1
|
Mohammad A, Laboulaye MA, Shenhar C, Dobberfuhl AD. Mechanisms of oxidative stress in interstitial cystitis/bladder pain syndrome. Nat Rev Urol 2024; 21:433-449. [PMID: 38326514 DOI: 10.1038/s41585-023-00850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by bladder and/or pelvic pain, increased urinary urgency and frequency and nocturia. The pathophysiology of IC/BPS is poorly understood, and theories include chronic inflammation, autoimmune dysregulation, bacterial cystitis, urothelial dysfunction, deficiency of the glycosaminoglycan (GAG) barrier and urine cytotoxicity. Multiple treatment options exist, including behavioural interventions, oral medications, intravesical instillations and procedures such as hydrodistension; however, many clinical trials fail, and patients experience an unsatisfactory treatment response, likely owing to IC/BPS phenotype heterogeneity and the use of non-targeted interventions. Oxidative stress is implicated in the pathogenesis of IC/BPS as reactive oxygen species impair bladder function via their involvement in multiple molecular mechanisms. Kinase signalling pathways, nociceptive receptors, mast-cell activation, urothelial dysregulation and circadian rhythm disturbance have all been linked to reactive oxygen species and IC/BPS. However, further research is necessary to fully uncover the role of oxidative stress in the pathways driving IC/BPS pathogenesis. The development of new models in which these pathways can be manipulated will aid this research and enable further investigation of promising therapeutic targets.
Collapse
Affiliation(s)
- Ashu Mohammad
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallory A Laboulaye
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chen Shenhar
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amy D Dobberfuhl
- Department of Urology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Woodard G, Rosado JA, Li H. The physiological role of TRP channels in sleep and circadian rhythm. J Cell Mol Med 2024; 28:e18274. [PMID: 38676362 PMCID: PMC11053353 DOI: 10.1111/jcmm.18274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 04/28/2024] Open
Abstract
TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.
Collapse
Affiliation(s)
- Geoffrey Woodard
- Department of PsychiatryUniformed Services University of Health SciencesBethesdaMarylandUSA
| | - Juan A. Rosado
- Department of PhysiologyUniversity of ExtremaduraCaceresSpain
| | - He Li
- Department of PsychiatryUniformed Services University of Health SciencesBethesdaMarylandUSA
| |
Collapse
|
3
|
Ihara T, Shinozaki Y, Shigetomi E, Danjo Y, Tsuchiya S, Kanda M, Kamiyama M, Takeda M, Koizumi S, Mitsui T. G protein-coupled receptor 55 activated by palmitoylethanolamide is associated with the development of nocturia associated with circadian rhythm disorders. Life Sci 2023; 332:122072. [PMID: 37704067 DOI: 10.1016/j.lfs.2023.122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
AIMS Bladder function is regulated by clock genes and dysregulation of circadian bladder function can cause nocturia. The blood concentration of palmitoylethanolamide (PEA), a fatty acid metabolite, changes with circadian rhythm. Clock gene abnormalities demonstrate the highest PEA levels during the sleep phase. PEA is a GPR55 agonist that influences urination; therefore, increased PEA during the sleep phase may cause nocturia. Herein, we investigated the function of GPR55 to evaluate the relationship between GPR55 and nocturia that evoked higher PEA during the sleep phase in patients with circadian rhythm disorders. MAIN METHODS Male C57BL/6 mice were used. GPR55 localization was evaluated by immunofluorescence staining, qRT-PCR, and western blotting. Variations in PEA-induced intracellular Ca2+ concentrations were measured in primary cultured mouse urothelial cells (UCs) using Ca2+ imaging. PEA-induced NGF and PGI2 release in UCs was measured by ELISA. The micturition reflex pathway after PEA administration was evaluated using immunofluorescence staining. KEY FINDINGS GPR55 was predominant in the UC layer. PEA induced release of Ca2+ from the endoplasmic reticulum into the UC cytoplasm. ELISA and immunofluorescence staining revealed that NGF and PGI2 were released from bladder UCs, stimulated the pontine micturition center in mice, and induced nocturia. SIGNIFICANCE The loss of regular circadian metabolizing rhythm in fatty acids causes higher blood PEA levels during the sleep phase. Binding of PEA to GPR55 in UC may activate the downstream processes of the micturition reflex, leading to nocturia. These findings suggest a new mechanism for nocturia and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Tatsuya Ihara
- Department of Urology, Toranomon Hospital Kajigaya, Kawasaki, Kanagawa 213-8587, Japan.
