. J Colloid Interface Sci 2023; 643:465-479. [PMID: 37088050 DOI: 10.1016/j.jcis.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
The cleaning solution for the post-chemical mechanical planarization (post-CMP) process of tungsten in neutral-alkaline media requires corrosion inhibitors as an additive, especially for advanced devices where the device node size shrinks below 10 nm. In the present study, the corrosion inhibition performance of benzethonium chloride (BTC) is evaluated in neutral-alkaline conditions. The electrochemical impedance spectroscopy (EIS) analysis showed ∼ 90 % of corrosion inhibition efficiency with an optimum concentration of 0.01 wt% BTC at both pH 7 and 11. Langmuir adsorption isotherm, frontier molecular orbital theory, molecular simulation, contact angle, precipitation study, and X-ray photoelectron spectroscopy analysis were performed to identify the inhibition mechanism of the BTC molecule on the W surface. Based on the proposed mechanism, the electrostatic attraction between the positively charged N atom in the BTC molecule and the negatively charged W surface initiates the adsorption of the molecule. The high dipole moment and large molecular size enhance the physical adsorption of the molecule to the surface. In addition to this, the adsorption isotherm analysis shows that possible chemical interaction with a moderate value of Gibbs free energy change of adsorption exists between the W and BTC molecule. The excellent corrosion inhibition efficiency of BTC on W is confirmed by the frontier molecular orbital theory and molecular dynamic simulation analysis.
Collapse
Affiliation(s)
- Ranjith Punathil Meethal
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Palwasha Jalalzai
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Sumit Kumar
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jerome Peter
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Tae-Gon Kim
- Department of Smart Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Jin-Goo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
7
|
Tran NN, Escribà-Gelonch M, Sarafraz MM, Pho QH, Sagadevan S, Hessel V. Process Technology and Sustainability Assessment of Wastewater Treatment. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia5005, Australia
- Department of Chemical Engineering, Can Tho University, 3/2 Street, Can Tho900000, Vietnam
| | - Marc Escribà-Gelonch
- Higher Polytechnic Engineering School, University of Lleida, Igualada25003, Spain
| | | | - Quoc Hue Pho
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia5005, Australia
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia5005, Australia
- School of Engineering, University of Warwick, Coventry, LondonCV4 7AL, United Kingdom
| |
Collapse
|
8
|
Efficient and Reusable Sorbents Based on Nanostructured BN Coatings for Water Treatment from Antibiotics. Int J Mol Sci 2022; 23:ijms232416097. [PMID: 36555734 PMCID: PMC9788227 DOI: 10.3390/ijms232416097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing contamination of wastewater with antibiotics used in agriculture, animal husbandry, and medicine is a serious problem for all living things. To address this important issue, we have developed an efficient platform based on a high specific surface area hexagonal boron nitride (BN) coating formed by numerous nanopetals and nanoneedles. The maximum sorption capacity of 1 × 1 cm2 BN coatings is 502.78 µg/g (tetracycline, TET), 315.75 µg/g (ciprofloxacin, CIP), 400.17 µg/g (amoxicillin, AMOX), and 269.7 µg/g (amphotericin B, AMP), which exceeds the sorption capacity of many known materials. Unlike nanoparticles, BN-coated Si wafers are easy to place in and remove from antibiotic-contaminated aqueous solutions, and are easy to clean. When reusing the adsorbents, 100% efficiency was observed at the same time intervals as in the first cleaning cycle: 7 days (TET) and 14 days (CIP, AMOX, AMP) at 10 µg/mL, 14 days (TET, CIP, and AMOX) and 28 days (AMP) at 50 µg/mL, and 14 days (TET) and 28 days (CIP, AMOX and AMP) at 100 µg/mL. The results obtained showed that TET and CIP are best adsorbed on the surface of BN, so TET was chosen as an example for further theoretical modeling of the sorption process. It was found that adsorption is the main mechanism, and this process is spontaneous and endothermic. This highlights the importance of a high specific surface area for the efficient removal of antibiotics from aqueous solutions.
