1
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Honeker LK, Pugliese G, Ingrisch J, Fudyma J, Gil-Loaiza J, Carpenter E, Singer E, Hildebrand G, Shi L, Hoyt DW, Chu RK, Toyoda J, Krechmer JE, Claflin MS, Ayala-Ortiz C, Freire-Zapata V, Pfannerstill EY, Daber LE, Meeran K, Dippold MA, Kreuzwieser J, Williams J, Ladd SN, Werner C, Tfaily MM, Meredith LK. Drought re-routes soil microbial carbon metabolism towards emission of volatile metabolites in an artificial tropical rainforest. Nat Microbiol 2023; 8:1480-1494. [PMID: 37524975 PMCID: PMC10390333 DOI: 10.1038/s41564-023-01432-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/19/2023] [Indexed: 08/02/2023]
Abstract
Drought impacts on microbial activity can alter soil carbon fate and lead to the loss of stored carbon to the atmosphere as CO2 and volatile organic compounds (VOCs). Here we examined drought impacts on carbon allocation by soil microbes in the Biosphere 2 artificial tropical rainforest by tracking 13C from position-specific 13C-pyruvate into CO2 and VOCs in parallel with multi-omics. During drought, efflux of 13C-enriched acetate, acetone and C4H6O2 (diacetyl) increased. These changes represent increased production and buildup of intermediate metabolites driven by decreased carbon cycling efficiency. Simultaneously,13C-CO2 efflux decreased, driven by a decrease in microbial activity. However, the microbial carbon allocation to energy gain relative to biosynthesis was unchanged, signifying maintained energy demand for biosynthesis of VOCs and other drought-stress-induced pathways. Overall, while carbon loss to the atmosphere via CO2 decreased during drought, carbon loss via efflux of VOCs increased, indicating microbially induced shifts in soil carbon fate.
Collapse
Affiliation(s)
- Linnea K Honeker
- Biosphere 2, University of Arizona, Tucson, AZ, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Giovanni Pugliese
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Jane Fudyma
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | | | | | - Gina Hildebrand
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Lingling Shi
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - David W Hoyt
- Environmental Molecular Science Laboratory (EMSL), Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rosalie K Chu
- Environmental Molecular Science Laboratory (EMSL), Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason Toyoda
- Environmental Molecular Science Laboratory (EMSL), Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jordan E Krechmer
- Aerodyne Research, Inc., Billerica, MA, USA
- Bruker Daltonics Inc., Billerica, MA, USA
| | | | | | | | - Eva Y Pfannerstill
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - L Erik Daber
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | | | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Malak M Tfaily
- Department of Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Laura K Meredith
- Biosphere 2, University of Arizona, Tucson, AZ, USA.
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Ferrante M, Lövei GL, Nunes R, Monjardino P, Lamelas-López L, Möller D, Soares AO, Borges PA. Gains and losses in ecosystem services and disservices after converting native forest to agricultural land on an oceanic island. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat Commun 2021; 12:5308. [PMID: 34489463 PMCID: PMC8421443 DOI: 10.1038/s41467-021-25675-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.
Collapse
Affiliation(s)
- Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - David Zezula
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Philipp Gündler
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marina Jecmenica
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Effects of Abiotic Stress on Soil Microbiome. Int J Mol Sci 2021; 22:ijms22169036. [PMID: 34445742 PMCID: PMC8396473 DOI: 10.3390/ijms22169036] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
Collapse
|
6
|
Sayer EJ, Crawford JA, Edgerley J, Askew AP, Hahn CZ, Whitlock R, Dodd IC. Adaptation to chronic drought modifies soil microbial community responses to phytohormones. Commun Biol 2021; 4:516. [PMID: 33941844 PMCID: PMC8093232 DOI: 10.1038/s42003-021-02037-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
Drought imposes stress on plants and associated soil microbes, inducing coordinated adaptive responses, which can involve plant-soil signalling via phytohormones. However, we know little about how microbial communities respond to phytohormones, or how these responses are shaped by chronic (long-term) drought. Here, we added three phytohormones (abscisic acid, 1-aminocyclopropane-1-carboxylic acid, and jasmonic acid) to soils from long-term (25-year), field-based climate treatments to test the hypothesis that chronic drought alters soil microbial community responses to plant stress signalling. Phytohormone addition increased soil respiration, but this effect was stronger in irrigated than in droughted soils and increased soil respiration at low phytohormone concentrations could not be explained by their use as substrate. Thus, we show that drought adaptation within soil microbial communities modifies their responses to phytohormone inputs. Furthermore, distinct phytohormone-induced shifts in microbial functional groups in droughted vs. irrigated soils might suggest that drought-adapted soil microorganisms perceive phytohormones as stress-signals, allowing them to anticipate impending drought.
