1
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
2
|
Pho T, Janecka MA, Pustulka SM, Champion JA. Nanoetched Stainless Steel Architecture Enhances Cell Uptake of Biomacromolecules and Alters Protein Corona Abundancy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58427-58438. [PMID: 39417567 PMCID: PMC11533172 DOI: 10.1021/acsami.4c14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Nanotexture on biocompatible surfaces promotes cell adhesion and proliferation. High aspect ratio nanoachitecture serves as an ideal interface between implant materials and host cells that is well-suited for localized therapeutic delivery. Despite this potential, nanotextured surfaces have not been widely applied for biomacromolecule delivery. Here, we employed a low-cost, industrially relevant nanoetching process to modify the surface of biocompatible stainless steel 316 (SS316L), creating nanotextured SS316L (NT-SS316L) as a material for intracellular biomacromolecule delivery. As biomacromolecule cargoes are adsorbed to the steel and ultimately would be used in protein-rich environments, we performed serum protein corona analysis on unmodified SS316L and NT-SS316L using tandem mass spectrometry. We observed an increase in proteins associated with cell adhesion on the surface of NT-SS316L compared to that of SS316L, supporting literature reports of enhanced adhesion on nanotextured materials. For delivery to adherent cells, a "hard corona" of model biomacromolecule cargoes including superfolder green fluorescent protein (sfGFP) charge variants, cytochrome c, and siRNA was adsorbed on NT-SS316L to assess delivery. Nanotextured surfaces enhanced cellular biomacromolecule uptake and delivered cytosolic-functional proteins and nucleic acids through energy-dependent endocytosis. Collectively, these findings indicate that NT-SS316L holds potential as a surface modification for implants to achieve localized drug delivery for a variety of biomedical applications.
Collapse
Affiliation(s)
- Thomas Pho
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maeve A. Janecka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Samantha M. Pustulka
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
- BioEngineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Incocciati A, Cappelletti C, Masciarelli S, Liccardo F, Piacentini R, Giorgi A, Bertuccini L, De Berardis B, Fazi F, Boffi A, Bonamore A, Macone A. Ferritin-based disruptor nanoparticles: A novel strategy to enhance LDL cholesterol clearance via multivalent inhibition of PCSK9-LDL receptor interaction. Protein Sci 2024; 33:e5111. [PMID: 39150051 PMCID: PMC11328107 DOI: 10.1002/pro.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
Hypercholesterolemia, characterized by elevated low-density lipoprotein (LDL) cholesterol levels, is a significant risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol metabolism by regulating LDL receptor degradation, making it a therapeutic target for mitigating hypercholesterolemia-associated risks. In this context, we aimed to engineer human H ferritin as a scaffold to present 24 copies of a PCSK9-targeting domain. The rationale behind this protein nanoparticle design was to disrupt the PCSK9-LDL receptor interaction, thereby attenuating the PCSK9-mediated impairment of LDL cholesterol clearance. The N-terminal sequence of human H ferritin was engineered to incorporate a 13-amino acid linear peptide (Pep2-8), which was previously identified as the smallest PCSK9 inhibitor. Exploiting the quaternary structure of ferritin, engineered nanoparticles were designed to display 24 copies of the targeting peptide on their surface, enabling a multivalent binding effect. Extensive biochemical characterization confirmed precise control over nanoparticle size and morphology, alongside robust PCSK9-binding affinity (KD in the high picomolar range). Subsequent efficacy assessments employing the HepG2 liver cell line demonstrated the ability of engineered ferritin's ability to disrupt PCSK9-LDL receptor interaction, thereby promoting LDL receptor recycling on cell surfaces and consequently enhancing LDL uptake. Our findings highlight the potential of ferritin-based platforms as versatile tools for targeting PCSK9 in the management of hypercholesterolemia. This study not only contributes to the advancement of ferritin-based therapeutics but also offers valuable insights into novel strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Alessio Incocciati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Istituto Superiore di Sanita, Rome, Italy
| | - Barbara De Berardis
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Sheng Y, Chen Z, Cherrier MV, Martin L, Bui TTT, Li W, Lynham S, Nicolet Y, Ebrahimi KH. A Versatile Virus-Mimetic Engineering Approach for Concurrent Protein Nanocage Surface-Functionalization and Cargo Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310913. [PMID: 38726952 DOI: 10.1002/smll.202310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Indexed: 08/02/2024]
Abstract
Naturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen. Here, a versatile engineering approach is described by mimicking the HIV-1 Gap polyprotein precursor. Various PREcursors of nanoCages (PREC) are designed and created by linking two ferritin subunits via a flexible linker peptide containing a protease cleavage site. These precursors can have additional proteins at their N-terminus, and their protease cleavage generates ferritin-like nanocages named protease-induced nanocages (PINCs). It is demonstrated that PINC formation allows concurrent surface decoration with a protein and hydrophilic or hydrophobic drug encapsulation up to fourfold more than the amount achieved using other methods. The PINCs/Drug complex is stable and efficiently kills cancer cells. This work provides insight into the precursors' design rules and the mechanism of PINCs formation. The engineering approach and mechanistic insight described here will facilitate nanocages' applications in drug delivery or as a platform for making multifunctional therapeutics like mosaic vaccines.
Collapse
Affiliation(s)
- Yujie Sheng
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Zilong Chen
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Mickael V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Tam T T Bui
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK
| | - Wei Li
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Steven Lynham
- Proteomics Core Facility, James Black Centre, King's College London, London, SE5 9NU, UK
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Kourosh H Ebrahimi
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| |
Collapse
|
5
|
Olarewaju O, Hu Y, Tsay HC, Yuan Q, Eimterbäumer S, Xie Y, Qin R, Ott M, Sharma AD, Balakrishnan A. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma. Cell Death Dis 2024; 15:456. [PMID: 38937450 PMCID: PMC11211328 DOI: 10.1038/s41419-024-06841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Hepatocellular carcinoma is a primary liver cancer, characterised by diverse etiology, late diagnoses, and poor prognosis. Hepatocellular carcinoma is mostly resistant to current treatment options, therefore, identification of more effective druggable therapeutic targets is needed. We found microRNA miR-20a-5p is upregulated during mouse liver tumor progression and in human hepatocellular carcinoma patients. In this study, we elucidated the therapeutic potential of targeting oncogenic miR-20a-5p, in vivo, in a xenograft model and in two transgenic hepatocellular carcinoma mouse models via adeno-associated virus-mediated miR-20a-Tough-Decoy treatment. In vivo knockdown of miR-20a-5p attenuates tumor burden and prolongs survival in the two independent hepatocellular carcinoma mouse models. We identified and validated cytochrome c as a novel target of miR-20a-5p. Cytochrome c plays a key role in initiation of the apoptotic cascade and in the electron transport chain. We show for the first time, that miR-20a modulation affects both these key functions of cytochrome c during HCC development. Our study thus demonstrates the promising 'two birds with one stone' approach of therapeutic in vivo targeting of an oncogenic miRNA, whereby more than one key deregulated cellular process is affected, and unequivocally leads to more effective attenuation of HCC progression and significantly longer overall survival.