Collapse
|
9
|
Fang S, Zhang W, Sun K, Tong T, Lim AI, Bao J, Du Z, Li Y, Hu YH. Critical role of tetracycline's self-promotion effects in its visible-light driven photocatalytic degradation over ZnO nanorods. CHEMOSPHERE 2022; 309:136691. [PMID: 36209848 DOI: 10.1016/j.chemosphere.2022.136691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide (ZnO), which is widely applied for ultraviolet-light driven photocatalysis, has no activity in visible-light photocatalytic process due to its large band gap of ∼3.2 eV. Herein, however, we demonstrated the multiple self-promotion effects of tetracycline as band adjuster, photo-sensitizer, and charge transfer promoter for ZnO nanorods, realizing its visible-light photocatalytic degradation with an excellent removal efficiency up to 91.1% within only 2 h. Besides, the influence of complex realistic factors on this unique process was evaluated together with tests with realistic water matrices. Furthermore, the active species and degradation products were identified. Both acute and developmental toxicities were found to be reduced as the degradation proceeds. These results pave the path for the brand-new self-driven visible-light photocatalysis.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States
| | - Wei Zhang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tian Tong
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Aniqa Ibnat Lim
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, United States
| | - Zichen Du
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, United States
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, United States.
| |
Collapse
|
10
|
Brada M, Neumann-Spallart M, Krýsa J. Tungsten Trioxide Film Photoanodes Prepared by Aerosol Pyrolysis for Photoelectrochemical Applications. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Siddique F, Gonzalez-Cortes S, Mirzaei A, Xiao T, Rafiq MA, Zhang X. Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts. NANOSCALE 2022; 14:11806-11868. [PMID: 35920714 DOI: 10.1039/d2nr02714c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current developments and progress in energy and environment-related areas pay special attention to the fabrication of advanced nanomaterials via green and sustainable paths to accomplish chemical circularity. The design and preparation methods of photocatalysts play a prime role in determining the structural, surface characteristics and optoelectronic properties of the final products. The solution combustion synthesis (SCS) technique is a relatively novel, cost-effective, and efficient method for the bulk production of nanostructured materials. SCS-fabricated metal oxides are of great technological importance in photocatalytic, environmental and energy applications. To date, the SCS route has been employed to produce a large variety of solid materials such as metals, sulfides, carbides, nitrides and single or complex metal oxides. This review intends to provide a holistic perspective of the different steps involved in the chemistry of SCS of advanced photocatalysts, and pursues several SCS metrics that influence their photocatalytic performances to establish a feasible approach to design advanced photocatalysts. The study highlights the fundamentals of SCS and the importance of various combustion parameters in the characteristics of the fabricated photocatalysts. Consequently, this work deals with the design of a concise framework to link the fine adjustment of SCS parameters for the development of efficient metal oxide photocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Fizza Siddique
- School of Science, Minzu University of China, Beijing, 100081, People's Republic of China.
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Sergio Gonzalez-Cortes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Amir Mirzaei
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - M A Rafiq
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Xiaoming Zhang
- School of Science, Minzu University of China, Beijing, 100081, People's Republic of China.
- Optoelectronics Research Center, Minzu University of China, Beijing, 100081, People's Republic of China
| |
Collapse
|
12
|
Tungsten Trioxide and Its TiO2 Mixed Composites for the Photocatalytic Degradation of NOx and Bacteria (Escherichia coli) Inactivation. Catalysts 2022. [DOI: 10.3390/catal12080822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The increased air pollution and its impact on the environment and human health in several countries have caused global concerns. Nitrogen oxides (NO2 and NO) are principally emitted from industrial activities that strongly contribute to poor air quality. Among bacteria emanated from the fecal droppings of livestock, wildlife, and humans, Escherichia coli is the most abundant, and is often associated with the health risk of water. TiO2/WO3 heterostructures represent emerging systems for photocatalytic environmental remediation. However, the results reported in the literature are conflicting, depending on several parameters. In this work, WO3 and a series of TiO2/WO3 composites were properly synthesized by an easy and fast method, abundantly characterized by several techniques, and used for NOx degradation and E. coli inactivation under visible light irradiation. We demonstrated that the photoactivity of TiO2/WO3 composites towards NO2 degradation under visible light is strongly related to the WO3 content. The best performance was obtained by a WO3 load of 20% that guarantees limited e−/h+ recombination. On the contrary, we showed that E. coli could not be degraded under visible irradiation of the TiO2/WO3 composites.
