1
|
González-Troncoso MP, Landeta-Salgado C, Munizaga J, Hornedo-Ortega R, García-Parrilla MDC, Lienqueo ME. Assessment of the Chemical Diversity and Functional Properties of Secondary Metabolites from the Marine Fungus Asteromyces cruciatus. J Fungi (Basel) 2024; 11:3. [PMID: 39852423 PMCID: PMC11766682 DOI: 10.3390/jof11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as Asteromyces cruciatus, are particularly promising due to their ability to produce bioactive metabolites through the degradation of marine algal polysaccharides. This study investigates the metabolic diversity of A. cruciatus grown on different carbon sources: glucose, Durvillaea spp., and Macrocystis pyrifera. Crude extracts of fungal biomass were analyzed for total phenolic content (TPC), antioxidant capacity (TAC), toxicity, and phenolic compound identification using ultra-high-performance liquid chromatography coupled with high-resolution electrospray ionization mass spectrometry (UHPLC-MS/MS). The analysis revealed the presence of anthraquinone compounds, including emodin (0.36 ± 0.08 mg/g DW biomass) and citrereosein in glucose medium and citrereosein and endocrocin in M. pyrifera medium. No such compounds were detected in Durvillaea spp. medium. The glucose-grown extract exhibited the highest TPC (3.09 ± 0.04 mg GAE/g DW) and TAC (39.70 ± 1.0 µmol TEq/g biomass). Additionally, no detrimental effects were observed on a neuronal cell line. These findings highlight the influence of carbon sources on the production of bioactive metabolites and their functional properties, providing valuable insights into the biotechnological potential of A. cruciatus.
Collapse
Affiliation(s)
- María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González nº 2, 41012 Sevilla, Spain; (R.H.-O.); (M.d.C.G.-P.)
| | - María del Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González nº 2, 41012 Sevilla, Spain; (R.H.-O.); (M.d.C.G.-P.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| |
Collapse
|
2
|
Liu X, Xiao Z, Li K, Wang W, Jia X, Li T, Yin H. Characterization of two new alginate lyases from Pseudomonas mendocina E03. Int J Biol Macromol 2024; 285:138304. [PMID: 39631603 DOI: 10.1016/j.ijbiomac.2024.138304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Alginate lyases, which degrade alginate into oligosaccharides, have broad applications in biorefinery, biomedical, and industrial fields. The Polysaccharide Lyase Family 7 (PL7) is particularly notable for its alginate lyase activity. In this study, two novel alginate lyases, PmAlg7A and PmAlg7B, from Pseudomonas mendocina E03 were cloned, heterologously expressed, and characterized. PmAlg7B exhibited limited activity toward alginate (0.10 U/mg-protein), while PmAlg7A demonstrated higher activity with a specific activity of 0.76 U/mg-protein. PmAlg7A was identified as an MG-specific alginate lyase, producing oligosaccharides with degrees of polymerization (Dp) ranging from 2 to 5. The enzyme exhibited optimal activity at a temperature of 30 °C and a pH of 8.0, with a Km of 7.94 ± 0.92 mg/ml and a kcat of 1.23 ± 0.06 s-1. Structural comparisons and amino acid sequence alignments indicated a potential role for residue 55 in loop B in modulating the activity of PmAlg7B, which was supported by mutagenesis experiments and molecular dynamics simulations. These findings enhance our understanding of the critical role of loop B in regulating substrate binding in PL7 alginate lyases.
Collapse
Affiliation(s)
- Xiaohua Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongbin Xiao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Landeta C, Medina-Ortiz D, Escobar N, Valdez I, González-Troncoso MP, Álvares-Saravia D, Aldridge J, Gómez C, Lienqueo ME. Integrative workflows for the characterization of hydrophobin and cerato-platanin in the marine fungus Paradendryphiella salina. Arch Microbiol 2024; 206:385. [PMID: 39177836 DOI: 10.1007/s00203-024-04087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
Hydrophobins (HFBs) and cerato-platanins (CPs) are surface-active extracellular proteins produced by filamentous fungi. This study identified two HFB genes (pshyd1 and pshyd2) and one CP gene (pscp) in the marine fungus Paradendryphiella salina. The proteins PsCP, PsHYD2, and PsHYD1 had molecular weights of 12.70, 6.62, and 5.98 kDa, respectively, with isoelectric points below 7. PsHYD1 and PsHYD2 showed hydrophobicity (GRAVY score 0.462), while PsCP was hydrophilic (GRAVY score - 0.202). Stability indices indicated in-solution stability. Mass spectrometry identified 2,922 proteins, including CP but not HFB proteins. qPCR revealed differential gene expression influenced by developmental stage and substrate, with pshyd1 consistently expressed. These findings suggest P. salina's adaptation to marine ecosystems with fewer hydrophobin genes than other fungi but capable of producing surface-active proteins from seaweed carbohydrates. These proteins have potential applications in medical biocoatings, food industry foam stabilizers, and environmental bioremediation.
