1
|
Liu B, Xu G, Li H, Lu G, Ning N, Tang Q. Excessive collagen fiber deposition in idiopathic scrotal calcinosis: a case report. BMC Urol 2024; 24:212. [PMID: 39363259 PMCID: PMC11448437 DOI: 10.1186/s12894-024-01601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Idiopathic scrotal calcinosis (ISC) is a manifestation of idiopathic calcinosis cutis, and its etiology is still unknown. CASE PRESENTATION We report a 36-year-old patient manifested multiple gradually increasing yellowish-white scrotal nodules with occasional itching and stinging in the past 6 years and was successfully cured via surgical excision. The laboratory test combined with pathological analysis confirmed the diagnosis of ISC. Like pathological calcinosis in other soft tissues, a large amount of collagen fiber deposition was observed around the calcification nodule, suggesting that abnormal collagen fiber deposition might be an important factor leading to idiopathic calcinosis in the scrotum. Moreover, koilocytes, which indicate human papillomavirus (HPV) infection, were also detected around calcified nodules, indicating the potential pathogenic role of HPV infection in ISC. CONCLUSIONS Here, we report that ISC shows abnormal excessive deposition of collagen fibers around calcified nodules, which may be a vital factor contributing to the disease. Furthermore, combined with the literature review, a new pathogenic mechanism of ISC is proposed, and the site specificity of scrotal calcinosis is explained, providing a basis for further exploration of the pathogenic mechanism of ISC.
Collapse
Affiliation(s)
- Bo Liu
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Urology, Central Theater Air Force Hospital, Datong, 037000, China
| | - Gongquan Xu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Li
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Guocheng Lu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ning Ning
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, 710061, Shaanxi Province, China.
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
3
|
Giachelli CM, Donato M, Scatena M. Matrix metalloproteinase-3 joins a growing list of proteases that regulate vascular calcification. Cardiovasc Res 2024; 120:565-566. [PMID: 38630897 PMCID: PMC11074787 DOI: 10.1093/cvr/cvae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Cecilia Maria Giachelli
- Bioengineering, University of Washington Seattle Campus: University of Washington, 3705 NE 15th St, Seattle, WA 98195, USA
| | - Maristella Donato
- Bioengineering, University of Washington Seattle Campus: University of Washington, 3705 NE 15th St, Seattle, WA 98195, USA
| | - Marta Scatena
- Bioengineering, University of Washington Seattle Campus: University of Washington, 3705 NE 15th St, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Zeng X, Yang Y. Molecular Mechanisms Underlying Vascular Remodeling in Hypertension. Rev Cardiovasc Med 2024; 25:72. [PMID: 39077331 PMCID: PMC11263180 DOI: 10.31083/j.rcm2502072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 07/31/2024] Open
Abstract
Hypertension, a common cardiovascular disease, is primarily characterized by vascular remodeling. Recent extensive research has led to significant progress in understanding its mechanisms. Traditionally, vascular remodeling has been described as a unidirectional process in which blood vessels undergo adaptive remodeling or maladaptive remodeling. Adaptive remodeling involves an increase in vessel diameter in response to increased blood flow, while maladaptive remodeling refers to the narrowing or thickening of blood vessels in response to pathological conditions. However, recent research has revealed that vascular remodeling is much more complex. It is now understood that vascular remodeling is a dynamic interplay between various cellular and molecular events. This interplay process involves different cell types, including endothelial cells, smooth muscle cells, and immune cells, as well as their interactions with the extracellular matrix. Through these interactions, blood vessels undergo intricate and dynamic changes in structure and function in response to various stimuli. Moreover, vascular remodeling involves various factors and mechanisms such as the renin-angiotensin-aldosterone system (RAS), oxidative stress, inflammation, the extracellular matrix (ECM), sympathetic nervous system (SNS) and mechanical stress that impact the arterial wall. These factors may lead to vascular and circulatory system diseases and are primary causes of long-term increases in systemic vascular resistance in hypertensive patients. Additionally, the presence of stem cells in adventitia, media, and intima of blood vessels plays a crucial role in vascular remodeling and disease development. In the future, research will focus on examining the underlying mechanisms contributing to hypertensive vascular remodeling to develop potential solutions for hypertension treatment. This review provides us with a fresh perspective on hypertension and vascular remodeling, undoubtedly sparking further research efforts aimed at uncovering more potent treatments and enhanced preventive and control measures for this disease.