Collapse
|
13
|
Bai X, Chen W, Wang B, Sun T, Wu B, Wang Y. Photocatalytic Degradation of Some Typical Antibiotics: Recent Advances and Future Outlooks. Int J Mol Sci 2022; 23:ijms23158130. [PMID: 35897716 PMCID: PMC9331861 DOI: 10.3390/ijms23158130] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
The existence of antibiotics in the environment can trigger a number of issues by fostering the widespread development of antimicrobial resistance. Currently, the most popular techniques for removing antibiotic pollutants from water include physical adsorption, flocculation, and chemical oxidation, however, these processes usually leave a significant quantity of chemical reagents and polymer electrolytes in the water, which can lead to difficulty post-treating unmanageable deposits. Furthermore, though cost-effectiveness, efficiency, reaction conditions, and nontoxicity during the degradation of antibiotics are hurdles to overcome, a variety of photocatalysts can be used to degrade pollutant residuals, allowing for a number of potential solutions to these issues. Thus, the urgent need for effective and rapid processes for photocatalytic degradation leads to an increased interest in finding more sustainable catalysts for antibiotic degradation. In this review, we provide an overview of the removal of pharmaceutical antibiotics through photocatalysis, and detail recent progress using different nanostructure-based photocatalysts. We also review the possible sources of antibiotic pollutants released through the ecological chain and the consequences and damages caused by antibiotics in wastewater on the environment and human health. The fundamental dynamic processes of nanomaterials and the degradation mechanisms of antibiotics are then discussed, and recent studies regarding different photocatalytic materials for the degradation of some typical and commonly used antibiotics are comprehensively summarized. Finally, major challenges and future opportunities for the photocatalytic degradation of commonly used antibiotics are highlighted.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Wanyu Chen
- Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Tianxiao Sun
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany; (T.S.); (B.W.)
| | - Bin Wu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany; (T.S.); (B.W.)
| | - Yuheng Wang
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Correspondence:
| |
Collapse
|
14
|
Soni V, Singh AN, Singh P, Gupta A. Photocatalytic dye-degradation activity of nano-crystalline Ti 1-x M x O 2-δ (M =Ag, Pd, Fe, Ni and x = 0, 0.01) for water pollution abatement. RSC Adv 2022; 12:18794-18805. [PMID: 35873333 PMCID: PMC9244643 DOI: 10.1039/d2ra02847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Nanocrystalline metal-ion (M = Fe, Ni, Ag, and Pd) doped and undoped anatase-TiO2 powders were prepared using a solution combustion method. The photocatalytic degradation of different dyes such as methylene blue (MB), rhodamine B (RB), rhodamine B base (RBB), and thionine acetate (TA) was investigated under UV exposure. The degradation rate of the dyes were found to be better in the case of Ag+ and Pd2+ doped TiO2, whereas Fe3+ and Ni2+ doped TiO2 showed lower photocatalytic activity compared to undoped TiO2 nanoparticles. Combustion synthesized catalysts exhibited much better activity compared to the commercial Degussa P25 (75% anatase + 25% rutile) TiO2 photocatalyst. The intermediate states created in the band gap of the TiO2 photocatalyst due to doping of first row transition metal ions (such as Fe3+ and Ni2+) into the TiO2 lattice act as recombination centres and the electrons present in the d-orbital quench the photogenerated holes by indirect recombination, hence increasing e--h+ recombination rates. As a result, a decrease in the photocatalytic activity of TiO2 doped with first row transition metal ions is observed. However, in the case of noble metal ions (such as Ag+ and Pd2+) in TiO2, photoreduction of Ag+ and Pd2+ ions occurs upon UV irradiation, hence the noble metal-ions act as electron scavengers. Consequently, the lifetime of the holes (h+) increases and hence higher photocatalytic oxidation activity of the dyes is observed. A novel strategy of electron scavenging is envisaged here to develop Ag+ and Pd2+ doped TiO2 to increase the photocatalytic oxidation of organic dyes for the development of better water pollution abatement catalysts. Redox-pair stabilization in the TiO2 lattice similar to photo-chromic glasses play a defining role in enhancing the photocatalytic activity of the catalyst and is a key finding for the development of superior photocatalysts. With the help of UV-vis and fluorescence spectroscopy, the mechanisms of the superior oxidation activity of Pd2+ and Ag+ doped TiO2 nanoparticles are explained.