Collapse
Affiliation(s)
- Catalina Landeta
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - David Medina-Ortiz
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Natalia Escobar
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Iván Valdez
- Microbiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - María Paz González-Troncoso
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile
| | - Diego Álvares-Saravia
- Teaching and Research Assistance Center, CADI, University of Magallanes, Av. los Flamencos, Punta Arenas, 01364, Chile
| | - Jacqueline Aldridge
- Department of Computer Engineering, Faculty of Engineering, University of Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas, Chile
| | - Carlos Gómez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Chile
| | - María Elena Lienqueo
- Center for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef, 851- 8370456, Chile.
| |
Collapse
|
4
|
Landeta-Salgado C, Salas-Wallach N, Munizaga J, González-Troncoso MP, Burgos-Díaz C, Araújo-Caldas L, Sartorelli P, Martínez I, Lienqueo ME. Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods 2024; 13:2376. [PMID: 39123566 PMCID: PMC11312218 DOI: 10.3390/foods13152376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach was employed to screen metabolites and annotate molecules with nutraceutical properties. Two products, each representing a distinct consortia of co-cultured fungi, named Myco 1 and Myco 2, were analysed in this study. These consortia demonstrated superior properties compared to those of Durvillaea spp., showing significant increases in total protein (~238%), amino acids (~219%), and β-D-glucans (~112%). The protein contains all essential amino acids, a low fatty acid content, and exhibits high antioxidant activity (21.5-25.5 µmol TE/g). Additionally, Myco 2 exhibited the highest anti-alpha-glucosidase activity (IC50 = 16.5 mg/mL), and Myco 1 exhibited notable anti-lipase activity (IC50 = 10.5 mg/mL). Among the 69 top differentially abundant metabolites screened, 8 nutraceutical compounds were present in relatively high concentrations among the identified mycoproteins. The proteins and polysaccharides in the mycoprotein may play a crucial role in the formation and stabilization of emulsions, identifying it as a potent bioemulsifier. In conclusion, the bioconversion of Durvillaea spp. results in a mycoprotein with high-quality protein, significant nutritional and functional value, and prebiotic and nutraceutical potential due to the production of unique bioactive compounds.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Nicolás Salas-Wallach
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile;
| | - Lhaís Araújo-Caldas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Patricia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Irene Martínez
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| |
Collapse
|
5
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Maldonado-Ruiz K, Pedroza-Islas R, Pedraza-Segura L. Blue Biotechnology: Marine Bacteria Bioproducts. Microorganisms 2024; 12:697. [PMID: 38674641 PMCID: PMC11051736 DOI: 10.3390/microorganisms12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ocean is the habitat of a great number of organisms with different characteristics. Compared to terrestrial microorganisms, marine microorganisms also represent a vast and largely unexplored reservoir of bioactive compounds with diverse industrial applications like terrestrial microorganisms. This review examines the properties and potential applications of products derived from marine microorganisms, including bacteriocins, enzymes, exopolysaccharides, and pigments, juxtaposing them in some cases against their terrestrial counterparts. We discuss the distinct characteristics that set marine-derived products apart, including enhanced stability and unique structural features such as the amount of uronic acid and sulfate groups in exopolysaccharides. Further, we explore the uses of these marine-derived compounds across various industries, ranging from food and pharmaceuticals to cosmetics and biotechnology. This review also presents a broad description of biotechnologically important compounds produced by bacteria isolated from marine environments, some of them with different qualities compared to their terrestrial counterparts.
