1
|
Ji Q, Meng Y, Han X, Yi C, Chen X, Zhan Y. Bioinformatic Insights and XGBoost Identify Shared Genetics in Chronic Obstructive Pulmonary Disease and Type 2 Diabetes. THE CLINICAL RESPIRATORY JOURNAL 2025; 19:e70057. [PMID: 40045538 PMCID: PMC11882755 DOI: 10.1111/crj.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND The correlation between chronic obstructive pulmonary disease (COPD) and Type 2 diabetes mellitus (T2DM) has long been recognized, but their shared molecular underpinnings remain elusive. This study aims to uncover common genetic markers and pathways in COPD and T2DM, providing insights into their molecular crosstalk. METHODS Utilizing the Gene Expression Omnibus (GEO) database, we analyzed gene expression datasets from six COPD and five T2DM studies. A multifaceted bioinformatics approach, encompassing the limma R package, unified matrix analysis, and weighted gene co-expression network analysis (WGCNA), was deployed to identify differentially expressed genes (DEGs) and hub genes. Functional enrichment and protein-protein interaction (PPI) analyses were conducted, followed by cross-species validation in Mus musculus models. Machine learning techniques, including random forest and LASSO regression, were applied for further validation, culminating in the development of a prognostic model using XGBoost. RESULTS Our analysis revealed shared DEGs such as KIF1C, CSTA, GMNN, and PHGDH in both COPD and T2DM. Cross-species comparison identified common genes including PON1 and CD14, exhibiting varying expression patterns. The random forest and LASSO regression identified six critical genes, with our XGBoost model demonstrating significant predictive accuracy (AUC = 0.996 for COPD). CONCLUSIONS This study identifies key genetic markers shared between COPD and T2DM, providing new insights into their molecular pathways. Our XGBoost model exhibited high predictive accuracy for COPD, highlighting the potential utility of these markers. These findings offer promising biomarkers for early detection and enhance our understanding of the diseases' interplay. Further validation in larger cohorts is recommended.
Collapse
Affiliation(s)
- Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Xiaojie Han
- Department of Chronic Disease ControlGuangming Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Chao Yi
- Department of Chronic Disease ControlGuangming Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Xiaoliang Chen
- Department of Chronic Disease ControlGuangming Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenGuangdongChina
- Guangdong Engineering Technology Research Center of Nutrition TransformationSun Yat‐sen UniversityShenzhenGuangdongChina
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Jin X, Yue X, Huang Z, Meng X, Xu S, Wu Y, Wan Y, Inoue A, Narisawa M, Hu L, Shi GP, Umegaki H, Murohara T, Lei Y, Kuzuya M, Cheng XW. Cathepsin K deficiency prevented stress-related thrombosis in a mouse FeCl 3 model. Cell Mol Life Sci 2024; 81:205. [PMID: 38703204 PMCID: PMC11069486 DOI: 10.1007/s00018-024-05240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.
Collapse
Affiliation(s)
- Xueying Jin
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
| | - Zhe Huang
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Xiangkun Meng
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yuna Wu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
| | - Ying Wan
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Aiko Inoue
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi-Ken, 466-8550, Japan
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, 541199, Guangxi, People's Republic of China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Umegaki
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi-Ken, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
- Department of Intensive Care, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
| | - Masafumi Kuzuya
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Meitetsu Hospital, Nagoya, Aichi, 451-8511, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
- Department of Community Health Care and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Thibord F, Johnson AD. Sources of variability in the human platelet transcriptome. Thromb Res 2023; 231:255-263. [PMID: 37357099 DOI: 10.1016/j.thromres.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Platelets are anucleated cells produced by megakaryocytes, from which they inherit all the components necessary to carry their functions. They circulate in blood vessels where they play essential roles in coagulation, wound repair or inflammation, and have been implicated in various pathological conditions such as thrombosis, viral infection or cancer progression. The importance of these cells has been established over a century ago, and effective anti-platelet medications with different mechanisms of action have since been developed. However, these therapies are not always effective and can incur adverse events, thus a better understanding of platelets molecular processes is needed to address these issues and improve our understanding of platelet functions. In recent years, an increasing number of studies have leveraged OMICs technologies to analyze their content and identify molecular signatures and mechanisms associated with platelet functions and platelet related disorders. In particular, the increased accessibility of microarrays and RNA sequencing opened the way for studies of the platelet transcriptome under a wide array of conditions. These studies revealed distinct expression profiles in diverse pathologies, which could lead to the discovery of novel biomarkers and therapeutic targets, and suggests a dynamic transcriptome that could influence platelet mechanisms. In this review, we highlight the different sources of transcript level variability in platelets while summarizing recent advances and discoveries from this emerging field.