Collapse
Affiliation(s)
- Olaniyi Olarewaju
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88400, Germany
| | - Yuhai Hu
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hsin-Chieh Tsay
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Simon Eimterbäumer
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany.
- Research Group RNA Therapeutics & Liver Regeneration, REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Barolo L, Gigante Y, Mautone L, Ghirga S, Soloperto A, Giorgi A, Ghirga F, Pitea M, Incocciati A, Mura F, Ruocco G, Boffi A, Baiocco P, Di Angelantonio S. Ferritin nanocage-enabled detection of pathological tau in living human retinal cells. Sci Rep 2024; 14:11533. [PMID: 38773170 PMCID: PMC11109090 DOI: 10.1038/s41598-024-62188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
Tauopathies, including Alzheimer's disease and Frontotemporal Dementia, are debilitating neurodegenerative disorders marked by cognitive decline. Despite extensive research, achieving effective treatments and significant symptom management remains challenging. Accurate diagnosis is crucial for developing effective therapeutic strategies, with hyperphosphorylated protein units and tau oligomers serving as reliable biomarkers for these conditions. This study introduces a novel approach using nanotechnology to enhance the diagnostic process for tauopathies. We developed humanized ferritin nanocages, a novel nanoscale delivery system, designed to encapsulate and transport a tau-specific fluorophore, BT1, into human retinal cells for detecting neurofibrillary tangles in retinal tissue, a key marker of tauopathies. The delivery of BT1 into living cells was successfully achieved through these nanocages, demonstrating efficient encapsulation and delivery into retinal cells derived from human induced pluripotent stem cells. Our experiments confirmed the colocalization of BT1 with pathological forms of tau in living retinal cells, highlighting the method's potential in identifying tauopathies. Using ferritin nanocages for BT1 delivery represents a significant contribution to nanobiotechnology, particularly in neurodegenerative disease diagnostics. This method offers a promising tool for the early detection of tau tangles in retinal tissue, with significant implications for improving the diagnosis and management of tauopathies. This study exemplifies the integration of nanotechnology with biomedical science, expanding the frontiers of nanomedicine and diagnostic techniques.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Ylenia Gigante
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- D-Tails Srl BC, 00165, Rome, Italy
| | - Lorenza Mautone
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Ghirga
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- D-Tails Srl BC, 00165, Rome, Italy
| | - Alessandro Soloperto
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza-University of Rome, 00185, Rome, Italy
| | - Martina Pitea
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- D-Tails Srl BC, 00165, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Francesco Mura
- Research Center on Nanotechnologies Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- D-Tails Srl BC, 00165, Rome, Italy
| | - Paola Baiocco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy.
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy.
| | - Silvia Di Angelantonio
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy.
- D-Tails Srl BC, 00165, Rome, Italy.
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
7
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Sarkar A, Sarkhel S, Bisht D, Jaiswal A. Cationic dextrin nanoparticles for effective intracellular delivery of cytochrome C in cancer therapy. RSC Chem Biol 2024; 5:249-261. [PMID: 38456040 PMCID: PMC10915965 DOI: 10.1039/d3cb00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/19/2023] [Indexed: 03/09/2024] Open
Abstract
Intracellular protein delivery shows promise as a selective and specific approach to cancer therapy. However, a major challenge is posed by delivering proteins into the target cells. Despite the development of nanoparticle (NP)-based approaches, a versatile and biocompatible delivery system that can deliver active therapeutic cargo into the cytosol while escaping endosome degradation remains elusive. In order to overcome these challenges, a polymeric nanocarrier was prepared using cationic dextrin (CD), a biocompatible and biodegradable polymer, to encapsulate and deliver cytochrome C (Cyt C), a therapeutic protein. The challenge of endosomal escape of the nanoparticles was addressed by co-delivering the synthesized NP construct with chloroquine, which enhances the endosomal escape of the therapeutic protein. No toxicity was observed for both CD NPs and chloroquine at the concentration tested in this study. Spectroscopic investigations confirmed that the delivered protein, Cyt C, was structurally and functionally active. Additionally, the delivered Cyt C was able to induce apoptosis by causing depolarization of the mitochondrial membrane in HeLa cells, as evidenced by flow cytometry and microscopic observations. Our findings demonstrate that an engineered delivery system using CD NPs is a promising platform in nanomedicine for protein delivery applications.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Deepali Bisht
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi Kamand Mandi 175075 Himachal Pradesh India
| |
Collapse
|
9
|
Tang B, Lau KM, Zhu Y, Shao C, Wong WT, Chow LMC, Wong CTT. Chemical Modification of Cytochrome C for Acid-Responsive Intracellular Apoptotic Protein Delivery for Cancer Eradication. Pharmaceutics 2024; 16:71. [PMID: 38258082 PMCID: PMC10819283 DOI: 10.3390/pharmaceutics16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Delivering bioactive proteins into cells without carriers presents significant challenges in biomedical applications due to limited cell membrane permeability and the need for targeted delivery. Here, we introduce a novel carrier-free method that addresses these challenges by chemically modifying proteins with an acid-responsive cell-penetrating peptide (CPP) for selective intracellular delivery within tumours. Cytochrome C, a protein known for inducing apoptosis, served as a model for intracellular delivery of therapeutic proteins for cancer treatment. The CPP was protected with 2,3-dimethyl maleic anhydride (DMA) and chemically conjugated onto the protein surface, creating an acid-responsive protein delivery system. In the acidic tumour microenvironment, DMA deprotects and exposes the positively charged CPP, enabling membrane penetration. Both in vitro and in vivo assays validated the pH-dependent shielding mechanism, demonstrating the modified cytochrome C could induce apoptosis in cancer cells in a pH-selective manner. These findings provide a promising new approach for carrier-free and tumour-targeted intracellular delivery of therapeutic proteins for a wide range of potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Larry M. C. Chow
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| | - Clarence T. T. Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| |
Collapse
|
10
|
Incocciati A, Kubeš J, Piacentini R, Cappelletti C, Botta S, Bertuccini L, Šimůnek T, Boffi A, Macone A, Bonamore A. Hydrophobicity-enhanced ferritin nanoparticles for efficient encapsulation and targeted delivery of hydrophobic drugs to tumor cells. Protein Sci 2023; 32:e4819. [PMID: 37883077 PMCID: PMC10661074 DOI: 10.1002/pro.4819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Ferritin, a naturally occurring iron storage protein, has gained significant attention as a drug delivery platform due to its inherent biocompatibility and capacity to encapsulate therapeutic agents. In this study, we successfully genetically engineered human H ferritin by incorporating 4 or 6 tryptophan residues per subunit, strategically oriented towards the inner cavity of the nanoparticle. This modification aimed to enhance the encapsulation of hydrophobic drugs into the ferritin cage. Comprehensive characterization of the mutants revealed that only the variant carrying four tryptophan substitutions per subunit retained the ability to disassemble and reassemble properly. As a proof of concept, we evaluated the loading capacity of this mutant with ellipticine, a natural hydrophobic indole alkaloid with multimodal anticancer activity. Our data demonstrated that this specific mutant exhibited significantly higher efficiency in loading ellipticine compared to human H ferritin. Furthermore, to evaluate the versatility of this hydrophobicity-enhanced ferritin nanoparticle as a drug carrier, we conducted a comparative study by also encapsulating doxorubicin, a commonly used anticancer drug. Subsequently, we tested both ellipticine and doxorubicin-loaded nanoparticles on a promyelocytic leukemia cell line, demonstrating efficient uptake by these cells and resulting in the expected cytotoxic effect.
