1
|
Popescu I, Dudău AM, Dima S, Herlea V, Croitoru VM, Dinu IM, Miron M, Lupescu I, Croitoru-Cazacu IM, Dumitru R, Croitoru AE. Multimodal Treatment of Metastatic Rectal Cancer in a Young Patient: Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:696. [PMID: 38792879 PMCID: PMC11123219 DOI: 10.3390/medicina60050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Metastatic colorectal cancer requires a multidisciplinary and individualized approach. Herein, we reported the case of a young woman diagnosed with metastatic rectal cancer who received an individualized multimodal treatment strategy that resulted in a remarkable survival. There were several particular aspects of this case, such as the early onset of the disease, the successful use of conversion therapy, the application of liquid biopsy to guide treatment, and the specific nature of the bone metastasis. To offer more insights for navigating such challenges in patients with metastatic colorectal cancer, we have conducted a literature review to find more data related to the particularities of this case. The incidence of early onset colorectal cancer is on the rise. Data suggests that it differs from older-onset colorectal cancer in terms of its pathological, epidemiological, anatomical, metabolic, and biological characteristics. Conversion therapy and surgical intervention provide an opportunity for cure and improve outcomes in metastatic colorectal cancer. It is important to approach each case individually, as every patient with limited liver disease should be considered as a candidate for secondary resection. Moreover, liquid biopsy has an important role in the individualized management of metastatic colorectal cancer patients, as it offers additional information for treatment decisions.
Collapse
Affiliation(s)
- Ionuț Popescu
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
| | - Ana-Maria Dudău
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Simona Dima
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad Herlea
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Pathology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Ioana Mihaela Dinu
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Monica Miron
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Ioana Lupescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irina M. Croitoru-Cazacu
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
| | - Radu Dumitru
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Adina Emilia Croitoru
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
| |
Collapse
|
2
|
Perea J, Gallagher P, Delores A. Lights and shadows in the early-onset colorectal cancer management and research: An integrative perspective - Physician scientist with patient advocates. Best Pract Res Clin Gastroenterol 2023; 66:101851. [PMID: 37852716 DOI: 10.1016/j.bpg.2023.101851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 07/04/2023] [Indexed: 10/20/2023]
Abstract
Early-onset colorectal cancer (age under 50 years) (EOCRC) is an entity of undeniable importance, both because of its growing incidence, and the population it affects. Other current reviews emphasize the essential points regarding the clinical management and knowledge of its molecular bases. However, we intend to go one step further. With the increased significance of patient participation and disease experience in mind, we have integrated the voice of the patient to show the weaknesses and the needs, and next steps in the advancement of knowledge and management of EOCRC. This integrative review of the different perspectives, clinical, research and the patients themselves, can therefore be defined as an integrative needs assessment. Hence, this may be a first step in working towards an essential homogeneity of definitions and action.
Collapse
Affiliation(s)
- José Perea
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain; Department of Surgery. Vithas Arturo Soria University Hospital, Madrid, Spain.
| | | | - Annie Delores
- Fight Colorectal Cancer, USA; KRAS Kickers, USA; Colon Cancer Stars, USA
| |
Collapse
|
3
|
Ullah F, Pillai AB, Omar N, Dima D, Harichand S. Early-Onset Colorectal Cancer: Current Insights. Cancers (Basel) 2023; 15:3202. [PMID: 37370811 DOI: 10.3390/cancers15123202] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decade, the incidence of colorectal cancer has increased in individuals under the age of 50 years. Meanwhile, the incidence has gradually decreased in the older population. As described herein, we reviewed the available literature to summarize the current landscape of early-onset colorectal cancer, including risk factors, clinicopathological presentation, genetic makeup of patients, and management. Currently, early-onset colorectal cancer is treated similarly as late-onset colorectal cancer, yet the available literature shows that early-onset colorectal cancer is more aggressive and different, and this remains a significant unmet need. A detailed understanding of early-onset colorectal cancer is needed to identify risk factors for the increased incidence and tailor treatments accordingly.
Collapse
Affiliation(s)
- Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ashwathy Balachandran Pillai
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Najiullah Omar
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Danai Dima
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Seema Harichand
- Department of Internal Medicine, Mission Cancer + Blood, University of Iowa, Des Moines, IA 50309, USA
| |
Collapse
|
4
|
Cecere F, Pignata L, Hay Mele B, Saadat A, D'Angelo E, Palumbo O, Palumbo P, Carella M, Scarano G, Rossi GB, Angelini C, Sparago A, Cerrato F, Riccio A. Co-Occurrence of Beckwith-Wiedemann Syndrome and Early-Onset Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071944. [PMID: 37046605 PMCID: PMC10093120 DOI: 10.3390/cancers15071944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.