Collapse
Affiliation(s)
- Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte, Suite #2, Framingham, MA 01702, USA; The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA 01702, USA.
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte, Suite #2, Framingham, MA 01702, USA; The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA 01702, USA
| |
Collapse
|
4
|
Shimizu R, Hirano I, Hasegawa A, Suzuki M, Otsuki A, Taguchi K, Katsuoka F, Uruno A, Suzuki N, Yumoto A, Okada R, Shirakawa M, Shiba D, Takahashi S, Suzuki T, Yamamoto M. Nrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in mice. Commun Biol 2023; 6:875. [PMID: 37626149 PMCID: PMC10457343 DOI: 10.1038/s42003-023-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Spaceflight-related stresses impact health via various body systems, including the haematopoietic and immune systems, with effects ranging from moderate alterations of homoeostasis to serious illness. Oxidative stress appears to be involved in these changes, and the transcription factor Nrf2, which regulates expression of a set of cytoprotective and antioxidative stress response genes, has been implicated in the response to spaceflight-induced stresses. Here, we show through analyses of mice from the MHU-3 project, in which Nrf2-knockout mice travelled in space for 31 days, that mice lacking Nrf2 suffer more seriously from spaceflight-induced immunosuppression than wild-type mice. We discovered that a one-month spaceflight-triggered the expression of tissue inflammatory marker genes in wild-type mice, an effect that was even more pronounced in the absence of Nrf2. Concomitant with induction of inflammatory conditions, the consumption of coagulation-fibrinolytic factors and platelets was elevated by spaceflight and further accelerated by Nrf2 deficiency. These results highlight that Nrf2 mitigates spaceflight-induced inflammation, subsequent immunosuppression, and thrombotic microangiopathy. These observations reveal a new strategy to relieve health problems encountered during spaceflight.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan.
| | - Ikuo Hirano
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Hasegawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mikiko Suzuki
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Taguchi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Akira Uruno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, New Industry Creation hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Akane Yumoto
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Risa Okada
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Masaki Shirakawa
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Dai Shiba
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology and Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan.
| |
Collapse
|
5
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
6
|
Lee S, Wong H, Castiglione M, Murphy M, Kaushansky K, Zhan H. JAK2V617F Mutant Megakaryocytes Contribute to Hematopoietic Aging in a Murine Model of Myeloproliferative Neoplasm. Stem Cells 2022; 40:359-370. [PMID: 35260895 PMCID: PMC9199841 DOI: 10.1093/stmcls/sxac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Megakaryocytes (MKs) is an important component of the hematopoietic niche. Abnormal MK hyperplasia is a hallmark feature of myeloproliferative neoplasms (MPNs). The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs. Using a murine model of MPN in which the human JAK2V617F gene is expressed in the MK lineage, we show that the JAK2V617F-bearing MKs promote hematopoietic stem cell (HSC) aging, manifesting as myeloid-skewed hematopoiesis with an expansion of CD41+ HSCs, a reduced engraftment and self-renewal capacity, and a reduced differentiation capacity. HSCs from 2-year-old mice with JAK2V617F-bearing MKs were more proliferative and less quiescent than HSCs from age-matched control mice. Examination of the marrow hematopoietic niche reveals that the JAK2V617F-bearing MKs not only have decreased direct interactions with hematopoietic stem/progenitor cells during aging but also suppress the vascular niche function during aging. Unbiased RNA expression profiling reveals that HSC aging has a profound effect on MK transcriptomic profiles, while targeted cytokine array shows that the JAK2V617F-bearing MKs can alter the hematopoietic niche through increased levels of pro-inflammatory and anti-angiogenic factors. Therefore, as a hematopoietic niche cell, MKs represent an important connection between the extrinsic and intrinsic mechanisms for HSC aging.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Helen Wong
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY, USA
| | | | | | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
- Medical Service, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
7
|
Jassinskaja M, Pimková K, Arh N, Johansson E, Davoudi M, Pereira CF, Sitnicka E, Hansson J. Ontogenic shifts in cellular fate are linked to proteotype changes in lineage-biased hematopoietic progenitor cells. Cell Rep 2021; 34:108894. [PMID: 33761361 DOI: 10.1016/j.celrep.2021.108894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Kristýna Pimková
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Nejc Arh