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Sachiko Tsuchiya
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Mie Kanda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Manabu Kamiyama
- Department of Urology, Toranomon Hospital Kajigaya, Kawasaki, Kanagawa 213-8587, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
4
|
Ramsay S, Zagorodnyuk V. Role of circadian rhythms and melatonin in bladder function in heath and diseases. Auton Neurosci 2023; 246:103083. [PMID: 36871511 DOI: 10.1016/j.autneu.2023.103083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The circadian system modulates all visceral organ physiological processes including urine storage and voiding. The "master clock" of the circadian system lies within suprachiasmatic nucleus of the hypothalamus while "peripheral clocks" are found in most peripheral tissue and organs, including the urinary bladder. Disruptions of circadian rhythms can cause organ malfunction and disorder or exacerbate pre-existing ones. It has been suggested that nocturia, which develops mostly in the elderly, could be a circadian-related disorder of the bladder. In the bladder, many types of gap junctions and ion channels in the detrusor, urothelium and sensory nerves are likely under strict local peripheral circadian control. The pineal hormone, melatonin, is a circadian rhythm synchroniser capable of controlling a variety of physiological processes in the body. Melatonin predominantly acts via the melatonin 1 and melatonin 2 G-protein coupled receptors expressed in the central nervous system, and many peripheral organs and tissues. Melatonin could be beneficial in the treatment of nocturia and other common bladder disorders. The ameliorating action of melatonin on bladder function is likely due to multiple mechanisms which include central effects on voiding and peripheral effects on the detrusor and bladder afferents. More studies are warranted to determine the precise mechanisms of circadian rhythm coordination of the bladder function and melatonin influences on the bladder in health and diseases.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
5
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Chihara I, Negoro H, Kono J, Nagumo Y, Tsuchiya H, Kojo K, Shiga M, Tanaka K, Kandori S, Mathis BJ, Nishiyama H. Glucocorticoids coordinate the bladder peripheral clock and diurnal micturition pattern in mice. Commun Biol 2023; 6:81. [PMID: 36681730 PMCID: PMC9867708 DOI: 10.1038/s42003-023-04464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Peripheral clocks function to regulate each organ and are synchronized though various molecular and behavioral signals. However, signals that entrain the bladder clock remain elusive. Here, we show that glucocorticoids are a key cue for the bladder clock in vitro and in vivo. A pBmal1-dLuc human urothelial cell-line showed significant shifts in gene expression after cortisol treatment. In vivo, rhythmic bladder clock gene expression was unchanged by bilateral adrenalectomy but shifted 4 h forward by corticosterone administration at the inactive phase. Moreover, the bladder clock shifted 8-12 h in mice that underwent both bilateral adrenalectomy and corticosterone administration at the inactive phase. These mice showed decreases in the diurnal rhythm of volume voided per micturition, while maintaining diurnal activity rhythms. These results indicate that the diurnal rhythm of glucocorticoid signaling is a zeitgeber that overcomes other bladder clock entrainment factors and coordinates the diurnal rhythm of volume voided per micturition.