Collapse
Affiliation(s)
- Xinyi Zeng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
5
|
Kucherenko MM, Sang P, Yao J, Gransar T, Dhital S, Grune J, Simmons S, Michalick L, Wulsten D, Thiele M, Shomroni O, Hennig F, Yeter R, Solowjowa N, Salinas G, Duda GN, Falk V, Vyavahare NR, Kuebler WM, Knosalla C. Elastin stabilization prevents impaired biomechanics in human pulmonary arteries and pulmonary hypertension in rats with left heart disease. Nat Commun 2023; 14:4416. [PMID: 37479718 PMCID: PMC10362055 DOI: 10.1038/s41467-023-39934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/04/2023] [Indexed: 07/23/2023] Open
Abstract
Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Pengchao Sang
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Juquan Yao
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tara Gransar
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, USA
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Dag Wulsten
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mario Thiele
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Orr Shomroni
- NGS Integrative Genomics (NIG), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Felix Hennig
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Ruhi Yeter
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
| | - Natalia Solowjowa
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics (NIG), Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, LFW C 13.2, ETH Zurich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Naren R Vyavahare
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, USA
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
- Departments of Physiology and Surgery, University of Toronto, 1 King´s College Circle, Toronto, ON M5S 1A8, Canada.
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| |
Collapse
|
6
|
Ding N, Lv Y, Su H, Wang Z, Kong X, Zhen J, Lv Z, Wang R. Vascular calcification in CKD: New insights into its mechanisms. J Cell Physiol 2023; 238:1160-1182. [PMID: 37269534 DOI: 10.1002/jcp.31021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 06/05/2023]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and contributes to an increased risk of cardiovascular morbidity and mortality. However, effective therapies are still unavailable at present. It has been well established that VC associated with CKD is not a passive process of calcium phosphate deposition, but an actively regulated and cell-mediated process that shares many similarities with bone formation. Additionally, numerous studies have suggested that CKD patients have specific risk factors and contributors to the development of VC, such as hyperphosphatemia, uremic toxins, oxidative stress and inflammation. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in CKD-related VC, many questions remain unanswered. Moreover, studies from the past decade have demonstrated that epigenetic modifications abnormalities, such as DNA methylation, histone modifications and noncoding RNAs, play an important role in the regulation of VC. This review seeks to provide an overview of the pathophysiological and molecular mechanisms of VC associated with CKD, mainly focusing on the involvement of epigenetic modifications in the initiation and progression of uremic VC, with the aim to develop promising therapies for CKD-related cardiovascular events in the future.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Junhui Zhen
- Department of Pathology, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Cathepsins in the extracellular space: Focusing on non-lysosomal proteolytic functions with clinical implications. Cell Signal 2023; 103:110531. [PMID: 36417977 DOI: 10.1016/j.cellsig.2022.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Cathepsins can be found in the extracellular space, cytoplasm, and nucleus. It was initially suspected that the primary physiological function of the cathepsins was to break down intracellular protein, and that they also had a role in pathological processes including inflammation and apoptosis. However, the many actions of cathepsins outside the cell and their complicated biological impacts have garnered much interest. Cathepsins play significant roles in a number of illnesses by regulating parenchymal cell proliferation, cell migration, viral invasion, inflammation, and immunological responses through extracellular matrix remodeling, signaling disruption, leukocyte recruitment, and cell adhesion. In this review, we outline the physiological roles of cathepsins in the extracellular space, the crucial pathological functions performed by cathepsins in illnesses, and the recent breakthroughs in the detection and therapy of specific inhibitors and fluorescent probes in associated dysfunction.
Collapse
|
8
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
9
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
10
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
11
|
Kinetic Characterization of Cerium and Gallium Ions as Inhibitors of Cysteine Cathepsins L, K, and S. Int J Mol Sci 2022; 23:ijms23168993. [PMID: 36012257 PMCID: PMC9409168 DOI: 10.3390/ijms23168993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.