Collapse
Affiliation(s)
- Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Bruno Hay Mele
- Department of Biology, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Abu Saadat
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Emilia D'Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gioacchino Scarano
- Medical Genetics Unit, Azienda Ospedaliera "San Pio" P."Gaetano Rummo", 82100 Benevento, Italy
| | | | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo (IAC) "Mauro Picone", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- Institute of Genetics and e Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| |
Collapse
|
5
|
Okada Y, Peng F, Perea J, Corchete L, Bujanda L, Li W, Goel A. Genome-wide methylation profiling identifies a novel gene signature for patients with synchronous colorectal cancer. Br J Cancer 2023; 128:112-120. [PMID: 36319845 PMCID: PMC9814149 DOI: 10.1038/s41416-022-02033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND There are no robust tools for the diagnosis of synchronous colorectal cancer (SyCRC). Herein, we developed the first methylation signature to identify and characterise patients with SyCRC. METHODS For biomarker discovery, we analysed the genome-wide methylation profiles of 16 SyCRC and 18 solitary colorectal cancer (SoCRC) specimens. We thereafter established a methylation signature risk-scoring model to identify SyCRC in an independent cohort of 38 SyCRC and 42 SoCRC patients. In addition, we evaluated the prognostic value of the identified methylation profile. RESULTS We identified six differentially methylated CpG probes/sites that distinguished SyCRC from SoCRC. In the validation cohort, we developed a methylation panel that identified patients with SyCRC from not only larger tumour (AUC = 0.91) but also the paired remaining tumour (AUC = 0.93). Moreover, high risk scores of our panel were associated with the development of metachronous CRC among patients with SyCRC (AUC = 0.87) and emerged as an independent predictor for relapse-free survival (hazard ratio = 2.72; 95% CI = 1.12-6.61). Furthermore, the risk stratification model which combined with clinical risk factors was a diagnostic predictor of recurrence (AUC = 0.90). CONCLUSIONS Our novel six-gene methylation panel robustly identifies patients with SyCRC, which has the clinical potential to improve the diagnosis and management of patients with CRC.
Collapse
Affiliation(s)
- Yasuyuki Okada
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Fuduan Peng
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - José Perea
- Molecular Medicine Unit. Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Surgery Department, Vithas Arturo Soria University Hospital and School of Medicine, European University of Madrid, Madrid, Spain
| | - Luis Corchete
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Center (CiC-IBMCC, CSIC/USAL), Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Luis Bujanda
- Gastroenterology Department, Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
6
|
Hong J, Rhee JK. Genomic Effect of DNA Methylation on Gene Expression in Colorectal Cancer. BIOLOGY 2022; 11:1388. [PMID: 36290295 PMCID: PMC9598958 DOI: 10.3390/biology11101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The aberrant expression of cancer-related genes can lead to colorectal cancer (CRC) carcinogenesis, and DNA methylation is one of the causes of abnormal expression. Although many studies have been conducted to reveal how DNA methylation affects transcription regulation, the ways in which it modulates gene expression and the regions that significantly affect DNA methylation-mediated gene regulation remain unclear. In this study, we investigated how DNA methylation in specific genomic areas can influence gene expression. Several regression models were constructed for gene expression prediction based on DNA methylation. Among these models, ElasticNet, which had the best performance, was chosen for further analysis. DNA methylation near transcription start sites (TSS), especially from 2 kb upstream to 7 kb downstream of TSS, had an essential regulatory role in gene expression. Moreover, methylation-affected and survival-associated genes were compiled and found to be mainly enriched in immune-related pathways. This study investigated genomic regions in which methylation changes can affect gene expression. In addition, this study proposed that aberrantly expressed genes due to DNA methylation can lead to CRC pathogenesis by the immune system.