Collapse
Affiliation(s)
- Ichiro Chihara
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Jin Kono
- Department of Urology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruki Tsuchiya
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Kojo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ken Tanaka
- Department of Urology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
8
|
He X, Yu M, Zhao J, Wang A, Yin J, Wang H, Qiu J, He X, Wu X. Chrono-moxibustion adjusts circadian rhythm of CLOCK and BMAL1 in adjuvant-induced arthritic rats. Am J Transl Res 2022; 14:4880-4897. [PMID: 35958509 PMCID: PMC9360894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The clinical symptoms of rheumatoid arthritis (RA) have significant circadian rhythms, with morning stiffness and joint pain. Moxibustion is effective in the treatment of RA, while the underlying therapeutic mechanisms remain limited. Thus, we explored whether moxibustion could adjust the circadian rhythm of RA by modulating the core clock genes CLOCK and BMAL1 at the molecular level. METHODS 144 Sprague Dawley rats were randomly divided into four groups: control group (group A), model group (group B), 7-9 am moxibustion treatment group (group C), and 5-7 pm moxibustion treatment group (group D). Each group was divided into 6 time points (0 am, 4 am, 8 am, 12 N, 6 pm, and 8 pm) with an equal number of rats at each time point. Except for group A, all rats were injected with Freund's Complete Adjuvant (FCA) 0.15 ml on the right foot pad to establish the RA model. The rats of the two moxibustion treatment groups were respectively subjected to moxibustion at 7-9 am and 5-7 pm. After 3 weeks of treatment, the tissues were collected at 6 time points during the next 24 hours. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to test the mRNA expression of CLOCK and BMAL1 in the hypothalamus and synovial tissues. CLOCK and BMAL1 protein expression in synovial tissues were detected with western blot. RESULTS Compared to group A, group B showed significantly down-regulated expression levels of CLOCK and BMLA1 at synovial tissue (P < 0.05), while no statistically significant difference was found in the hypothalamus (P > 0.05). The expression levels of CLOCK and BMLA1 were up-regulated in the moxibustion treatment groups in different tissues, especially in synovial tissue (P < 0.05) compared to group B. Nevertheless, no difference was observed between groups C and D (P > 0.05). CONCLUSIONS Moxibustion could treat RA by modulating clock core genes CLOCK and BMAL1 to regulate the circadian rhythm. However, there was no significant difference between the 7-9 am moxibustion treatment group and the 5-7 pm moxibustion treatment group. This study provides a basis for research on moxibustion in the treatment of RA.
Collapse
Affiliation(s)
- Xinling He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Mingfang Yu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Luzhou T.C.M. HospitalLuzhou 646000, Sichuan, China
| | - Jiasong Zhao
- Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610072, Sichuan, China
| | - Aiyang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Haoyu Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xueyi He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| |
Collapse
|
9
|
Gao Y, Rodríguez LV. The Effect of Chronic Psychological Stress on Lower Urinary Tract Function: An Animal Model Perspective. Front Physiol 2022; 13:818993. [PMID: 35388285 PMCID: PMC8978557 DOI: 10.3389/fphys.2022.818993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic psychological stress can affect urinary function and exacerbate lower urinary tract (LUT) dysfunction (LUTD), particularly in patients with overactive bladder (OAB) or interstitial cystitis–bladder pain syndrome (IC/BPS). An increasing amount of evidence has highlighted the close relationship between chronic stress and LUTD, while the exact mechanisms underlying it remain unknown. The application of stress-related animal models has provided powerful tools to explore the effect of chronic stress on LUT function. We systematically reviewed recent findings and identified stress-related animal models. Among them, the most widely used was water avoidance stress (WAS), followed by social stress, early life stress (ELS), repeated variable stress (RVS), chronic variable stress (CVS), intermittent restraint stress (IRS), and others. Different types of chronic stress condition the induction of relatively distinguished changes at multiple levels of the micturition pathway. The voiding phenotypes, underlying mechanisms, and possible treatments of stress-induced LUTD were discussed together. The advantages and disadvantages of each stress-related animal model were also summarized to determine the better choice. Through the present review, we hope to expand the current knowledge of the pathophysiological basis of stress-induced LUTD and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Larissa V. Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Larissa V. Rodríguez,
| |
Collapse
|
10
|
Ihara T, Shimura H, Tsuchiya S, Kanda M, Kira S, Sawada N, Takeda M, Mitsui T, Shigetomi E, Shinozaki Y, Koizumi S. Effects of fatty acid metabolites on nocturia. Sci Rep 2022; 12:3050. [PMID: 35197540 PMCID: PMC8866436 DOI: 10.1038/s41598-022-07096-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 12/05/2022] Open