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Emil Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden; Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Carlos-Filipe Pereira
- Lund Stem Cell Center, Division of Molecular Medicine and Gene Therapy, Lund University, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Ewa Sitnicka
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
8
|
Wu J, Heemskerk JWM, Baaten CCFMJ. Platelet Membrane Receptor Proteolysis: Implications for Platelet Function. Front Cardiovasc Med 2021; 7:608391. [PMID: 33490118 PMCID: PMC7820117 DOI: 10.3389/fcvm.2020.608391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
The activities of adhesion and signaling receptors in platelets are controlled by several mechanisms. An important way of regulation is provided by proteolytic cleavage of several of these receptors, leading to either a gain or a loss of platelet function. The proteases involved are of different origins and types: (i) present as precursor in plasma, (ii) secreted into the plasma by activated platelets or other blood cells, or (iii) intracellularly activated and cleaving cytosolic receptor domains. We provide a comprehensive overview of the proteases acting on the platelet membrane. We describe how these are activated, which are their target proteins, and how their proteolytic activity modulates platelet functions. The review focuses on coagulation-related proteases, plasmin, matrix metalloproteinases, ADAM(TS) isoforms, cathepsins, caspases, and calpains. We also describe how the proteolytic activities are determined by different platelet populations in a thrombus and conversely how proteolysis contributes to the formation of such populations.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Constance C. F. M. J. Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
9
|
Patra D, Kim J, Zhang Q, Tycksen E, Sandell LJ. Site-1 protease ablation in the osterix-lineage in mice results in bone marrow neutrophilia and hematopoietic stem cell alterations. Biol Open 2020; 9:bio052993. [PMID: 32576566 PMCID: PMC7328000 DOI: 10.1242/bio.052993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Site-1 protease (S1P) ablation in the osterix-lineage in mice drastically reduces bone development and downregulates bone marrow-derived skeletal stem cells. Here we show that these mice also suffer from spina bifida occulta with a characteristic lack of bone fusion in the posterior neural arches. Molecular analysis of bone marrow-derived non-red blood cell cells, via single-cell RNA-Seq and protein mass spectrometry, demonstrate that these mice have a much-altered bone marrow with a significant increase in neutrophils and Ly6C-expressing leukocytes. The molecular composition of bone marrow neutrophils is also different as they express more and additional members of the stefin A (Stfa) family of proteins. In vitro, recombinant Stfa1 and Stfa2 proteins have the ability to drastically inhibit osteogenic differentiation of bone marrow stromal cells, with no effect on adipogenic differentiation. FACS analysis of hematopoietic stem cells show that despite a decrease in hematopoietic stem cells, S1P ablation results in an increased production of granulocyte-macrophage progenitors, the precursors to neutrophils. These observations indicate that S1P has a role in the lineage specification of hematopoietic stem cells and/or their progenitors for development of a normal hematopoietic niche. Our study designates a fundamental requirement of S1P for maintaining a balanced regenerative capacity of the bone marrow niche.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joongho Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- McDonnell Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Identification of unexplored substrates of the serine protease, thrombin, using N-terminomics strategy. Int J Biol Macromol 2019; 144:449-459. [PMID: 31862363 DOI: 10.1016/j.ijbiomac.2019.12.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
The function and regulation of thrombin is a complex as well as an intriguing aspect of evolution and has captured the interest of many investigators over the years. The reported substrates of thrombin are coagulation factors V, VIII, XI, XIII, protein C and fibrinogen. However, these may not be all the substrate of thrombin and therefore its functional role(s), may not have been completely comprehended. The purpose of our study was to identify hitherto unreported substrates of thrombin from human plasma using a N-terminomics protease substrate identification method. We identified 54 putative substrates of thrombin of which 12 are already known and 42 are being reported for the first time. Amongst the proteins identified, recombinant siglec-6 and purified serum alpha-1-acid glycoprotein were validated by cleavage with thrombin. We have discussed the probable relevance of siglec-6 cleavage by thrombin in human placenta mostly because an upregulation in the expression of siglec-6 and thrombin has been reported in the placenta of preeclampsia patients. We also speculate the role of alpha-1-acid glycoprotein cleavage by thrombin in the acute phase as alpha-1-acid glycoprotein is known to be an inhibitor of platelet aggregation whereas thrombin is known to trigger platelet aggregation.
Collapse
|