Collapse
Affiliation(s)
| | - Je-Keun Rhee
- Department of Bioinformatics & Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
7
|
Multivariate Risk Analysis of RAS, BRAF and EGFR Mutations Allelic Frequency and Coexistence as Colorectal Cancer Predictive Biomarkers. Cancers (Basel) 2022; 14:cancers14112792. [PMID: 35681771 PMCID: PMC9179415 DOI: 10.3390/cancers14112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The colorectal cancer (CRC) stage and evolution should be described by biomarker profiles. In 60 CRC cases, KRAS, NRAS, BRAF, and EGFR mutations were analyzed by droplet digital PCR (ddPCR). KRAS G12/G13 mutation was present in all patients with variable allelic frequencies. KRAS Q61 mutation was correlated with tumor invasion beyond the subserosa and poor differentiation, both associated with worst prognosis. Tumors with NRAS and BRAF mutations were prevalently localized on the right segment colon. The discovery of the KRAS Q61 role in tumor phenotypes provides the foundation for new therapeutic strategies and perspectives on molecular subtypes classification of CRC. Abstract Background: Biomarker profiles should represent a coherent description of the colorectal cancer (CRC) stage and its predicted evolution. Methods: Using droplet digital PCR, we detected the allelic frequencies (AF) of KRAS, NRAS, BRAF, and EGFR mutations from 60 tumors. We employed a pair-wise association approach to estimate the risk involving AF mutations as outcome variables for clinical data and as predicting variables for tumor-staging. We evaluated correlations between mutations of AFs and also between the mutations and histopathology features (tumor staging, inflammation, differentiation, and invasiveness). Results: KRAS G12/G13 mutations were present in all patients. KRAS Q61 was significantly associated with poor differentiation, high desmoplastic reaction, invasiveness (ypT4), and metastasis (ypM1). NRAS and BRAF were associated with the right-side localization of tumors. Diabetic patients had a higher risk to exhibit NRAS G12/G13 mutations. BRAF and NRAS G12/G13 mutations co-existed in tumors with invasiveness limited to the submucosa. Conclusions: The associations we found and the mutational AF we reported may help to understand disease processes and may be considered as potential CCR biomarker candidates. In addition, we propose representative mutation panels associated with specific clinical and histopathological features of CRC, as a unique opportunity to refine the degree of personalization of CRC treatment.
Collapse
|
8
|
Wu CWK, Lui RN. Early-onset colorectal cancer: Current insights and future directions. World J Gastrointest Oncol 2022; 14:230-241. [PMID: 35116113 PMCID: PMC8790420 DOI: 10.4251/wjgo.v14.i1.230] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC) has seen an alarming rise worldwide over the past two decades. The reason for this global trend is poorly understood. EOCRC appears to have its own unique clinical and molecular features when compared with late-onset colorectal cancer. Younger patients appear to have more distal or rectal disease, a more advanced stage of disease at presentation, and more unfavorable histological features. Identifying risk factors for EOCRC is the first step in mitigating the rising burden of this disease. Here we summarize several noteworthy biological factors and environmental exposures that are postulated to be responsible culprits. This can hopefully translate in clinical practice to the development of better risk stratification tool for identifying high-risk individuals for early colorectal cancer screening, and identifying areas needed for further research to curb this rising trend.
Collapse
Affiliation(s)
- Claudia Wing-Kwan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Rashid N Lui
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Interaction between Microsatellite Instability (MSI) and Tumor DNA Methylation in the Pathogenesis of Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13194956. [PMID: 34638440 PMCID: PMC8508563 DOI: 10.3390/cancers13194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In colorectal cancer (CRC), mutations may occur in short, repeated DNA sequences, known as microsatellite instability (MSI). Tumor DNA methylation is another molecular change now recognized as an important biomarker in CRC. In a genome-wide scale, for the first time, we explored whether DNA methylation is associated with MSI status in CRC. We analyzed 250 paired samples (tumor and corresponding normal) from 125 CRC patients (m = 72, f = 53) at different stages. We found that many genes were methylated in tumor tissue compared to normal tissue. However, almost four times more genes showed such methylation changes in the tumor if the patient who also had MSI compared to patients without MSI. Our study shows an association of MSI and DNA methylation in CRC. The study also indicates an opportunity for potential use of certain immune checkpoint inhibitors (CTLA4 and HAVCR2 inhibitors) in CRC with MSI. Abstract In colorectal cancer (CRC), the role of microsatellite instability (MSI) is well known. In a genome-wide scale, for the first time, we explored whether differential methylation is associated with MSI. We analyzed 250 paired samples from 125 CRC patients (m = 72, f = 53) at different stages. Of them, 101 had left-sided CRC, 30 had MSI, 34 had somatic mutation in KRAS proto-oncogene (KRAS), and 6 had B-Raf proto-oncogene (BRAF) exon 15p.V600E mutation. MSI was more frequent in right-sided tumors (54% vs. 17%, p = 0.003). Among the microsatellite stable (MSS) CRC, a paired comparison revealed 1641 differentially methylated loci (DML) covering 686 genes at FDR 0.001 with delta beta ≥ 20%. Similar analysis in MSI revealed 6209 DML covering 2316 genes. ANOVA model including interaction (Tumor*MSI) revealed 23,322 loci, where the delta beta was different among MSI and MSS patients. Our study shows an association between MSI and tumor DNA methylation in the pathogenesis of CRC. Given the interaction seen in this study, it may be worth considering the MSI status while looking for methylation markers in CRC. The study also indicates an opportunity for potential use of certain immune checkpoint inhibitors (CTLA4 and HAVCR2 inhibitors) in CRC with MSI.