Abstract
Dysregulation of circadian rhythm can cause nocturia. Levels of fatty acid metabolites, such as palmitoylethanolamide (PEA), 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE), and 4-hydroxy-5E,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid (4-HDoHE), are higher in the serum of patients with nocturia; however, the reason remains unknown. Here, we investigated the circadian rhythm of fatty acid metabolites and their effect on voiding in mice. WT and Clock mutant (ClockΔ19/Δ19) mice, a model for nocturia with circadian rhythm disorder, were used. Levels of serum PEA, 9-HODE, and 4-HDoHEl were measured every 8 h using LC/MS. Voiding pattern was recorded using metabolic cages after administration of PEA, 9-HODE, and 4-HDoHE to WT mice. Levels of serum PEA and 9-HODE fluctuated with circadian rhythm in WT mice, which were lower during the light phase. In contrast, circadian PEA and 9-HODE level deteriorated or retreated in ClockΔ19/Δ19 mice. Levels of serum PEA, 9-HODE, and 4-HDoHE were higher in ClockΔ19/Δ19 than in WT mice. Voiding frequency increased in PEA- and 4-HDoHE-administered mice. Bladder capacity decreased in PEA-administered mice. The changes of these bladder functions in mice were similar to those in elderly humans with nocturia. These findings highlighted the novel effect of lipids on the pathology of nocturia. These may be used for development of biomarkers and better therapies for nocturia.
Collapse
Affiliation(s)
- Tatsuya Ihara
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Hiroshi Shimura
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Sachiko Tsuchiya
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mie Kanda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Satoru Kira
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yoichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
11
|
Ota SM, Kong X, Hut R, Suchecki D, Meerlo P. The impact of stress and stress hormones on endogenous clocks and circadian rhythms. Front Neuroendocrinol 2021; 63:100931. [PMID: 34192588 DOI: 10.1016/j.yfrne.2021.100931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In mammals, daily rhythms in physiology and behavior are under control of a circadian pacemaker situated in the suprachiasmatic nucleus (SCN). This master clock receives photic input from the retina and coordinates peripheral oscillators present in other tissues, maintaining all rhythms in the body synchronized to the environmental light-dark cycle. In line with its function as a master clock, the SCN appears to be well protected against unpredictable stressful stimuli. However, available data indicate that stress and stress hormones at certain times of day are capable of shifting peripheral oscillators in, e.g., liver, kidney and heart, which are normally under control of the SCN. Such shifts of peripheral oscillators may represent a temporary change in circadian organization that facilitates adaptation to repeated stress. Alternatively, these shifts of internal rhythms may represent an imbalance between precisely orchestrated physiological and behavioral processes that may have severe consequences for health and well-being.
Collapse
Affiliation(s)
- Simone Marie Ota
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands; Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Xiangpan Kong
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Roelof Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Peter Meerlo
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| |
Collapse
|
12
|
Christie S, Zagorodnyuk V. Time-of-day dependent changes in guinea pig bladder afferent mechano-sensitivity. Sci Rep 2021; 11:19283. [PMID: 34588547 PMCID: PMC8481311 DOI: 10.1038/s41598-021-98831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023] Open
Abstract
The voiding of urine has a clear circadian rhythm with increased voiding during active phases and decreased voiding during inactive phases. Bladder spinal afferents play a key role in the regulation of bladder storage and voiding, but it is unknown whether they exhibit themselves a potential circadian rhythm. Therefore, this study aimed to determine the mechano- and chemo- sensitivity of three major bladder afferent classes at two opposite day-night time points. Adult female guinea pigs underwent conscious voiding monitoring and bladder ex vivo single unit extracellular afferent recordings at 0300 h and 1500 h to determine day-night modulation of bladder afferent activity. All guinea pigs voided a higher amount of urine at 1500 h compared to 0300 h. This was due to an increased number of voids at 1500 h. The mechano-sensitivity of low- and high-threshold stretch-sensitive muscular-mucosal bladder afferents to mucosal stroking and stretch was significantly higher at 1500 h compared to 0300 h. Low-threshold stretch-insensitive mucosal afferent sensitivity to stroking was significantly higher at 1500 h compared to 0300 h. Further, the chemosensitivity of mucosal afferents to N-Oleoyl Dopamine (endogenous TRPV1 agonist) was also significantly increased at 1500 h compared to 0300 h. This data indicates that bladder afferents exhibit a significant time-of-day dependent variation in mechano-sensitivity which may influence urine voiding patterns. Further studies across a 24 h period are warranted to reveal potential circadian rhythm modulation of bladder afferent activity.