Collapse
Affiliation(s)
- Vaishali Soni
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi-221005 India +91 6390363140
| | - Abhay Narayan Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU) Varanasi-221005 India
| | - Preetam Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi-221005 India
| | - Asha Gupta
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi-221005 India +91 6390363140
| |
Collapse
|
15
|
Irine TM, Rathika A, Gobalakrishnan S, Isaac RSR, Sanjith S, Chidhambaram N. Leveraging the Photocatalytic Degradation Efficiency of Solution Combustion Derived ZnO Photocatalyst through Palladium Doping. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- T. M. Irine
- Research Scholar (Reg. No. 19213092132011), Department of Physics and Research Centre Muslim Arts College Thiruvithancode, Kanyakumari District Tamil Nadu 629 174 India
| | - A. Rathika
- Research Scholar (Reg. No. 19213092132011), Department of Physics and Research Centre Muslim Arts College Thiruvithancode, Kanyakumari District Tamil Nadu 629 174 India
| | - S. Gobalakrishnan
- Department of Nanotechnology Noorul Islam Centre for Higher Education (Deemed to be University) Kumaracoil, Kanyakumari District Tamil Nadu 629 180 India
| | - R. S. Rimal Isaac
- Department of Nanotechnology Noorul Islam Centre for Higher Education (Deemed to be University) Kumaracoil, Kanyakumari District Tamil Nadu 629 180 India
| | - S. Sanjith
- Department of Computer Science St Alphonsa College of Arts and Science, Soosaipuram Karinkal Tamil Nadu 629157 India
| | - N. Chidhambaram
- Department of Physics Rajah Serfoji Government College (Autonomous) Thanjavur Tamil Nadu 613 005 India
| |
Collapse
|
16
|
Zhang L, Gao W, Song X, Chi L, Liu B, Yu X. Synergistic Effects of Redox Couples and Oxygen Vacancies Improve the Tetracycline Degradation Property of La 2NiMnO 6. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2314-2326. [PMID: 35139309 DOI: 10.1021/acs.langmuir.1c03112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the e- and h+ separation efficiency and promoting the production of more radicals is the key to improving the degradation efficiency of catalytic degradation of antibiotics. On the other hand, intermediate analysis of antibiotics in the dark adsorption and light irradiation process is very important to clarify the entire antibiotic degradation pathway. Here, the La2NiMnO6 (LNMO) catalyst was prepared by the sol-gel method and the calcination method. By changing the calcination temperature (800, 900, and 1000 °C), the LNMO-based catalysts were successfully formed, abbreviated as L-800, L-900, and L-1000. XPS measurements demonstrated the presence of Mn4+, Mn3+, Mn2+, and oxygen vacancies (OVs) in the LNMO-based catalysts. Analysis of PL, PC, EIS, and TR-PL demonstrated that L-900 had the highest separation efficiency and fastest carrier mobility. The LNMO-based catalysts were used to degrade tetracycline (TC). With the optimized catalyst L-900, the decomposition rate of TC reached 99.57% in 120 min. The entire TC degradation pathway was analyzed according to LC-MS measurements. Radical trap experiments and ESR technology revealed that the synergistic effect of Mn4+/Mn3+, Mn4+/Mn2+, and OVs not only effectively separated e- and h+ but also facilitated the formation of superoxide radicals (•O2-) to accelerate TC degradation. Radicals •OH, h+, and •O2- all contributed to TC deterioration in increasing order of importance. In addition, XPS measurements of the L-900 catalyst before and after use indicated that Mn4+/Mn3+, Mn4+/Mn2+, and OVs were not reactants but mediators of e- and h+. Finally, the mechanism of TC degradation with the LNMO-based catalysts was discussed. This work provided new material for TC degradation in the wastewater.