Collapse
|
12
|
Levy S, Mass T. The Skeleton and Biomineralization Mechanism as Part of the Innate Immune System of Stony Corals. Front Immunol 2022; 13:850338. [PMID: 35281045 PMCID: PMC8913943 DOI: 10.3389/fimmu.2022.850338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton. In addition, considerable advancements have been made in the research field of coral immunity as characterizing genes involved in the immune response to pathogens and stressors, and the revealing of specialized immune cells, including their gene expression profile and phagocytosis capabilities. Yet, these two fields of corals research have never been integrated. Here, we discuss how the coral skeleton plays a role as the first line of defense. We integrate the knowledge from both fields and highlight genes and proteins that are related to biomineralization and might be involved in the innate immune response and help the coral deal with pathogens that penetrate its skeleton. In many organisms, the immune system has been tied to calcification. In humans, immune factors enhance ectopic calcification which causes severe diseases. Further investigation of coral immune genes which are involved in skeleton defense as well as in biomineralization might shed light on our understanding of the correlation and the interaction of both processes as well as reveal novel comprehension of how immune factors enhance calcification.
Collapse
Affiliation(s)
- Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| |
Collapse
|
13
|
Burgess KA, Herrick AL, Watson REB. Systemic sclerosis skin is a primed microenvironment for soft tissue calcification-a hypothesis. Rheumatology (Oxford) 2021; 60:2517-2527. [PMID: 33585894 DOI: 10.1093/rheumatology/keab156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Calcinosis cutis, defined as sub-epidermal deposition of calcium salts, is a major clinical problem in patients with SSc, affecting 20-40% of patients. A number of recognized factors associated with calcinosis have been identified, including disease duration, digital ischaemia and acro-osteolysis. Yet, to date, the pathogenesis of SSc-related calcinosis remains unknown, and currently there is no effective disease-modifying pharmacotherapy. Following onset of SSc, there are marked changes in the extracellular matrix (ECM) of the skin, notably a breakdown in the microfibrillar network and accumulation of type I collagen. Our hypothesis is that these pathological changes reflect a changing cellular phenotype and result in a primed microenvironment for soft tissue calcification, with SSc fibroblasts adopting a pro-osteogenic profile, and specific driving forces promoting tissue mineralization. Considering the role of the ECM in disease progression may help elucidate the mechanism(s) behind SSc-related calcinosis and inform the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Kyle A Burgess
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
14
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
15
|
Parashar A, Gourgas O, Lau K, Li J, Muiznieks L, Sharpe S, Davis E, Cerruti M, Murshed M. Elastin calcification in in vitro models and its prevention by MGP's N-terminal peptide. J Struct Biol 2021; 213:107637. [PMID: 33059036 DOI: 10.1016/j.jsb.2020.107637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 01/17/2023]
Abstract
Medial calcification has been associated with diabetes, chronic kidney disease, and genetic disorders like pseudoxanthoma elasticum. Recently, we showed that genetic reduction of arterial elastin content reduces the severity of medial calcification in matrix Gla protein (MGP)-deficient and Eln haploinsufficient Mgp-/-;Eln+/- mice. This study suggests that there might be a direct effect of elastin amount on medial calcification. We studied this using novel in vitro systems, which are based on elastin or elastin-like polypeptides. We first examined the mineral deposition properties of a transfected pigmented epithelial cell line that expresses elastin and other elastic lamina proteins. When grown in inorganic phosphate-supplemented medium, these cells deposited calcium phosphate minerals, which could be prevented by an N'-terminal peptide of MGP (m3pS) carrying phosphorylated serine residues. We next confirmed these findings using a cell-free elastin-like polypeptide (ELP3) scaffold, where the peptide prevented mineral maturation. Overall, this work describes a novel cell culture model for elastocalcinosis and examines the inhibition of mineral deposition by the m3pS peptide in this and a cell-free elastin-based scaffold. Our study provides strong evidence suggesting the critical functional roles of MGP's phosphorylated serine residues in the prevention of elastin calcification and proposes a possible mechanism of their action.