Collapse
Affiliation(s)
| | - Ruth Pedroza-Islas
- Department of Chemical, Industrial and Food Engineering, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico City 01210, Mexico; (K.M.-R.); (L.P.-S.)
| | | |
Collapse
|
7
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J. Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
8
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
9
|
Adams SJ, Walker AK. Diversity of fungi from marine inundated wood from the Bay of Fundy, Nova Scotia, Canada. BOTANICA MARINA 2023; 66:319-329. [PMID: 39711846 PMCID: PMC11661551 DOI: 10.1515/bot-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 12/24/2024]
Abstract
Marine fungi play an integral role in the decomposition of intertidal organic substrata but remain understudied in cold-water habitats including Atlantic Canada. Marine inundated wood from the intertidal zone was sampled from 30 sites along the Bay of Fundy coastline in Nova Scotia, Canada. Wood types studied included attached and loose intertidal wood, and driftwood. Emergent fungi were cultured and identified using ITS (internal transcribed spacers) rDNA barcoding. Two hundred and twenty cultures representing 86 fungi are reported. Sixty-one fungi were new records for the Bay of Fundy, 41 are first records from the marine environment, and 19 fungi are potentially new to science. Fungi identified included eight obligate marine fungi, with the remaining fungi being facultatively marine. Eight ascomycetes were soft rot fungi; this ecological strategy for decaying woody material in cold-water marine environments is discussed. Historical records and roles of wood type and site on fungal colonization are discussed.
Collapse
Affiliation(s)
- Sarah J. Adams
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, Nova ScotiaB4P 2R6, Canada
| | - Allison K. Walker
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, Nova ScotiaB4P 2R6, Canada
| |
Collapse
|
10
|
Rhein-Knudsen N, Reyes-Weiss D, Horn SJ. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases. Int J Biol Macromol 2023; 229:199-209. [PMID: 36584780 DOI: 10.1016/j.ijbiomac.2022.12.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Fucoidans are fucose rich sulfated polysaccharides that are found in the cell wall of brown seaweeds and have been shown to have several beneficial bioactivities. In the present study, we report a new enzymatic extraction technique for the production of pure and intact fucoidans from the two brown seaweeds Saccharina latissima and Alaria esculenta. This new extraction protocol uses the commercial cellulase blend Cellic® CTec2 in combination with endo- and exo-acting thermophilic alginate lyases. The fucoidans obtained by this extraction technique are compared to traditionally extracted fucoidans in terms of chemical compositions and molecular weights and are shown to contain significantly higher amounts of fucose and sulfate, the main components of fucoidans, while cellulose, laminarin, and alginate contamination is low. Thus, by using this combination of enzymes, the extracted fucoidans do not undergo depolymerization during extraction and additional purification steps are not needed. The high purity fucoidans isolated by this new enzymatic extraction technique can be used to provide insight into the different fucoidan structures and biological activities.
Collapse
Affiliation(s)
- Nanna Rhein-Knudsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Diego Reyes-Weiss
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway.
| |
Collapse
|
11
|
Barrett K, Zhao H, Hao P, Bacic A, Lange L, Holck J, Meyer AS. Discovery of novel secretome CAZymes from Penicillium sclerotigenum by bioinformatics and explorative proteomics analyses during sweet potato pectin digestion. Front Bioeng Biotechnol 2022; 10:950259. [PMID: 36185449 PMCID: PMC9523869 DOI: 10.3389/fbioe.2022.950259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Novel selective enzymatic refining of sweet potato processing residues requires judicious enzyme selection and enzyme discovery. We prepared a pectinaceous cell wall polysaccharide fraction from sweet potato using an enzymatic a treatment to preserve the natural linkages and substitutions. Polysaccharide composition and linkage analysis data confirmed the pectinaceous polysaccharide fraction to be a rhamnogalacturonan I-rich fraction with a high content of arabinogalactan Type I. We hypothesized that the post-harvest tuber pathogenic fungus Penicillium sclerotigenum would harbor novel enzymes targeting selective sweet potato pectin modification. As part of the study, we also report the first genome sequence of P. sclerotigenum. We incubated the sweet potato pectinaceous fraction with P. sclerotigenum. Using proteomics accompanied by CUPP-bioinformatics analysis, we observed induced expression of 23 pectin-associated degradative enzymes. We also identified six abundantly secreted, induced proteins that do not correspond to known CAZymes, but which we suggest as novel enzymes involved in pectin degradation. For validation, the predicted CUPP grouping of putative CAZymes and the exo-proteome data obtained for P. sclerotigenum during growth on sweet potato pectin were compared with proteomics and transcriptomics data reported previously for pectin-associated CAZymes from Aspergillus niger strain NRRL3. The data infer that P. sclerotigenum has the capacity to express several novel enzymes that may provide novel opportunities for sweet potato pectin modification and valorization of sweet potato starch processing residues. In addition, the methodological approach employed represents an integrative systematic strategy for enzyme discovery.