Collapse
Affiliation(s)
- Alessio Incocciati
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Jan Kubeš
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Roberta Piacentini
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
- Center of Life Nano‐ and Neuro‐ScienceItalian Institute of TechnologyRomeItaly
| | - Chiara Cappelletti
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Sofia Botta
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | | | - Tomáš Šimůnek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Alberto Boffi
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Alberto Macone
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| | - Alessandra Bonamore
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeRomeItaly
| |
Collapse
|
11
|
Li Y, Gao H, Nepovimova E, Wu Q, Adam V, Kuca K. Recombinant ferritins for multimodal nanomedicine. J Enzyme Inhib Med Chem 2023; 38:2219868. [PMID: 37263586 DOI: 10.1080/14756366.2023.2219868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Affatigato L, Sciortino A, Sancataldo G, Incocciati A, Piacentini R, Bonamore A, Cannas M, Messina F, Licciardi M, Militello V. Engineered Ferritin with Eu 3+ as a Bright Nanovector: A Photoluminescence Study. Photochem Photobiol 2023; 99:1218-1224. [PMID: 36484733 DOI: 10.1111/php.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Ferritin nanoparticles play many important roles in theranostic and bioengineering applications and have been successfully used as nanovectors for the targeted delivery of drugs due to their ability to specifically bind the transferrin receptor (TfR1, or CD71). They can be either genetically or chemically modified for encapsulating therapeutics or probes in their inner cavity. Here, we analyzed a new engineered ferritin nanoparticle, made of the H chain mouse ferritin (HFt) fused with a specific lanthanide binding tag (LBT). The HFt-LBT has one high affinity lanthanide binding site per each of the 24 subunits and a tryptophane residue within the tag that acts as an antenna able to transfer the energy to the lanthanide ions via a LRET process. In this study, among lanthanides, we selected europium for its red emission that allows to reduce overlap with tissue auto-fluorescence. Steady state emission measurements and time-resolved emission spectroscopy have been employed to investigate the interaction between the HFt-LBT and the Eu3+ ions. This allowed us to identify the Eu3+ energy states involved in the process and to pave the way for the future use of HFt-LBT Eu3+ complex in theranostics.
Collapse
Affiliation(s)
- Luisa Affatigato
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Alice Sciortino
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Alessio Incocciati
- Department of Biochemistry - A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemistry - A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemistry - A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Marco Cannas
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Fabrizio Messina
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Mariano Licciardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Valeria Militello
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Ferritin-Coated SPIONs as New Cancer Cell Targeted Magnetic Nanocarrier. Molecules 2023; 28:molecules28031163. [PMID: 36770830 PMCID: PMC9919024 DOI: 10.3390/molecules28031163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) may act as an excellent theragnostic tool if properly coated and stabilized in a biological environment, even more, if they have targeting properties towards a specific cellular target. Humanized Archaeoglobus fulgidus Ferritin (HumAfFt) is an engineered ferritin characterized by the peculiar salt-triggered assembly-disassembly of the hyperthermophile Archaeoglobus fulgidus ferritin and is successfully endowed with the human H homopolymer recognition sequence by the transferrin receptor (TfR1 or CD71), overexpressed in many cancer cells in response to the increased demand of iron. For this reason, HumAfFt was successfully used in this study as a coating material for 10 nm SPIONs, in order to produce a new magnetic nanocarrier able to discriminate cancer cells from normal cells and maintain the potential theragnostic properties of SPIONs. HumAfFt-SPIONs were exhaustively characterized in terms of size, morphology, composition, and cytotoxicity. The preferential uptake capacity of cancer cells toward HumAfFt-SPIONs was demonstrated in vitro on human breast adenocarcinoma (MCF7) versus normal human dermal fibroblast (NHDF) cell lines.
Collapse
|
15
|
Protein-Mineral Composite Particles with Logarithmic Dependence of Anticancer Cytotoxicity on Concentration of Montmorillonite Nanoplates with Adsorbed Cytochrome c. Pharmaceutics 2023; 15:pharmaceutics15020386. [PMID: 36839708 PMCID: PMC9965668 DOI: 10.3390/pharmaceutics15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Montmorillonite (MM) colloid nanoplates have high adsorption capacity due to their large size/thickness ratio, which allows them to be used as carriers for drug delivery. Upon adsorption of the mitochondrial protein cytochrome c (cytC) onto MM plates, the composite cytC-MM particles acquire anticancer properties because of the ability of cancer cells to phagocytize submicron particles (in contrast to the normal cells). In this way, exogenous cytC can be introduced into tumor cells, thereby triggering apoptosis-an irreversible cascade of biochemical reactions leading to cell death. In the present study, we investigated the physicochemical properties of cytC-MM particles as a function of the cytC concentration in the suspension, namely, the electrophoretic mobility, the mass increment of MM monoplates upon cytC adsorption, the ratio of the adsorbed to the free cytC in the bulk, the protein density on the MM's surface, the number of cytC globules adsorbed on an MM monoplate, the concentration of cytC-MM composite particles in the suspension, and the dependence of cytotoxicity on the cytC-MM particle concentration. For this purpose, we used microelectrophoresis, static and electric light scattering, and a colon cancer cell culture to test the cytotoxic effects of the cytC-MM suspensions. The results show that the cytotoxicity depends linearly on the logarithm of the particle concentration in the cytC-MM suspension reaching 97%.