Collapse
Affiliation(s)
- Stewart Christie
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, Australia.
| |
Collapse
|
13
|
Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021; 28:1093-1104. [PMID: 34387005 DOI: 10.1111/iju.14663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
14
|
Different effects of GsMTx4 on nocturia associated with the circadian clock and Piezo1 expression in mice. Life Sci 2021; 278:119555. [PMID: 33930366 DOI: 10.1016/j.lfs.2021.119555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Nocturia is a major problem in geriatric patients. Clock genes regulate circadian bladder function and Piezo type mechanosensitive ion channel component 1 (Piezo1) that senses bladder fullness. We utilized WT and Clock mutant (ClockΔ19/Δ19: nocturia phenotype) mice to determine if the effects of GsMTx4, a Piezo1 inhibitor, is dependent on circadian Piezo1 expression in the bladder. METHODS We compared voiding behavior in mice after the administration of vehicle, low dose, or high dose of GsMTx4. Intraperitoneal injections (IP) were performed at Zeitgeber time (ZT) 0, lower Piezo1 expression phase (ZT0-IP) and ZT12, higher Piezo1 expression phase (ZT12-IP). Urine volume (Uvol), voiding frequency (VF), and urine volume per void (Uvol/v) were measured using metabolic cages. RESULTS VF decreased at ZT12-IP in WT mice only with high dose of GsMTx4 but showed no effects in ClockΔ19/Δ19 mice. VF decreased significantly at ZT0-IP in WT mice after both doses, but only decreased after high dose in ClockΔ19/Δ19 mice. Uvol/v increased in WT mice at ZT0-IP after both doses and at ZT12-IP after high dose. Uvol/v increased in ClockΔ19/Δ19 mice only at ZT0-IP after high dose. GsMTx4 did not affect Uvol in both mice at ZT12-IP. A decrease in Uvol was observed in both mice at ZT0-IP; however, it was unrelated to GsMTx4-IP. CONCLUSIONS The effects of GsMTx4 changed associated with the circadian clock and Piezo1 expression level. The maximum effect occurred during sleep phase in WT. These results may lead to new therapeutic strategies against nocturia.
Collapse
|
15
|
Wu Y, Qi J, Wu C, Rong W. Emerging roles of the TRPV4 channel in bladder physiology and dysfunction. J Physiol 2021; 599:39-47. [PMID: 33052604 DOI: 10.1113/jp279776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential vanilloid type 4, TRPV4, is a polymodal cation channel which can be activated by diverse stimuli including mechanical, thermal and chemical cues. In the urinary bladder, TRPV4 is not only abundantly expressed in the urothelium but may also be localized in subepithelium, detrusor smooth muscles and afferent neurons. Emerging evidence indicates that the TRPV4 channel plays a sensory role in the uroepithelium, where it may regulate the release of sensory mediators such as ATP, which in turn modulates afferent nerve activity in response to bladder filling during the urination cycle. TRPV4 may also directly regulate detrusor contractility and the urothelial barrier function. Altered TRPV4 expression has been detected in various pathological bladder conditions. As such, TRPV4 may be a promising therapeutic target for bladder dysfunctions.