Collapse
Affiliation(s)
- Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Pengfei Hao
- La Trobe Institute for Agriculture and Food, La Trobe University, Melbourne, VIC, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, La Trobe University, Melbourne, VIC, Australia
| | - Lene Lange
- LLa BioEconomy, Research & Advisory, Valby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- *Correspondence: Anne S. Meyer,
| |
Collapse
|
12
|
Bonilla Loaiza AM, Rodríguez-Jasso RM, Belmares R, López-Badillo CM, Araújo RG, Aguilar CN, Chávez ML, Aguilar MA, Ruiz HA. Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules 2022; 27:3887. [PMID: 35745010 PMCID: PMC9230583 DOI: 10.3390/molecules27123887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The development of green technologies and bioprocesses such as solid-state fermentation (SSF) is important for the processing of macroalgae biomass and to reduce the negative effect of Sargassum spp. on marine ecosystems, as well as the production of compounds with high added value such as fungal proteins. In the present study, Sargassum spp. biomass was subjected to hydrothermal pretreatments at different operating temperatures (150, 170, and 190 °C) and pressures (3.75, 6.91, and 11.54 bar) for 50 min, obtaining a glucan-rich substrate (17.99, 23.86, and 25.38 g/100 g d.w., respectively). The results indicate that Sargassum pretreated at a pretreatment temperature of 170 °C was suitable for fungal growth. SSF was performed in packed-bed bioreactors, obtaining the highest protein content at 96 h (6.6%) and the lowest content at 72 h (4.6%). In contrast, it was observed that the production of fungal proteins is related to the concentration of sugars. Furthermore, fermentation results in a reduction in antinutritional elements, such as heavy metals (As, Cd, Pb, Hg, and Sn), and there is a decrease in ash content during fermentation kinetics. Finally, this work shows that Aspergillus oryzae can assimilate nutrients found in the pretreated Sargassum spp. to produce fungal proteins as a strategy for the food industry.
Collapse
Affiliation(s)
- Adriana M. Bonilla Loaiza
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Rosa M. Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Ruth Belmares
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Claudia M. López-Badillo
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Rafael G. Araújo
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Cristóbal N. Aguilar
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Mónica L. Chávez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| | - Miguel A. Aguilar
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe C.P. 25900, Coahuila, Mexico;
| | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo C.P. 25280, Coahuila, Mexico; (A.M.B.L.); (R.B.); (C.M.L.-B.); (R.G.A.); (C.N.A.); (M.L.C.)
| |
Collapse
|
13
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
14
|
Narayanan M, El-Sheekh M, Ma Y, Pugazhendhi A, Natarajan D, Kandasamy G, Raja R, Saravana Kumar RM, Kumarasamy S, Sathiyan G, Geetha R, Paulraj B, Liu G, Kandasamy S. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118922. [PMID: 35114308 DOI: 10.1016/j.envpol.2022.118922] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India.
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | | | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Rathinam Raja
- Central Research Laboratory, Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH) - BIHER, Chromepet, Chennai, 600 044, India
| | - R M Saravana Kumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Govindasamy Sathiyan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - R Geetha
- Department of Electrical and Electronics Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, 635 130, India
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sabariswaran Kandasamy
- Department of Biomass and Energy Conversion, Institute of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602 105, India.