Collapse
|
16
|
Lucignano R, Stanzione I, Ferraro G, Di Girolamo R, Cané C, Di Somma A, Duilio A, Merlino A, Picone D. A new and efficient procedure to load bioactive molecules within the human heavy-chain ferritin nanocage. Front Mol Biosci 2023; 10:1008985. [PMID: 36714262 PMCID: PMC9880187 DOI: 10.3389/fmolb.2023.1008985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
For their easy and high-yield recombinant production, their high stability in a wide range of physico-chemical conditions and their characteristic hollow structure, ferritins (Fts) are considered useful scaffolds to encapsulate bioactive molecules. Notably, for the absence of immunogenicity and the selective interaction with tumor cells, the nanocages constituted by the heavy chain of the human variant of ferritin (hHFt) are optimal candidates for the delivery of anti-cancer drugs. hHFt nanocages can be disassembled and reassembled in vitro to allow the loading of cargo molecules, however the currently available protocols present some relevant drawbacks. Indeed, protein disassembly is achieved by exposure to extreme pH (either acidic or alkaline), followed by incubation at neutral pH to allow reassembly, but the final protein recovery and homogeneity are not satisfactory. Moreover, the exposure to extreme pH may affect the structure of the molecule to be loaded. In this paper, we report an alternative, efficient and reproducible procedure to reversibly disassemble hHFt under mild pH conditions. We demonstrate that a small amount of sodium dodecyl sulfate (SDS) is sufficient to disassemble the nanocage, which quantitatively reassembles upon SDS removal. Electron microscopy and X-ray crystallography show that the reassembled protein is identical to the untreated one. The newly developed procedure was used to encapsulate two small molecules. When compared to the existing disassembly/reassembly procedures, our approach can be applied in a wide range of pH values and temperatures, is compatible with a larger number of cargos and allows a higher protein recovery.
Collapse
|
17
|
Cytochrome c in cancer therapy and prognosis. Biosci Rep 2022; 42:232225. [PMID: 36479932 PMCID: PMC9780037 DOI: 10.1042/bsr20222171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cytochrome c (cyt c) is an electron transporter of the mitochondrial respiratory chain. Upon permeabilization of the mitochondrial outer membrane, cyt c is released into the cytoplasm, where it triggers the intrinsic pathway of apoptosis. Cytoplasmic cyt c can further reach the bloodstream. Apoptosis inhibition is one of the hallmarks of cancer and its induction in tumors is a widely used therapeutic approach. Apoptosis inhibition and induction correlate with decreased and increased serum levels of cyt c, respectively. The quantification of cyt c in the serum is useful in the monitoring of patient response to chemotherapy, with potential prognosis value. Several highly sensitive biosensors have been developed for the quantification of cyt c levels in human serum. Moreover, the delivery of exogenous cyt c to the cytoplasm of cancer cells is an effective approach for inducing their apoptosis. Similarly, several protein-based and nanoparticle-based systems have been developed for the therapeutic delivery of cyt c to cancer cells. As such, cyt c is a human protein with promising value in cancer prognosis and therapy. In addition, its thermal stability can be extended through PEGylation and ionic liquid storage. These processes could contribute to enhancing its therapeutic exploitation in clinical facilities with limited refrigeration conditions. Here, I discuss these research lines and how their timely conjunction can advance cancer therapy and prognosis.
Collapse
|
18
|
Unlocking the Treasure Box: The Role of HEPES Buffer in Disassembling an Uncommon Ferritin Nanoparticle. SEPARATIONS 2022. [DOI: 10.3390/separations9080222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ferritins are ideal nanoparticles as drug delivery systems due to their hollow-sphere structure and the ability to target specific receptors on the cell surface. Here, we develop and characterize a new ferritin derived from the chimeric humanized A. fulgidus one, already designed to recognize the TfR1 receptor. Starting from the synthetic gene of this chimeric protein, we replaced two positively charged amino acids with two alanine residues to close the large triangular pores on its surface. These mutations make the protein nanoparticle suitable to incorporate even small therapeutics without leakage. Size-exclusion chromatography shows that the assembling/disassembling of this new protein cage can be easily fine-tuned by varying the HEPES buffer and MgCl2 concentration. The protein cage can be opened using 150 mM HEPES buffer without magnesium ions. Adding this divalent cation to the solution promotes the quick assembly of the ferritin as a 24-mer. The development of this new protein cage paves the way for encapsulation and delivery studies of small molecules for therapeutic and diagnostic purposes.
Collapse
|
19
|
Wang J, Sheng L, Lai Y, Xu Z. An overview on therapeutic efficacy and challenges of nanoparticles in blood cancer therapy. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102182. [DOI: 10.1016/j.jksus.2022.102182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Cytochrome c Interaction with Cardiolipin Plays a Key Role in Cell Apoptosis: Implications for Human Diseases. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the cell cytochrome, c performs different functions depending on the environment in which it acts; therefore, it has been classified as a multifunction protein. When anchored to the outer side of the inner mitochondrial membrane, native cytochrome c acts as a Schweitzer-StennerSchweitzer-Stenner that transfers electrons from cytochrome c reductase to cytochrome c oxidase in the respiratory chain. On the other hand, to interact with cardiolipin (one of the phospholipids making up the mitochondrial membrane) and form the cytochrome c/cardiolipin complex in the apoptotic process, the protein reorganizes its structure into a non-native state characterized by different asymmetry. The formation of the cytochrome c/cardiolipin complex is a fundamental step of the apoptotic pathway, since the structural rearrangement induces peroxidase activity in cytochrome c, the subsequent permeabilization of the membrane, and the release of the free protein into the cytoplasm, where cytochrome c activates the apoptotic process. Apoptosis is closely related to the pathogenesis of neoplastic, neurodegenerative and cardiovascular diseases; in this contest, the biosynthesis and remodeling of cardiolipin are crucial for the regulation of the apoptotic process. Since the role of cytochrome c as a promoter of apoptosis strictly depends on the non-native conformation(s) that the protein acquires when bound to the cardiolipin and such event leads to cytochrome c traslocation into the cytosol, the structural and functional properties of the cytochrome c/cardiolipin complex in cell fate will be the focus of the present review.