Collapse
Affiliation(s)
- Emma J Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - John A Crawford
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - James Edgerley
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew P Askew
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Christoph Z Hahn
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Raj Whitlock
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
7
|
Lohmann P, Benk S, Gleixner G, Potthast K, Michalzik B, Jehmlich N, von Bergen M. Seasonal Patterns of Dominant Microbes Involved in Central Nutrient Cycles in the Subsurface. Microorganisms 2020; 8:E1694. [PMID: 33143231 PMCID: PMC7716230 DOI: 10.3390/microorganisms8111694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Microbial communities play a key role for central biogeochemical cycles in the subsurface. Little is known about whether short-term seasonal drought and rewetting events influence the dominant microbes involved in C- and N-cycles. Here, we applied metaproteomics at different subsurface sites in winter, summer and autumn from surface litter layer, seepage water at increasing subsoil depths and remote located groundwater from two wells within the Hainich Critical Zone Exploratory, Germany. We observed changes in the dominance of microbial families at subsurface sampling sites with increasing distances, i.e., Microcoleaceae dominated in topsoil seepage, while Candidatus Brocadiaceae dominated at deeper and more distant groundwater wells. Nitrifying bacteria showed a shift in dominance from drought to rewetting events from summer by Nitrosomandaceae to autumn by Candidatus Brocadiaceae. We further observed that the reductive pentose phosphate pathway was a prominent CO2-fixation strategy, dominated by Woeseiaceae in wet early winter, which decreased under drought conditions and changed to a dominance of Sphingobacteriaceae under rewetting conditions. This study shows that increasing subsurface sites and rewetting event after drought alter the dominances of key subsurface microbes. This helps to predict the consequences of annual seasonal dynamics on the nutrient cycling microbes that contribute to ecosystem functioning.
Collapse
Affiliation(s)
- Patrick Lohmann
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research GmbH—UFZ, 04318 Leipzig, Germany; (P.L.); (N.J.)
| | - Simon Benk
- Department of Molecular Biogeochemistry, Max-Planck-Institute for Biogeochemistry, 07745 Jena, Germany; (S.B.); (G.G.)
| | - Gerd Gleixner
- Department of Molecular Biogeochemistry, Max-Planck-Institute for Biogeochemistry, 07745 Jena, Germany; (S.B.); (G.G.)
| | - Karin Potthast
- Department of Soil Science, Friedrich Schiller University, 07743 Jena, Germany; (K.P.); (B.M.)
| | - Beate Michalzik
- Department of Soil Science, Friedrich Schiller University, 07743 Jena, Germany; (K.P.); (B.M.)
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research GmbH—UFZ, 04318 Leipzig, Germany; (P.L.); (N.J.)
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research GmbH—UFZ, 04318 Leipzig, Germany; (P.L.); (N.J.)
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Liu F, Mo X, Kong W, Song Y. Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140144. [PMID: 32562999 DOI: 10.1016/j.scitotenv.2020.140144] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Soil microorganisms play a key role in regulating the biogeochemical cycles of ecosystems. However, studies that quantitatively examine bacterial metabolic groups to predict the environmental and biological impacts are limited. In this research, we employed 16S rRNA gene sequencing on an Illumina MiSeq platform to analyze bacterial diversity, structure, function, and driving factors of Suaeda salsa in rhizosphere and non-rhizosphere soils in intertidal and supratidal habitats in the Yellow River Delta, China. Results showed that bacterial richness and Shannon diversity index of the rhizosphere soil were greater in the intertidal than in the supratidal habitat. Although the bacteria of the two habitats changed extremely in community structure, the bacterial groups related to carbohydrate metabolism (CM) and amino acid metabolism (AAM) had higher abundance than the other groups in both habitats. Furthermore, they were higher in the supratidal than the intertidal habitats, and bacterial groups associated with energy metabolism (EM) are opposite. Furthermore, bacterial diversity showed no significant difference between the rhizosphere and non-rhizosphere soils. In the intertidal habitat, the rhizosphere soil had higher EM but lower AAM and CM than the non-rhizosphere soil, which indicated that bacterial structure and function were obviously influenced by the root exudates of S. salsa under flooding and salt stresses. Redundancy analysis showed that the dominant phyla were significantly affected by available phosphorus (51.0%), total potassium (32.2%), moisture content (28.1%), available potassium (25.3%), electrical conductivity (24.2%), total nitrogen (22.8%), total carbon (21.9%), and soil organic matter (21.0%). Overall, the findings provide important insights into the roles of bacterial groups in coastal wetland under climate changes.
Collapse
Affiliation(s)
- Fude Liu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue Mo
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Weijing Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ye Song
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Jinan Fruit Research Institute, All China Federation of Supply & Marketing Co-operatives, Jinan 250014, China.
| |
Collapse
|
9
|
Manzanera M. Dealing with water stress and microbial preservation. Environ Microbiol 2020; 23:3351-3359. [PMID: 32452073 DOI: 10.1111/1462-2920.15096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/31/2023]
Abstract
The relevance of preserving microorganisms has been well accepted for several decades. Interest is now shifting towards investigating adequate preservation methods to improve microbial survival rates and to preserve new taxa of previously considered unculturable microorganisms. In addition, a growing interest in preserving fragile microbial consortia or communities with biotechnological interest motivates the improvement of preservation methods. In the present study, we reviewed the effect of water availability in microbial diversity shift. We describe the effect of drought on microorganisms at the molecular level and their molecular responses to this life-threatening challenge focusing on the production of xeroprotectants. We also review the interspecies interactions of those drought-tolerant microorganisms with other sensitive organisms including neighbouring prokaryotes and eukaryotes such as plants, and the potential role of these microorganisms at determining the ecological composition of stressed environments. We emphasize the importance of applying the knowledge derived from the molecular mechanisms used by desiccation-tolerant microorganisms for the improvement of the preservation techniques. An overview of the current and newer techniques for preserving microorganisms and microbial communities is provided. The biotechnological interest in preserving pure cultures, microbial consortia and communities is also discussed.
Collapse
Affiliation(s)
- Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| |
Collapse
|