| |
Collapse
|
15
|
Li Z, Huang X, Guo Y, Zhang C, Yang L, Du X, Ni H, Wang X, Zhu Y. Toward Understanding the Alginate Catabolism in Microbulbifer sp. ALW1 by Proteomics Profiling. Front Bioeng Biotechnol 2022; 10:829428. [PMID: 35372316 PMCID: PMC8967155 DOI: 10.3389/fbioe.2022.829428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain of Microbulbifer sp. ALW1 has demonstrated visible ability of degrading the cell wall of Laminaria japonica, and biochemical characterization has been performed on some individual enzymes to elucidate its genetic basis. However, it still remains elusive how strain ALW1 successfully breaks down the major cell wall component alginate polysaccharide and colonizes on its marine host. In this study, a mass spectrometry-based quantitative analysis of the extracellular and intracellular proteomes was introduced to elucidate the alginate degradation pathway in ALW1 strain. Mass spectrometry and biochemical assays indicated that strain ALW1 could effectively degrade alginate polysaccharide into disaccharides and trisaccharides within 12 h. Proteome analysis identified 156 and 1,047 proteins exclusively localized in extracellular and intracellular compartments, respectively, with 1,086 protein identities of dual localization. Functional annotation of the identified proteins suggested the involvement of diverse catalytic enzymes and non-catalytic molecules for the cleavage and metabolism of alginate polysaccharide. A simplified pathway was constructed to demonstrate the extracellular digestion, active transport, and intracellular conversion of alginate polysaccharide and its fragmented oligosaccharides, casting a picture of genetic loci controlling alginate catabolism by ALW1 strain. This study aims to provide a guide for utilization and genetic manipulation of the bacterial strain ALW1 for efficient alginate oligosaccharides production by fermentation.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiaoyi Huang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Yuxi Guo
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Chenghao Zhang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Liang Yang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Xiping Du
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xuchu Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| | - Yanbing Zhu
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| |
Collapse
|
16
|
Pilgaard B, Vuillemin M, Munk L, Holck J, Meier S, Wilkens C, Meyer AS. Discovery of a Novel Glucuronan Lyase System in Trichoderma parareesei. Appl Environ Microbiol 2022; 88:e0181921. [PMID: 34705548 PMCID: PMC8752158 DOI: 10.1128/aem.01819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022] Open
Abstract
Glucuronan lyases (EC 4.2.2.14) catalyze depolymerization of linear β-(1,4)-polyglucuronic acid (glucuronan). Only a few glucuronan lyases have been characterized until now, most of them originating from bacteria. Here we report the discovery, recombinant production, and functional characterization of the full complement of six glucuronan specific polysaccharide lyases in the necrotic mycoparasite Trichoderma parareesei. The enzymes belong to four different polysaccharide lyase families and have different reaction optima and glucuronan degradation profiles. Four of them showed endo-lytic action and two, TpPL8A and TpPL38A, displayed exo-lytic action. Nuclear magnetic resonance revealed that the monomeric end product from TpPL8A and TpPL38A underwent spontaneous rearrangements to tautomeric forms. Proteomic analysis of the secretomes from T. parareesei growing on pure glucuronan and lyophilized A. bisporus fruiting bodies, respectively, showed secretion of five of the glucuronan lyases and high-performance anion-exchange chromatography with pulsed amperometric detection analysis confirmed the presence of glucuronic acid in the A. bisporus fruiting bodies. By systematic genome annotation of more than 100 fungal genomes and subsequent phylogenetic analysis of the putative glucuronan lyases, we show that glucuronan lyases occur in several ecological and taxonomic groups in the fungal kingdom. Our findings suggest that a diverse repertoire of glucuronan lyases is a common trait among Hypocreales species with mycoparasitic and entomopathogenic lifestyles. IMPORTANCE This paper reports the discovery of a set of six complementary glucuronan lyase enzymes in the mycoparasite Trichoderma parareseei. Apart from the novelty of the discovery of these enzymes in T. parareesei, the key importance of the study is the finding that the majority of these lyases are induced when T. parareesei is inoculated on Basidiomycete cell walls that contain glucuronan. The study also reveals putative glucuronan lyase encoding genes in a wealth of other fungi that furthermore points at fungal cell wall glucuronan being a target C-source for many types of fungi. In a technical context, the findings may lead to controlled production of glucuronan oligomers for advanced pharmaceutical applications and pave the way for development of new fungal biocontrol agents.