Collapse
|
22
|
Santos JHPM, Feitosa VA, Meneguetti GP, Carretero G, Coutinho JAP, Ventura SPM, Rangel-Yagui CO. Lysine-PEGylated Cytochrome C with Enhanced Shelf-Life Stability. BIOSENSORS 2022; 12:94. [PMID: 35200354 PMCID: PMC8869816 DOI: 10.3390/bios12020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome c (Cyt-c), a small mitochondrial electron transport heme protein, has been employed in bioelectrochemical and therapeutic applications. However, its potential as both a biosensor and anticancer drug is significantly impaired due to poor long-term and thermal stability. To overcome these drawbacks, we developed a site-specific PEGylation protocol for Cyt-c. The PEG derivative used was a 5 kDa mPEG-NHS, and a site-directed PEGylation at the lysine amino-acids was performed. The effects of the pH of the reaction media, molar ratio (Cyt-c:mPEG-NHS) and reaction time were evaluated. The best conditions were defined as pH 7, 1:25 Cyt-c:mPEG-NHS and 15 min reaction time, resulting in PEGylation yield of 45% for Cyt-c-PEG-4 and 34% for Cyt-c-PEG-8 (PEGylated cytochrome c with 4 and 8 PEG molecules, respectively). Circular dichroism spectra demonstrated that PEGylation did not cause significant changes to the secondary and tertiary structures of the Cyt-c. The long-term stability of native and PEGylated Cyt-c forms was also investigated in terms of peroxidative activity. The results demonstrated that both Cyt-c-PEG-4 and Cyt-c-PEG-8 were more stable, presenting higher half-life than unPEGylated protein. In particular, Cyt-c-PEG-8 presented great potential for biomedical applications, since it retained 30-40% more residual activity than Cyt-c over 60-days of storage, at both studied temperatures of 4 °C and 25 °C.
Collapse
Affiliation(s)
- João H. P. M. Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
- Bionanomanufacturing Center, Institute for Technological Research, São Paulo 05508-901, Brazil
| | - Valker A. Feitosa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
- Bionanomanufacturing Center, Institute for Technological Research, São Paulo 05508-901, Brazil
| | - Giovanna P. Meneguetti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
- Bionanomanufacturing Center, Institute for Technological Research, São Paulo 05508-901, Brazil
| | - Gustavo Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil;
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.P.C.); (S.P.M.V.)
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.P.C.); (S.P.M.V.)
| | - Carlota O. Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (V.A.F.); (G.P.M.)
| |
Collapse
|
23
|
Bulos JA, Guo R, Wang Z, DeLessio MA, Saven JG, Dmochowski IJ. Design of a Superpositively Charged Enzyme: Human Carbonic Anhydrase II Variant with Ferritin Encapsulation and Immobilization. Biochemistry 2021; 60:3596-3609. [PMID: 34757723 DOI: 10.1021/acs.biochem.1c00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supercharged proteins exhibit high solubility and other desirable properties, but no engineered superpositively charged enzymes have previously been made. Superpositively charged variants of proteins such as green fluorescent protein have been efficiently encapsulated within Archaeoglobus fulgidus thermophilic ferritin (AfFtn). Encapsulation by supramolecular ferritin can yield systems with a variety of sequestered cargo. To advance applications in enzymology and green chemistry, we sought a general method for supercharging an enzyme that retains activity and is compatible with AfFtn encapsulation. The zinc metalloenzyme human carbonic anhydrase II (hCAII) is an attractive encapsulation target based on its hydrolytic activity and physiologic conversion of carbon dioxide to bicarbonate. A computationally designed variant of hCAII contains positively charged residues substituted at 19 sites on the protein's surface, resulting in a shift of the putative net charge from -1 to +21. This designed hCAII(+21) exhibits encapsulation within AfFtn without the need for fusion partners or additional reagents. The hCAII(+21) variant retains esterase activity comparable to the wild type and spontaneously templates the assembly of AfFtn 24mers around itself. The AfFtn-hCAII(+21) host-guest complex exhibits both greater activity and thermal stability when compared to hCAII(+21). Upon immobilization on a solid support, AfFtn-hCAII(+21) retains enzymatic activity and exhibits an enhancement of activity at elevated temperatures.
Collapse
Affiliation(s)
- Joshua A Bulos
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rui Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhiheng Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Maegan A DeLessio
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Delinois LJ, De León-Vélez O, Vázquez-Medina A, Vélez-Cabrera A, Marrero-Sánchez A, Nieves-Escobar C, Alfonso-Cano D, Caraballo-Rodríguez D, Rodriguez-Ortiz J, Acosta-Mercado J, Benjamín-Rivera JA, González-González K, Fernández-Adorno K, Santiago-Pagán L, Delgado-Vergara R, Torres-Ávila X, Maser-Figueroa A, Grajales-Avilés G, Miranda Méndez GI, Santiago-Pagán J, Nieves-Santiago M, Álvarez-Carrillo V, Griebenow K, Tinoco AD. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. INORGANICS 2021; 9:83. [PMID: 35978717 PMCID: PMC9380692 DOI: 10.3390/inorganics9110083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.