Collapse
|
10
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
11
|
A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel) 2021; 13:cancers13092025. [PMID: 33922197 PMCID: PMC8122718 DOI: 10.3390/cancers13092025] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
This review article contains a concise consideration of genetic and environmental risk factors for colorectal cancer. Known risk factors associated with colorectal cancer include familial and hereditary factors and lifestyle-related and ecological factors. Lifestyle factors are significant because of the potential for improving our understanding of the disease. Physical inactivity, obesity, smoking and alcohol consumption can also be addressed through therapeutic interventions. We also made efforts to systematize available literature and data on epidemiology, diagnosis, type and nature of symptoms and disease stages. Further study of colorectal cancer and progress made globally is crucial to inform future strategies in controlling the disease's burden through population-based preventative initiatives.
Collapse
|
12
|
Perea J, García JL, Corchete L, Tapial S, Olmedillas-López S, Vivas A, García-Olmo D, Urioste M, Goel A, González-Sarmiento R. A clinico-pathological and molecular analysis reveals differences between solitary (early and late-onset) and synchronous rectal cancer. Sci Rep 2021; 11:2202. [PMID: 33500439 PMCID: PMC7838158 DOI: 10.1038/s41598-020-79118-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Rectal cancer (RC) appears to behave differently compared with colon cancer. We aimed to analyze existence of different subtypes of RC depending on distinct features (age of onset and the presence of synchronous primary malignant neoplasms). We compared the clinicopathological, familial and molecular features of three different populations diagnosed with RC (early-onset RC [EORC], late-onset RC, and synchronous RC [SRC]). Eighty-five RCs were identified and were evaluated according to their microsatellite instability, CpG Island Methylator Phenotype (CIMP) and chromosomal instability, as assessed by Next Generation Sequencing and microarray-based comparative genomic hybridization approaches. The results were subjected to cluster analysis. SRCs displayed the most specific characteristics including a trend for the development of multiple malignant neoplasms, a greater proportion of CIMP-High tumors (75%) and more frequent genomic alterations. These findings were confirmed by a clustering analysis that stratified RCs according to their genomic alterations. We also found that EORCs exhibited their own features including an important familial cancer component and a remarkable rate of mutations in TP53 (53%). Together, heterogeneity in RC characteristics by age of disease-onset and SRC warrants further study to optimize tailored prevention, detection and intervention strategies-particularly among young adults.
Collapse
Affiliation(s)
- José Perea
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28040, Madrid, Spain.
- Health Research Institute, Fundación Jiménez Díaz University Hospital, 28040, Madrid, Spain.
| | - Juan L García
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-SACYL-CSIC, 37007, Salamanca, Spain
| | - Luis Corchete
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-SACYL-CSIC, 37007, Salamanca, Spain
| | - Sandra Tapial
- Digestive Cancer Research Group, 12 de Octubre Research Institute, 28041, Madrid, Spain
| | | | - Alfredo Vivas
- Department of Surgery, 12 de Octubre University Hospital, 28041, Madrid, Spain
| | - Damián García-Olmo
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28040, Madrid, Spain
- Health Research Institute, Fundación Jiménez Díaz University Hospital, 28040, Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Monrovia, CA, 91016, USA
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-SACYL-CSIC, 37007, Salamanca, Spain
| |
Collapse
|
13
|
Plowman PN, Plowman CE. Onco-ontogeny recapitulates phylogeny - a consideration. Oncogene 2021; 40:1542-1550. [PMID: 33452457 DOI: 10.1038/s41388-020-01624-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- P N Plowman
- Department of Clinical Oncology, St. Bartholomew's Hospital, West Smithfield, London, UK.