Collapse
Affiliation(s)
- Yanyuan Wu
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Weifang Rong
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Bladder outlet obstruction disrupts circadian bladder function in mice. Sci Rep 2020; 10:11578. [PMID: 32665549 PMCID: PMC7360733 DOI: 10.1038/s41598-020-68499-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
The circadian clock programs daily rhythms and coordinates multiple behavioural processes, including micturition. Partial bladder outlet obstruction (pBOO) in mice produces hyperactive voiding. However, long-term effects of pBOO on bladder function have not been clarified. In this study, we investigated micturition under conditions of impaired circadian bladder function by inducing long-term pBOO by tying the proximal urethra. Micturition behavior was evaluated at 1, 3, 6 and 12 months after surgery. We used automated voided stain on paper method for a precise micturition recording for mice. And quantitative assessment of gene expression was performed at 24 months after pBOO surgery using qRT-PCR procedure. The micturition frequencies in the pBOO group were significantly decreased at 3, 6, and 12 months compared to those at 1 month after operation in the same group (p < 0.05). Body weight of pBOO mice was significantly increased compared to sham operated mice at 12 months. The expression level of mRNA was exhibited a 3.4-fold nominal increased for a 5-HT2B receptor in the pBOO group compared to the sham group. The current study found that long-term pBOO led to disruption of the circadian bladder function (the day/night cycle) in mice, similar to those observed in human as nocturia. This disruption is possible involvement of the gain of body weight and/or serotonergic alteration after pBOO.
Collapse
|
18
|
Schröder A, Aitken KJ, Jiang JX, Sidler M, Tölg C, Siebenaller A, Jeffrey N, Kirwan T, Leslie B, Wu C, Weksberg R, Delgado-Olguin P, Bägli DJ. Persistent myopathy despite release of partial obstruction: in vivo reversal of dysfunction and transcriptional responses using rapamycin. FASEB J 2020; 34:3594-3615. [PMID: 31984552 DOI: 10.1096/fj.201900547rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Current and potential medical therapy for obstruction-induced myopathic bladder dysfunction (from benign prostatic hyperplasia or posterior urethral valves) focuses on symptoms. The persistent tissue pathology and dysfunction after release of obstruction is often deemed irreversible without any systematic therapeutic approaches. As rapamycin can attenuate bladder smooth muscle hypertrophy and dysfunction during the genesis of partial obstruction in vivo, we tested whether rapamycin could improve persistent function after release of obstruction (de-obstruction or REL). Female Sprague-Dawley rat bladders were partially obstructed (PBO) by suturing around both the urethra and a para-urethral steel rod, then removing the rod. One day prior to release of obstruction (preREL), voiding parameters and residual urine volume of preREL+future rapa, preREL+future veh groups were recorded. Release of obstruction (REL) was performed by suture removal following 6 weeks of PBO. For 4 more weeks after the de-obstruction, REL animals were randomized to rapamycin (REL+rapa) or vehicle (REL+veh). PBO for 6 weeks were used as positive controls. In shams, the urethra was exposed, but no suture tied. Voiding parameters and residual urine volume were measured prior to sacrifice of sham and REL+veh or REL+rapa, and PBO. Rapamycin efficacy was tested by pair-wise comparison of changes in individual voiding data from preREL+future veh or preREL+future rapa versus REL+veh or REL+rapa, respectively, as well as by comparisons of REL+veh to REL+rapa groups. Bladders were weighed and processed for a high-throughput QPCR array, and histopathology. Bladder/body mass ratios with PBO increased significantly and remained higher in the release phase in REL+veh animals. REL+rapa versus REL+veh improved residual volumes and micturition fractions toward sham levels. Three genes encoding extracellular proteins, BMP2, SOD3, and IGFBP7, correlated with functional improvement by Pearson's correlations. The promoters of these genes showed enrichment for several motifs including circadian E-boxes. While obstruction and REL augmented CLOCK and NPAS2 expression above sham levels, rapamycin treatment during release significantly blocked their expression. This experimental design of pharmaco-intervention during the de-obstruction phase revealed a novel pathway dysregulated during the clinically relevant treatment phase of obstructive bladder myopathy.
Collapse
Affiliation(s)
- Annette Schröder
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Karen J Aitken
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Jia-Xin Jiang
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Sidler
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cornelia Tölg
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Aliza Siebenaller
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Nefateri Jeffrey
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tyler Kirwan
- Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Bruno Leslie
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rosanna Weksberg
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Darius J Bägli
- Urology Division, Department of Surgery, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|