Collapse
Affiliation(s)
- Louis J. Delinois
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Omar De León-Vélez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Adriana Vázquez-Medina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Alondra Vélez-Cabrera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Amanda Marrero-Sánchez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Daniela Alfonso-Cano
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Jael Rodriguez-Ortiz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Jemily Acosta-Mercado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kiara González-González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kysha Fernández-Adorno
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lisby Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Rafael Delgado-Vergara
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Xaiomy Torres-Ávila
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Andrea Maser-Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | | | - Javier Santiago-Pagán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Miguel Nieves-Santiago
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Vanessa Álvarez-Carrillo
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
25
|
Zhang J, Cheng D, He J, Hong J, Yuan C, Liang M. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 2021; 16:4878-4896. [PMID: 34497386 DOI: 10.1038/s41596-021-00602-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Ferritins are spherical iron storage proteins within cells, composed of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin. Ferritins auto-assemble naturally into hollow nanocages with an outer diameter of 12 nm and an interior cavity 8 nm in diameter. Since the intrinsic tumor-targeting property of human HFn was first reported in 2012, HFn has been extensively explored for tumor-targeted delivery of anticancer drugs and diagnostic molecules, including radioisotopes and fluorophores, as well as inorganic nanoparticles (NPs) and chemotherapeutic drugs. This protocol provides four detailed procedures describing how to load four types of cargoes within HFn nanocages that are capable of accurately controlling cargo loading: synthesis of inorganic metal nanoparticles within the cavity of a wild-type human HFn nanocage (Procedure 1, requires ~5 h); loading of doxorubicin into the cavity of a wild-type human HFn nanocage (Procedure 2, requires ~3 d); loading Gd3+ into the cavity of a genetically engineered human HFn nanocage (Procedure 3, requires ~20 h); and loading 64Cu2+ radioisotope into the cavity of a genetically engineered human HFn nanocage (Procedure 4, requires ~3 h). Subsequent use of these HFn-based formulations is advantageous as they have intrinsic tumor-targeting capability and lack immunogenicity. Human HFn generated as described in this protocol can therefore be used to deliver therapeutic drugs and diagnostic signals as multifunctional nanomedicines.
Collapse
Affiliation(s)
- Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University/Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jiuyang He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
26
|
Song N, Zhang J, Zhai J, Hong J, Yuan C, Liang M. Ferritin: A Multifunctional Nanoplatform for Biological Detection, Imaging Diagnosis, and Drug Delivery. Acc Chem Res 2021; 54:3313-3325. [PMID: 34415728 DOI: 10.1021/acs.accounts.1c00267] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ferritins are spherical iron storage proteins within cells that are composed of a combination of 24 subunits of two types, heavy-chain ferritin (HFn) and light-chain ferritin (LFn). They autoassemble naturally into a spherical hollow nanocage with an outer diameter of 12 nm and an interior cavity that is 8 nm in diameter. In recent years, with the constantly emerging safety issues and the concerns about unfavorable uniformity and indefinite in vivo behavior of traditional nanomedicines, the characteristics of native ferritin nanocages, such as the unique nanocage structure, excellent safety profile, and definite in vivo behavior, make ferritin-based formulations uniquely attractive for nanomedicine development. To date, a variety of cargo molecules, including therapeutic drugs (e.g., cisplatin, carboplatin, paclitaxel, curcumin, atropine, quercetin, gefitinib, daunomycin, epirubicin, doxorubicin, etc.), imaging agents (e.g., fluorescence dyes, radioisotopes, and MRI contrast agents), nucleic acids (e.g., siRNA and miRNA), and metal nanoparticles (e.g., Fe3O4, CeO2, AuPd, CuS, CoPt, FeCo, Ag, etc.) have been loaded into the interior cavity of ferritin nanocages for a broad range of biomedical applications from in vitro biosensing to targeted delivery of cargo molecules in living systems with the aid of modified targeting ligands either genetically or chemically. We reported that human HFn could selectively deliver a large amount of cargo into tumors in vivo via transferrin receptor 1 (TfR1)-mediated tumor-cell-specific targeting followed by rapid internalization. By the use of the intrinsic tumor-targeting property and unique nanocage structure of human HFn, a broad variety of cargo-loaded HFn formulations have been developed for biological analysis, imaging diagnosis, and medicine development. In view of the intrinsic tumor-targeting property, unique nanocage structure, lack of immunogenicity, and definite in vivo behavior, human HFn holds promise to promote therapeutic drugs, diagnostic imaging agents, and targeting moieties into multifunctional nanomedicines.Since the report of the intrinsic tumor-targeting property of human HFn, we have extensively explored human HFn as an ideal nanocarrier for tumor-targeted delivery of anticancer drugs, MRI contrast agents, inorganic nanoparticles, and radioisotopes. In particular, by the use of genetic tools, we also have genetically engineered human HFn nanocages to recognize a broader range of disease biomarkers. In this Account, we systematically review human ferritins from characterizing their tumor-binding property and understanding their mechanism and kinetics for cargo loading to exploring their biomedical applications. We finally discuss the prospect of ferritin-based formulations to become next-generation nanomedicines. We expect that ferritin formulations with unique physicochemical characteristics and intrinsic tumor-targeting property will attract broad interest in fundamental drug research and offer new opportunities for nanomedicine development.
Collapse
Affiliation(s)
- Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiao Zhai
- Tung Foundation Biomedical Sciences Centre/Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chang Yuan
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
27
|
Zhang B, Tang G, He J, Yan X, Fan K. Ferritin nanocage: A promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier. Adv Drug Deliv Rev 2021; 176:113892. [PMID: 34331986 DOI: 10.1016/j.addr.2021.113892] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
Ferritin has been widely recognized as an ideal drug delivery vehicle owing to its unique cage-like structure. Coupled with intrinsic targeting ability and excellent biosafety, ferritin-based drug delivery system, recently coined as ferritin drug carrier (FDC), has sparked great interest among researchers and shown promising application potential in the biomedical field. However, the flexibility and accuracy of traditional FDCs are limited when facing with complex disease microenvironments. To meet the fast-growing requirements for precision medicine, ferritin can serve as a designable multi-module platform to fabricate smarter FDC, which we introduce here as dynamic nanoassembly-based ferritin drug carrier (DNFDC). Compared to conventional FDC, DNFDCs directly integrate required functions into their nanostructure, which can achieve dynamic transformation upon stimuli to specifically activate and exert therapeutic functions at targeted sites. In this review, we summarize the superior characteristics of ferritin that contribute to the on-demand design of DNFDC and outline the current advances in DNFDC. Moreover, the potential research directions and challenges are also discussed here. Hopefully, this review may inspire the future development of DNFDC.