Collapse
Affiliation(s)
- Lemeng Zhang
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Wen Gao
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Xinhua Song
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Long Chi
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| | - Bin Liu
- School of Chemical and Civil Engineering, Shaoguan University, Shaoguan 512023, China
| | - Xiaoyan Yu
- Optoelectronic Information Research Center, School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
17
|
Mohamed Noor SH, Othman MHD, Khongnakorn W, Sinsamphanh O, Abdullah H, Puteh MH, Kurniawan TA, Zakria HS, El-badawy T, Ismail AF, Rahman MA, Jaafar J. Bisphenol A Removal Using Visible Light Driven Cu 2O/PVDF Photocatalytic Dual Layer Hollow Fiber Membrane. MEMBRANES 2022; 12:208. [PMID: 35207130 PMCID: PMC8877201 DOI: 10.3390/membranes12020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Bisphenol A (BPA) is amongst the endocrine disrupting compounds (EDCs) that cause illness to humans and in this work was removed using copper (I) oxide (Cu2O) visible light photocatalyst which has a narrow bandgap of 2.2 eV. This was done by embedding Cu2O into polyvinylidene fluoride (PVDF) membranes to generate a Cu2O/PVDF dual layer hollow fiber (DLHF) membrane using a co-extrusion technique. The initial ratio of 0.25 Cu2O/PVDF was used to study variation of the outer dope extrusion flowrate for 3 mL/min, 6 mL/min and 9 mL/min. Subsequently, the best flowrate was used to vary Cu2O/PVDF for 0.25, 0.50 and 0.75 with fixed outer dope extrusion flowrate. Under visible light irradiation, 10 mg/L of BPA was used to assess the membranes performance. The results show that the outer and inner layers of the membrane have finger-like structures, whereas the intermediate section of the membrane has a sponge-like structure. With high porosity up to 63.13%, the membrane is hydrophilic and exhibited high flux up to 13,891 L/m2h. The optimum photocatalytic membrane configuration is 0.50 Cu2O/PVDF DLHF membrane with 6 mL/min outer dope flowrate, which was able to remove 75% of 10 ppm BPA under visible light irradiation without copper leaching into the water sample.
Collapse
Affiliation(s)
- Siti Hawa Mohamed Noor
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| | - Watsa Khongnakorn
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Oulavanh Sinsamphanh
- Faculty of Environmental Science, Dongdok Campus, National University of Laos, Xaythany District, Vientiane 01080, Laos;
| | - Huda Abdullah
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, The National University of Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohd Hafiz Puteh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | | | - Hazirah Syahirah Zakria
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| | - Tijjani El-badawy
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| | - Mukhlis A. Rahman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (S.H.M.N.); (M.H.P.); (H.S.Z.); (T.E.-b.); (A.F.I.); (M.A.R.); (J.J.)
| |
Collapse
|
18
|
Stando K, Kasprzyk P, Felis E, Bajkacz S. Heterogeneous Photocatalysis of Metronidazole in Aquatic Samples. Molecules 2021; 26:molecules26247612. [PMID: 34946687 PMCID: PMC8708392 DOI: 10.3390/molecules26247612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Metronidazole (MET) is a commonly detected contaminant in the environment. The compound is classified as poorly biodegradable and highly soluble in water. Heterogeneous photocatalysis is the most promoted water purification method due to the possibility of using sunlight and small amounts of a catalyst needed for the process. The aim of this study was to select conditions for photocatalytic removal of metronidazole from aquatic samples. The effect of catalyst type, mass, and irradiance intensity on the efficiency of metronidazole removal was determined. For this purpose, TiO2, ZnO, ZrO2, WO3, PbS, and their mixtures in a mass ratio of 1:1 were used. In this study, the transformation products formed were identified, and the mineralization degree of compound was determined. The efficiency of metronidazole removal depending on the type of catalyst was in the range of 50-95%. The highest MET conversion (95%) combined with a high degree of mineralization (70.3%) was obtained by using a mixture of 12.5 g TiO2-P25 + PbS (1:1; v/v) and running the process for 60 min at an irradiance of 1000 W m-2. Four MET degradation products were identified by untargeted analysis, formed by the rearrangement of the metronidazole and the C-C bond breaking.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; (P.K.); (S.B.)