Collapse
Affiliation(s)
- Abhinav Parashar
- Faculty of Dentistry, McGill University, Montreal, Québec, Canada
| | - Ophélie Gourgas
- Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Kirk Lau
- Materials Engineering, McGill University, Montreal, Québec, Canada
| | - Jingjing Li
- Department of Medicine, McGill University, Montreal, Québec, Canada
| | - Lisa Muiznieks
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Sharpe
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elaine Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Marta Cerruti
- Materials Engineering, McGill University, Montreal, Québec, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Québec, Canada; Department of Medicine, McGill University, Montreal, Québec, Canada; Shriners Hospital for Children, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Lu PN, Moreland T, Christian CJ, Lund TC, Steet RA, Flanagan-Steet H. Inappropriate cathepsin K secretion promotes its enzymatic activation driving heart and valve malformation. JCI Insight 2020; 5:133019. [PMID: 33055423 PMCID: PMC7605527 DOI: 10.1172/jci.insight.133019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
Although congenital heart defects (CHDs) represent the most common birth defect, a comprehensive understanding of disease etiology remains unknown. This is further complicated since CHDs can occur in isolation or as a feature of another disorder. Analyzing disorders with associated CHDs provides a powerful platform to identify primary pathogenic mechanisms driving disease. Aberrant localization and expression of cathepsin proteases can perpetuate later-stage heart diseases, but their contribution toward CHDs is unclear. To investigate the contribution of cathepsins during cardiovascular development and congenital disease, we analyzed the pathogenesis of cardiac defects in zebrafish models of the lysosomal storage disorder mucolipidosis II (MLII). MLII is caused by mutations in the GlcNAc-1-phosphotransferase enzyme (Gnptab) that disrupt carbohydrate-dependent sorting of lysosomal enzymes. Without Gnptab, lysosomal hydrolases, including cathepsin proteases, are inappropriately secreted. Analyses of heart development in gnptab-deficient zebrafish show cathepsin K secretion increases its activity, disrupts TGF-β–related signaling, and alters myocardial and valvular formation. Importantly, cathepsin K inhibition restored normal heart and valve development in MLII embryos. Collectively, these data identify mislocalized cathepsin K as an initiator of cardiac disease in this lysosomal disorder and establish cathepsin inhibition as a viable therapeutic strategy. Mislocalized cathepsin K promotes cardiac disease in a zebrafish model of the lysosomal disorder mucolipidosis II and can be targeted by cathespin inhibition.
Collapse
Affiliation(s)
- Po-Nien Lu
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina, USA
| | - Trevor Moreland
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina, USA
| | - Courtney J Christian
- Biochemistry, Cell and Developmental Biology, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Troy C Lund
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Richard A Steet
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina, USA
| | | |
Collapse
|
17
|
Dayekh K, Mequanint K. The effects of progenitor and differentiated cells on ectopic calcification of engineered vascular tissues. Acta Biomater 2020; 115:288-298. [PMID: 32853805 DOI: 10.1016/j.actbio.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Ectopic vascular calcification associated with aging, diabetes mellitus, atherosclerosis, and chronic kidney disease is a considerable risk factor for cardiovascular events and death. Although vascular smooth muscle cells are primarily implicated in calcification, the role of progenitor cells is less known. In this study, we engineered tubular vascular tissues from embryonic multipotent mesenchymal progenitor cells either without differentiating or after differentiating them into smooth muscle cells and studied ectopic calcification through targeted gene analysis. Tissues derived from both differentiated and undifferentiated cells calcified in response to hyperphosphatemic inorganic phosphate (Pi) treatment suggesting that a single cell-type (progenitor cells or differentiated cells) may not be the sole cause of the process. We also demonstrated that Vitamin K, which is the matrix gla protein activator, had a protective role against calcification in engineered vascular tissues. Addition of partially-soluble elastin upregulated osteogenic marker genes suggesting a calcification process. Furthermore, partially-soluble elastin downregulated smooth muscle myosin heavy chain (Myh11) gene which is a late-stage differentiation marker. This latter point, in turn, suggests that SMC may be switching into a synthetic phenotype which is one feature of vascular calcification. Taken together, our approach presents a valuable tool to study ectopic calcification and associated gene expressions relevant to clinical therapeutic targets.