Collapse
Affiliation(s)
- Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China; Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China; Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
28
|
Pediconi N, Ghirga F, Del Plato C, Peruzzi G, Athanassopoulos CM, Mori M, Crestoni ME, Corinti D, Ugozzoli F, Massera C, Arcovito A, Botta B, Boffi A, Quaglio D, Baiocco P. Design and Synthesis of Piperazine-Based Compounds Conjugated to Humanized Ferritin as Delivery System of siRNA in Cancer Cells. Bioconjug Chem 2021; 32:1105-1116. [PMID: 33978420 PMCID: PMC8253483 DOI: 10.1021/acs.bioconjchem.1c00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Indexed: 01/23/2023]
Abstract
Gene expression regulation by small interfering RNA (siRNA) holds promise in treating a wide range of diseases through selective gene silencing. However, successful clinical application of nucleic acid-based therapy requires novel delivery options. Herein, to achieve efficient delivery of negatively charged siRNA duplexes, the internal cavity of "humanized" chimeric Archaeal ferritin (HumAfFt) was specifically decorated with novel cationic piperazine-based compounds (PAs). By coupling these rigid-rod-like amines with thiol-reactive reagents, chemoselective conjugation was efficiently afforded on topologically selected cysteine residues properly located inside HumAfFt. The capability of PAs-HumAfFt to host and deliver siRNA molecules through human transferrin receptor (TfR1), overexpressed in many cancer cells, was explored. These systems allowed siRNA delivery into HeLa, HepG2, and MCF-7 cancer cells with improved silencing effect on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression with respect to traditional transfection methodologies and provided a promising TfR1-targeting system for multifunctional siRNA delivery to therapeutic applications.
Collapse
Affiliation(s)
- Natalia Pediconi
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
| | - Francesca Ghirga
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristina Del Plato
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Peruzzi
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
| | - Constantinos M. Athanassopoulos
- Department
of Chemistry, University of Patras, GR-26504 Rio-Patras, Greece
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, “Department of Excellence
2018−2022”, University of
Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Elisa Crestoni
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Davide Corinti
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Franco Ugozzoli
- Department
of Engineering and Architecture, University
of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Chiara Massera
- Department
of Chemical Sciences, Life and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Arcovito
- Dipartimento
di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Bruno Botta
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Institute
of Molecular Biology and Pathology, National
Research Council, P.le
A. Moro 7, 00185 Rome, Italy
| | - Deborah Quaglio
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola Baiocco
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
29
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
30
|
Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells. J Nanobiotechnology 2021; 19:172. [PMID: 34107976 PMCID: PMC8190868 DOI: 10.1186/s12951-021-00921-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. RESULTS Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. CONCLUSION The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells.
Collapse
|
31
|
Miao X, Yue H, Ho SL, Cha H, Marasini S, Ghazanfari A, Ahmad MY, Liu S, Tegafaw T, Chae KS, Chang Y, Lee GH. Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
33
|
Liu G, Liang H, He Y, Lu L, Wang L, Liu P, Cai K. A nanoplatform based on mesoporous silica-coated gold nanorods for cancer triplex therapy. J Mater Chem B 2021; 8:9686-9696. [PMID: 33030156 DOI: 10.1039/d0tb01707h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To enhance the efficacy of nanoparticle-based cancer therapy with reduced side effects and promote its clinical translation, a biocompatible nanocomposite based on mesoporous silica-coated gold nanorods (AuNR@MSN) for triple tumor therapy is reported in this study. The gold core served as a hyperthermia agent, while the MSN shell acted as a reservoir of chemotherapeutics owing to its excellent loading capacity. Cytochrome c with the apoptosis inducing function was anchored on the surface of AuNR@MSN to prevent drug leakage through redox-responsive disulfide bonds. The successful construction of a nanocomposite was confirmed by characterization of the physicochemical properties. In vitro and in vivo studies demonstrated that the nanocomposite displayed an optimizing anti-tumor effect with a synergistic strategy of excellent photothermal therapy, chemotherapy and protein therapy. Therefore, this cooperative strategy paves the way for high-efficiency oncotherapy with reduced side effects.
Collapse
Affiliation(s)
- Genhua Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Huining Liang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ye He
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lu Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
34
|
Waghwani HK, Douglas T. Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J Mater Chem B 2021; 9:3168-3179. [PMID: 33885621 DOI: 10.1039/d1tb00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
35
|
Kim D, Wu Y, Kim YB, Oh YK. Advances in vaccine delivery systems against viral infectious diseases. Drug Deliv Transl Res 2021; 11:1401-1419. [PMID: 33694083 PMCID: PMC7945613 DOI: 10.1007/s13346-021-00945-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Although vaccines are available for many infectious diseases, there are still unresolved infectious diseases that threaten global public health. In particular, the rapid spread of unpredictable, highly contagious viruses has recorded numerous infection cases and deaths, and has changed our lives socially or economically through social distancing and wearing masks. The pandemics of unpredictable, highly contagious viruses increase the ever-high social need for rapid vaccine development. Nanotechnologies may hold promise and expedite the development of vaccines against newly emerging infectious viruses. As potential nanoplatforms for delivering antigens to immune cells, delivery systems based on lipids, polymers, proteins, and inorganic nanomaterials have been studied. These nanoplatforms have been tested as a means to deliver vaccines not as a whole, but in the form of protein subunits or as DNA or mRNA sequences encoding the antigen proteins of viruses. This review covers the current status of nanomaterial-based delivery systems for viral antigens, with highlights on nanovaccines against recently emerging infectious viruses, such as severe acute respiratory syndrome coronavirus-2, Middle East respiratory syndrome coronavirus, and Zika virus.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Bong Kim
- Department of Bio-Medical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
36
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Budiarta M, Xu W, Schubert L, Meledina M, Meledin A, Wöll D, Pich A, Beck T. Protecting redesigned supercharged ferritin containers against protease by integration into acid-cleavable polyelectrolyte microgels. J Colloid Interface Sci 2021; 591:451-462. [PMID: 33631532 DOI: 10.1016/j.jcis.2021.01.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS The application of ferritin containers as a promising drug delivery vehicle is limited by their low bioavailability in blood circulation due to unfavorable environments, such as degradation by protease. The integration of ferritin containers into the polymeric network of microgels through electrostatic interactions is expected to be able to protect ferritin against degradation by protease. Furthermore, a stimuli-responsive microgel system can be designed by employing an acid-degradable crosslinker during the microgel synthesis. This should enable ferritin release in an acidic environment, which will be useful for future drug delivery applications. EXPERIMENTS Nanoparticle/fluorophores-loaded ferritin was integrated into microgels during precipitation polymerization. The integration was monitored by transmission electron microscopy (TEM)2 and fluorescence microscopy, respectively. After studying ferritin release in acidic solutions, we investigated the stability of ferritin inside microgels against degradation by chymotrypsin. FINDINGS About 80% of the applied ferritin containers were integrated into microgels and around 85% and 50% of them could be released in buffer pH 2.5 and 4.0, respectively. Total degradation of the microgels was not achieved due to the self-crosslinking of N-isopropylacrylamide (NIPAM). Finally, we prove that microgels could protect ferritin against degradation by chymotrypsin at 37 °C.