- Correspondence:
| | - Patrycja Kasprzyk
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; (P.K.); (S.B.)
| | - Ewa Felis
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; (P.K.); (S.B.)
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
| |
Collapse
|
19
|
A Novel N-Doped Nanoporous Bio-Graphene Synthesized from Pistacia lentiscus Gum and Its Nanocomposite with WO 3 Nanoparticles: Visible-Light-Driven Photocatalytic Activity. Molecules 2021; 26:molecules26216569. [PMID: 34770977 PMCID: PMC8588091 DOI: 10.3390/molecules26216569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reports the synthesis of a new nitrogen-doped porous bio-graphene (NPBG) with a specific biomorphic structure, using Pistacia lentiscus as a natural carbon source containing nitrogen that also acts as a bio-template. The obtained NPBG demonstrated the unique feature of doped nitrogen with a 3D nanoporous structure. Next, a WO3/N-doped porous bio-graphene nanocomposite (WO3/NPBG-NC) was synthesized, and the products were characterized using XPS, SEM, TEM, FT-IR, EDX, XRD, and Raman analyses. The presence of nitrogen doped in the structure of the bio-graphene (BG) was confirmed to be pyridinic-N and pyrrolic-N with N1 peaks at 398.3 eV and 400.5 eV, respectively. The photocatalytic degradation of the anionic azo dyes and drugs was investigated, and the results indicated that the obtained NPBG with a high surface area (151.98 m2/g), unique electronic properties, and modified surface improved the adsorption and photocatalytic properties in combination with WO3 nanoparticles (WO3-NPs) as an effective visible-light-driven photocatalyst. The synthesized WO3/NPBG-NC with a surface area of 226.92 m2/g displayed lower bandgap and higher electron transfer compared with blank WO3-NPs, leading to an increase in the photocatalytic performance through the enhancement of the separation of charge and a reduction in the recombination rate. At the optimum conditions of 0.015 g of the nanocomposite, a contact time of 15 min, and 100 mg/L of dyes, the removal percentages were 100%, 99.8%, and 98% for methyl red (MR), Congo red (CR), and methyl orange (MO), respectively. In the case of the drugs, 99% and 87% of tetracycline and acetaminophen, respectively, at a concentration of 10 mg/L, were removed after 20 min.
Collapse
|
20
|
Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Irshad S, Cheema AI, Rashid A, Gulzaman H. Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145389. [PMID: 33578171 DOI: 10.1016/j.scitotenv.2021.145389] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 05/18/2023]
Abstract
Wide spread documentation of antibiotic pollution is becoming a threat to aquatic environment. Erythromycin (ERY), a macrolide belonging antibiotic is at the top of this list with its concentrations ranging between ng/L to a few μg/L in various global waterbodies giving rise to ERY-resistance genes (ERY-RGs) and ERY- resistance bacteria (ERY-RBs) posing serious threat to the aquatic organisms. ERY seems resistant to various conventional water treatments, remained intact and even increased in terms of mass loads after treatment. Enhanced oxidation potential, wide pH range, elevated selectivity, adaptability and greater efficiency makes advance oxidation processes (AOPs) top priority for degrading pollutants with aromatic rings and unsaturated bonds like ERY. In this manuscript, recent developments in AOPs for ERY degradation are reported along with the factors that affect the degradation mechanism. ERY, marked as a risk prioritized macrolide antibiotic by 2015 released European Union watch list, most probably due to its protein inhibition capability considered third most widely used antibiotic. The current review provides a complete ERY overview including the environmental entry sources, concentration in global waters, ERY status in STPs, as well as factors affecting their functionality. Along with that this study presents complete outlook regarding ERY-RGs and provides an in depth detail regarding ERY's potential threats to aquatic biota. This study helps in figuring out the best possible strategy to tackle antibiotic pollution keeping ERY as a model antibiotic because of extreme toxicity records.