Collapse
|
18
|
McDowell SH, Gallaher SA, Burden RE, Scott CJ. Leading the invasion: The role of Cathepsin S in the tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118781. [PMID: 32544418 DOI: 10.1016/j.bbamcr.2020.118781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Elevated expression of the cysteine protease Cathepsin S has been correlated with a number of different cancer types in recent years. As tools have been developed to enable more accurate examination of individual cathepsin species, our knowledge and appreciation of the role that this protease plays in facilitating cancer has increased exponentially. This review focuses on our current understanding of the role of Cathepsin S within tumours and the surrounding microenvironment. While various publications have shown that Cathepsin S can be derived from tumour cells themselves, a plethora of more recent studies have identified that Cathepsin S can also be derived from other cell types within the tumour microenvironment including endothelial cells, macrophages and T cells. Furthermore, specific proteolytic substrates cleaved by Cathepsin S have also been identified which have reinforced our hypothesis that this protease facilitates key steps within tumours leading to their invasion, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Sara H McDowell
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Samantha A Gallaher
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Roberta E Burden
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| |
Collapse
|
19
|
De Pasquale V, Moles A, Pavone LM. Cathepsins in the Pathophysiology of Mucopolysaccharidoses: New Perspectives for Therapy. Cells 2020; 9:cells9040979. [PMID: 32326609 PMCID: PMC7227001 DOI: 10.3390/cells9040979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cathepsins (CTSs) are ubiquitously expressed proteases normally found in the endolysosomal compartment where they mediate protein degradation and turnover. However, CTSs are also found in the cytoplasm, nucleus, and extracellular matrix where they actively participate in cell signaling, protein processing, and trafficking through the plasma and nuclear membranes and between intracellular organelles. Dysregulation in CTS expression and/or activity disrupts cellular homeostasis, thus contributing to many human diseases, including inflammatory and cardiovascular diseases, neurodegenerative disorders, diabetes, obesity, cancer, kidney dysfunction, and others. This review aimed to highlight the involvement of CTSs in inherited lysosomal storage disorders, with a primary focus to the emerging evidence on the role of CTSs in the pathophysiology of Mucopolysaccharidoses (MPSs). These latter diseases are characterized by severe neurological, skeletal and cardiovascular phenotypes, and no effective cure exists to date. The advance in the knowledge of the molecular mechanisms underlying the activity of CTSs in MPSs may open a new challenge for the development of novel therapeutic approaches for the cure of such intractable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7463043
| |
Collapse
|
20
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
21
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Boraldi F, Moscarelli P, Lofaro FD, Sabia C, Quaglino D. The mineralization process of insoluble elastin fibrillar structures: Ionic environment vs degradation. Int J Biol Macromol 2020; 149:693-706. [DOI: 10.1016/j.ijbiomac.2020.01.250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023]
|
23
|
Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochim Biophys Acta Gen Subj 2020; 1864:129544. [PMID: 32007579 DOI: 10.1016/j.bbagen.2020.129544] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin ageing is associated with structure-functional changes in the extracellular matrix, which is in part caused by proteolytic degradation. Since cysteine cathepsins are major matrix protein-degrading proteases, we investigated the age-dependent expression of elastolytic cathepsins K, S, and V in human skin, their in vitro impact on the integrity of the elastic fibre network, their cleavage specificities, and the release of bioactive peptides. METHODS Cathepsin-mediated degradation of human skin elastin samples was assessed from young to very old human donors using immunohistochemical and biochemical assays, scanning electron microscopy, and mass spectrometry. RESULTS Elastin samples derived from patients between 10 and 86 years of age were analysed and showed an age-dependent deterioration of the fibre structure from a dense network of thinner fibrils into a beaded and porous mesh. Reduced levels of cathepsins K, S, and V were observed in aged skin with a predominant epidermal expression. Cathepsin V was the most potent elastase followed by cathepsin K and S. Biomechanical analysis of degraded elastin fibres corroborated the destructive activity of cathepsins. Mass spectrometric determination of the cleavage sites in elastin revealed that all three cathepsins predominantly cleaved in hydrophobic domains. The degradation of elastin was efficiently inhibited by an ectosteric inhibitor. Furthermore, the degradation of elastin fibres resulted in the release of bioactive peptides, which have previously been associated with various pathologies. CONCLUSION Cathepsins are powerful elastin-degrading enzymes and capable of generating a multitude of elastokines. They may represent a viable target for intervention strategies to reduce skin ageing.
Collapse
|
24
|
Characterization of cathepsin S exosites that govern its elastolytic activity. Biochem J 2020; 477:227-242. [DOI: 10.1042/bcj20190847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.
Collapse
|