Collapse
Affiliation(s)
- Made Budiarta
- RWTH Aachen University, Institute of Inorganic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Wenjing Xu
- DWI- Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany; RWTH Aachen University, Institute of Technical and Molecular Chemistry, Woringer Weg 2, 52074 Aachen, Germany.
| | - Lukas Schubert
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany.
| | - Maria Meledina
- RWTH Aachen University, Central Facility for Electron Microscopy, Ahornstraße 55, Aachen 52074, Germany.
| | - Alexander Meledin
- RWTH Aachen University, Central Facility for Electron Microscopy, Ahornstraße 55, Aachen 52074, Germany.
| | - Dominik Wöll
- RWTH Aachen University, Institute of Physical Chemistry, Landoltweg 2, 52074 Aachen, Germany.
| | - Andrij Pich
- DWI- Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany; RWTH Aachen University, Institute of Technical and Molecular Chemistry, Woringer Weg 2, 52074 Aachen, Germany; Maastricht University, Aachen Maastricht Institute for Biobased Materials, Urmonderbaan 22, 6167 RD, Geleen, the Netherlands.
| | - Tobias Beck
- Universität Hamburg, Department of Chemistry, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
38
|
|
39
|
Dutta S. Exoskeleton for Biofunctionality Protection of Enzymes and Proteins for Intracellular Delivery. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies Amity University Sector 125 Noida India
| |
Collapse
|
40
|
Zhang C, Zhang X, Zhao G. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. NANOMATERIALS 2020; 10:nano10091894. [PMID: 32971961 PMCID: PMC7557750 DOI: 10.3390/nano10091894] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Compared with other nanocarriers such as liposomes, mesoporous silica, and cyclodextrin, ferritin as a typical protein nanocage has received considerable attention in the field of food, nutrition, and medicine owing to its inherent cavity size, excellent water solubility, and biocompatibility. Additionally, ferritin nanocage also serves as a versatile bio-template for the synthesis of a variety of nanoparticles. Recently, scientists have explored the ferritin nanocage structure for encapsulation and delivery of guest molecules such as nutrients, bioactive molecules, anticancer drugs, and mineral metal ions by taking advantage of its unique reversible disassembly and reassembly property and biomineralization. In this review, we mainly focus on the preparation and structure of ferritin-based nanocarriers, and regulation of their self-assembly. Moreover, the recent advances of their applications in food nutrient delivery and medical diagnostics are highlighted. Finally, the main challenges and future development in ferritin-directed nanoparticles’ synthesis and multifunctional applications are discussed.
Collapse
|
41
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
42
|
Bouzinab K, Summers HS, Stevens MFG, Moody CJ, Thomas NR, Gershkovich P, Weston N, Ashford MB, Bradshaw TD, Turyanska L. Delivery of Temozolomide and N3-Propargyl Analog to Brain Tumors Using an Apoferritin Nanocage. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12609-12617. [PMID: 32073826 DOI: 10.1021/acsami.0c01514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma, which is the most aggressive form of brain tumor. The standard of care for this disease includes surgery, radiotherapy and temozolomide (TMZ) chemotherapy. Poor accumulation of TMZ at the tumor site, tumor resistance to drug, and dose-limiting bone marrow toxicity eventually reduce the success of this treatment. Herein, we have encapsulated >500 drug molecules of TMZ into the biocompatible protein nanocage, apoferritin (AFt), using a "nanoreactor" method (AFt-TMZ). AFt is internalized by transferrin receptor 1-mediated endocytosis and is therefore able to facilitate cancer cell uptake and enhance drug efficacy. Following encapsulation, the protein cage retained its morphological integrity and surface charge; hence, its cellular recognition and uptake are not affected by the presence of this cargo. Additional benefits of AFt include maintenance of TMZ stability at pH 5.5 and drug release under acidic pH conditions, encountered in lysosomal compartments. MTT assays revealed that the encapsulated agents displayed significantly increased antitumor activity in U373V (vector control) and, remarkably, the isogenic U373M (MGMT expressing TMZ-resistant) GBM cell lines, with GI50 values <1.5 μM for AFt-TMZ, compared to 35 and 376 μM for unencapsulated TMZ against U373V and U373M, respectively. The enhanced potency of AFt-TMZ was further substantiated by clonogenic assays. Potentiated G2/M cell cycle arrest following exposure of cells to AFt-TMZ indicated an enhanced DNA damage burden. Indeed, increased O6-methylguanine (O6-MeG) adducts in cells exposed to AFt-TMZ and subsequent generation of γH2AX foci support the hypothesis that AFt significantly enhances the delivery of TMZ to cancer cells in vitro, overwhelming the direct O6-MeG repair conferred by MGMT. We have additionally encapsulated >500 molecules of the N3-propargyl imidazotetrazine analog (N3P), developed to combat TMZ resistance, and demonstrated significantly enhanced activity of AFt-N3P against GBM and colorectal carcinoma cell lines. These studies support the use of AFt as a promising nanodelivery system for targeted delivery, lysosomal drug release, and enhanced imidazotetrazine potency for treatment of GBM and wider-spectrum malignancies.
Collapse
Affiliation(s)
- Kaouthar Bouzinab
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Helen S Summers
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Malcolm F G Stevens
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | | | - Neil R Thomas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Pavel Gershkovich
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Nicola Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Tracey D Bradshaw
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Lyudmila Turyanska
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
43
|
Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A. Ferritin Nanocages for Protein Delivery to Tumor Cells. Molecules 2020; 25:E825. [PMID: 32070033 PMCID: PMC7070480 DOI: 10.3390/molecules25040825] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
The delivery of therapeutic proteins is one of the greatest challenges in the treatment of human diseases. In this frame, ferritins occupy a very special place. Thanks to their hollow spherical structure, they are used as modular nanocages for the delivery of anticancer drugs. More recently, the possibility of encapsulating even small proteins with enzymatic or cytotoxic activity is emerging. Among all ferritins, particular interest is paid to the Archaeoglobus fulgidus one, due to its peculiar ability to associate/dissociate in physiological conditions. This protein has also been engineered to allow recognition of human receptors and used in vitro for the delivery of cytotoxic proteins with extremely promising results.
Collapse
Affiliation(s)
| | | | | | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| | - Alessandra Bonamore
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.P.); (E.D.F.); (A.B.)
| |
Collapse
|