Collapse
Affiliation(s)
- Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Samina Irshad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Humaira Gulzaman
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskander, Perak, Malaysia
| |
Collapse
|
21
|
Review on the Visible Light Photocatalysis for the Decomposition of Ciprofloxacin, Norfloxacin, Tetracyclines, and Sulfonamides Antibiotics in Wastewater. Catalysts 2021. [DOI: 10.3390/catal11040437] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibiotics are chemical compounds that are used to kill or prevent bacterial growth. They are used in different fields, such as the medical field, agriculture, and veterinary. Antibiotics end up in wastewater, which causes the threat of developing antibacterial resistance; therefore, antibiotics must be eliminated from wastewater. Different conventional elimination methods are limited due to their high cost and effort, or incomplete elimination. Semiconductor-assisted photocatalysis arises as an effective elimination method for different organic wastes including antibiotics. A variety of semiconducting materials were tested to eliminate antibiotics from wastewater; nevertheless, research is still ongoing due to some limitations. This review summarizes the recent studies regarding semiconducting material modifications for antibiotic degradation using visible light irradiation.
Collapse
|
22
|
Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. METALS 2021. [DOI: 10.3390/met11010080] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Along with industrialization and rapid urbanization, environmental remediation is globally a perpetual concept to deliver a sustainable environment. Various organic and inorganic wastes from industries and domestic homes are released into water systems. These wastes carry contaminants with detrimental effects on the environment. Consequently, there is an urgent need for an appropriate wastewater treatment technology for the effective decontamination of our water systems. One promising approach is employing nanoparticles of metal oxides as photocatalysts for the degradation of these water pollutants. Transition metal oxides and their composites exhibit excellent photocatalytic activities and along show favorable characteristics like non-toxicity and stability that also make them useful in a wide range of applications. This study discusses some characteristics of metal oxides and briefly outlined their various applications. It focuses on the metal oxides TiO2, ZnO, WO3, CuO, and Cu2O, which are the most common and recognized to be cost-effective, stable, efficient, and most of all, environmentally friendly for a sustainable approach for environmental remediation. Meanwhile, this study highlights the photocatalytic activities of these metal oxides, recent developments, challenges, and modifications made on these metal oxides to overcome their limitations and maximize their performance in the photodegradation of pollutants.
Collapse
|
23
|
Li Y, Shen J, Quan W, Diao Y, Wu M, Zhang B, Wang Y, Yang D. 2D/2D p‐n Heterojunctions of CaSb
2
O
6
/g‐C
3
N
4
for Visible Light‐Driven Photocatalytic Degradation of Tetracycline. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanyuan Li
- Department of Biological and Chemical Engineering Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals Chongqing University of Education 400067 Chongqing People's Republic of China
| | - Jinfeng Shen
- Department of Biological and Chemical Engineering Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals Chongqing University of Education 400067 Chongqing People's Republic of China
| | - Wenxuan Quan
- Department of Biological and Chemical Engineering Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals Chongqing University of Education 400067 Chongqing People's Republic of China
| | - Yue Diao
- Department of Biological and Chemical Engineering Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals Chongqing University of Education 400067 Chongqing People's Republic of China
| | - Meijun Wu
- Department of Biological and Chemical Engineering Cooperative Innovation Center of Lipid Resources and Children's Daily Chemicals Chongqing University of Education 400067 Chongqing People's Republic of China
| | - Bin Zhang
- Analytical and Testing Center Chongqing University 401331 Chongqing People's Republic of China
| | - Yaoqiong Wang
- College of Chemistry and Chemical Engineering Chongqing University of Technology 69 Hongguang Rd. 400054 Lijiatuo, Banan District Chongqing People's Republic of China
| | - Dingfeng Yang
- College of Chemistry and Chemical Engineering Chongqing University of Technology 69 Hongguang Rd. 400054 Lijiatuo, Banan District Chongqing People's Republic of China
| |
Collapse
|