| | | |
Collapse
|
14
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Automated imaging cytometry reveals dysplastic indices of colonic serrated adenomas. Future Sci OA 2020; 6:FSO459. [PMID: 32257372 PMCID: PMC7117562 DOI: 10.2144/fsoa-2019-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: Left-sided colonic serrated adenomas (L-SAs) were evaluated for aneuploidy using automated imaging cytometry to quantify DNA content and compared with normal colonic tissues (NCT), tubular adenomas (TA), left-sided hyperplastic polyps (L-HP) and adenocarcinomas. Materials & methods: We used standard paraffin-embedded Feulgen-stained tissue sections. Results: The mean DNA index (DI) of NCT was 0.95, L-HP was 1.08, TA was 1.22, L-SA was 1.11 and adenocarcinomas was 1.46. DI of L-SA was statistically higher than that of NCT, but not statistically different from L-HP. Conclusion: This study demonstrates that DIs correlate with the described neoplastic progression of L-SA, TA and L-SA compared with NCT and suggests that L-SA may be involved in a chromosome instability pathway of neoplastic progression. Colon cancer remains a deadly disease, with a significant burden of illness to patients and healthcare systems. While most precursor lesions will not necessarily produce cancers, they vary in histology and potential for neoplastic progression. Aneuploidy or abnormal chromosomal content of a cell is considered a marker for chromosomal instability and neoplastic progression. However, conventional methods of assessment can be laborious, costly and may even underestimate its malignant potential if the lesion is focal, small and surrounded by normal stromal cells in the sampled tissue. We used a nuclear stain to detect and quantify aneuploidy on conventionally prepared colonic precancerous histological slides and in particular assessed serrated and hyperplastic polyps of the left colon. When compared with normal tissues, we determined that there was aneuploidy in these lesions, which supports the underappreciated assumption that these lesions manifest chromosomal instability.
Collapse
|
16
|
Kasprzak A, Adamek A. Insulin-Like Growth Factor 2 (IGF2) Signaling in Colorectal Cancer-From Basic Research to Potential Clinical Applications. Int J Mol Sci 2019; 20:ijms20194915. [PMID: 31623387 PMCID: PMC6801528 DOI: 10.3390/ijms20194915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in men and women worldwide as well as is the leading cause of death in the western world. Almost a third of the patients has or will develop liver metastases. While genetic as well as epigenetic mechanisms are important in CRC pathogenesis, the basis of the most cases of cancer is unknown. High spatial and inter-patient variability of the molecular alterations qualifies this cancer in the group of highly heterogeneous tumors, which makes it harder to elucidate the mechanisms underlying CRC progression. Determination of highly sensitive and specific early diagnosis markers and understanding the cellular and molecular mechanism(s) of cancer progression are still a challenge of the current era in oncology of solid tumors. One of the accepted risk factors for CRC development is overexpression of insulin-like growth factor 2 (IGF2), a 7.5-kDa peptide produced by liver and many other tissues. IGF2 is the first gene discovered to be parentally imprinted. Loss of imprinting (LOI) or aberrant imprinting of IGF2 could lead to IGF2 overexpression, increased cell proliferation, and CRC development. IGF2 as a mitogen is associated with increased risk of developing colorectal neoplasia. Higher serum IGF2 concentration as well as its tissue overexpression in CRC compared to control are associated with metastasis. IGF2 protein was one of the three candidates for a selective marker of CRC progression and staging. Recent research indicates dysregulation of different micro- and long non-coding RNAs (miRNAs and lncRNAs, respectively) embedded within the IGF2 gene in CRC carcinogenesis, with some of them indicated as potential diagnostic and prognostic CRC biomarkers. This review systematises the knowledge on the role of genetic and epigenetic instabilities of IGF2 gene, free (active form of IGF2) and IGF-binding protein (IGFBP) bound (inactive form), paracrine/autocrine secretion of IGF2, as well as mechanisms of inducing dysplasia in vitro and tumorigenicity in vivo. We have tried to answer which molecular changes of the IGF2 gene and its regulatory mechanisms have the most significance in initiation, progression (including liver metastasis), prognosis, and potential anti-IGF2 therapy in CRC patients.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznan, Poland.
| |
Collapse
|