Collapse
Affiliation(s)
- Bo Pilgaard
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marlene Vuillemin
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Line Munk
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sebastian Meier
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Casper Wilkens
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind's Challenges. J Fungi (Basel) 2021; 8:23. [PMID: 35049963 PMCID: PMC8778853 DOI: 10.3390/jof8010023] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes have played a crucial role in mankind's challenges to use different types of biological systems for a diversity of applications. They are proteins that break down and convert complicated compounds to produce simple products. Fungal enzymes are compatible, efficient, and proper products for many uses in medicinal requests, industrial processing, bioremediation purposes, and agricultural applications. Fungal enzymes have appropriate stability to give manufactured products suitable shelf life, affordable cost, and approved demands. Fungal enzymes have been used from ancient times to today in many industries, including baking, brewing, cheese making, antibiotics production, and commodities manufacturing, such as linen and leather. Furthermore, they also are used in other fields such as paper production, detergent, the textile industry, and in drinks and food technology in products manufacturing ranging from tea and coffee to fruit juice and wine. Recently, fungi have been used for the production of more than 50% of the needed enzymes. Fungi can produce different types of enzymes extracellularly, which gives a great chance for producing in large amounts with low cost and easy viability in purified forms using simple purification methods. In the present review, a comprehensive trial has been advanced to elaborate on the different types and structures of fungal enzymes as well as the current status of the uses of fungal enzymes in various applications.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed K. Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, Giza 12622, Egypt;
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.M.R.)
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Yousra A. El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt;
| |
Collapse
|
18
|
Filiatrault-Chastel C, Heiss-Blanquet S, Margeot A, Berrin JG. From fungal secretomes to enzymes cocktails: The path forward to bioeconomy. Biotechnol Adv 2021; 52:107833. [PMID: 34481893 DOI: 10.1016/j.biotechadv.2021.107833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
Bioeconomy is seen as a way to mitigate the carbon footprint of human activities by reducing at least part of the fossil resources-based economy. In this new paradigm of sustainable development, the use of enzymes as biocatalysts will play an increasing role to provide services and goods. In industry, most of multicomponent enzyme cocktails are of fungal origin. Filamentous fungi secrete complex enzyme sets called "secretomes" that can be utilized as enzyme cocktails to valorize different types of bioresources. In this review, we highlight recent advances in the study of fungal secretomes using improved computational and experimental secretomics methods, the progress in the understanding of industrially important fungi, and the discovery of new enzymatic mechanisms and interplays to degrade renewable resources rich in polysaccharides (e.g. cellulose). We review current biotechnological applications focusing on the benefits and challenges of fungal secretomes for industrial applications with some examples of commercial cocktails of fungal origin containing carbohydrate-active enzymes (CAZymes) and we discuss future trends.
Collapse
Affiliation(s)
- Camille Filiatrault-Chastel
- INRAE, Aix Marseille Univ., Biodiversité et Biotechnologie Fongiques, UMR1163, Marseille, France; IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Senta Heiss-Blanquet
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ., Biodiversité et Biotechnologie Fongiques, UMR1163, Marseille, France.
| |
Collapse
|
19
|
Wang M, Chen L, Zhang Z. Potential applications of alginate oligosaccharides for biomedicine - A mini review. Carbohydr Polym 2021; 271:118408. [PMID: 34364551 DOI: 10.1016/j.carbpol.2021.118408] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
Extensive research on marine algae, especially on their health-promoting properties, has been conducted. Various ingredients with potential biomedical applications have been discovered and extracted from marine algae. Alginate oligosaccharides are low molecular weight alginate polysaccharides present in cell walls of brown algae. They exhibit various health benefits such as anti-inflammatory, anti-microbial, anti-oxidant, anti-tumor and immunomodulation. Their low-toxicity, non-immunogenicity, and biodegradability make them an excellent material in biomedicine. Alginate oligosaccharides can be chemically or biochemically modified to enhance their biological activity and potential in pharmaceutical applications. This paper provides a brief overview on alginate oligosaccharides characteristics, modification patterns and highlights their vital health promoting properties.
Collapse
Affiliation(s)
- Mingpeng Wang
- College of Life Science, Qufu Normal University, Qufu 273100, China
| | - Lei Chen
- College of Life Science, Qufu Normal University, Qufu 273100, China.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
20
|
Costa M, Pio L, Bule P, Cardoso V, Alfaia CM, Coelho D, Brás J, Fontes CMGA, Prates JAM. An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall. Sci Rep 2021; 11:9706. [PMID: 33958695 PMCID: PMC8102539 DOI: 10.1038/s41598-021-89278-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
In the present study, 199 pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases were assessed, either alone or in combination, to evaluate their capacity to disrupt Laminaria digitata cell wall, with the consequent release of interesting nutritional compounds. A previously characterized individual alginate lyase, belonging to the family 7 of polysaccharide lyases (PL7) and produced by Saccharophagus degradans, was shown to be the most efficient in the in vitro degradation of L. digitata cell wall. The alginate lyase treatment, compared to the control, released up to 7.11 g/L of reducing sugars (p < 0.001) and 8.59 mmol/100 g dried alga of monosaccharides (p < 0.001), and reduced cell wall fluorescence intensity by 39.1% after staining with Calcofluor White (p = 0.001). The hydrolysis of gel-forming polymer alginate by the alginate lyase treatment could prevent the trapping of fatty acids and release beneficial monounsaturated fatty acids, particularly 18:1c9 (p < 0.001), to the extracellular medium. However, no liberation of proteins (p > 0.170) or pigments (p > 0.070) was observed. Overall, these results show the ability of an individual alginate lyase, from PL7 family, to partially degrade L. digitata cell wall under physiological conditions. Therefore, this CAZyme can potentially improve the bioavailability of L. digitata bioactive compounds for monogastric diets, with further application in feed industry.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Luís Pio
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Pedro Bule
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Vânia Cardoso
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Cristina M Alfaia
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Diogo Coelho
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
| | - Joana Brás
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - Carlos M G A Fontes
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisboa, Portugal.
- NZYTech - Genes and Enzymes, Estrada do Paço Do Lumiar, Campus do Lumiar, Edifício E, 1649-038, Lisboa, Portugal.
| |
Collapse
|
21
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
22
|
Rhein-Knudsen N, Meyer AS. Chemistry, gelation, and enzymatic modification of seaweed food hydrocolloids. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Pilgaard B, Vuillemin M, Holck J, Wilkens C, Meyer AS. Specificities and Synergistic Actions of Novel PL8 and PL7 Alginate Lyases from the Marine Fungus Paradendryphiella salina. J Fungi (Basel) 2021; 7:80. [PMID: 33503820 PMCID: PMC7911691 DOI: 10.3390/jof7020080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the alginate lyases have been found in bacteria. We report here the first extensive characterization of four alginate lyases from a marine fungus, the ascomycete Paradendryphiella salina, a known saprophyte of seaweeds. We have identified four polysaccharide lyase encoding genes bioinformatically in P. salina, one PL8 (PsMan8A), and three PL7 alginate lyases (PsAlg7A, -B, and -C). PsMan8A was demonstrated to exert exo-action on polymannuronic acid, and no action on alginate, indicating that this enzyme is most likely an exo-acting polymannuronic acid specific lyase. This enzyme is the first alginate lyase assigned to PL8 and polymannuronic acid thus represents a new substrate specificity in this family. The PL7 lyases (PsAlg7A, -B, and -C) were found to be endo-acting alginate lyases with different activity optima, substrate affinities, and product profiles. PsAlg7A and PsMan8A showed a clear synergistic action for the complete depolymerization of polyM at pH 5. PsAlg7A depolymerized polyM to mainly DP5 and DP3 oligomers and PsMan8A to dimers and monosaccharides. PsAlg7B and PsAlg7C showed substrate affinities towards both polyM and polyG at pH 8, depolymerizing both substrates to DP9-DP2 oligomers. The findings elucidate how P. salina accomplishes alginate depolymerization and provide insight into an efficient synergistic cooperation that may provide a new foundation for enzyme selection for alginate degradation in seaweed bioprocessing.
Collapse
Affiliation(s)
| | | | | | | | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; (B.P.); (M.V.); (J.H.); (C.W.)
| |
Collapse
|
24
|
Tingley JP, Low KE, Xing X, Abbott DW. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:16. [PMID: 33422151 PMCID: PMC7797155 DOI: 10.1186/s13068-020-01869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common "-omics"-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.
Collapse
Affiliation(s)
- Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
25
|
Dubrulle G, Picot A, Madec S, Corre E, Pawtowski A, Baroncelli R, Zivy M, Balliau T, Le Floch G, Pensec F. Deciphering the Infectious Process of Colletotrichum lupini in Lupin through Transcriptomic and Proteomic Analysis. Microorganisms 2020; 8:microorganisms8101621. [PMID: 33096724 PMCID: PMC7589765 DOI: 10.3390/microorganisms8101621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023] Open
Abstract
The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection.
Collapse
Affiliation(s)
- Guillaume Dubrulle
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, F-29280 Plouzané, France; (G.D.); (A.P.); (A.P.); (G.L.F.)
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, F-29280 Plouzané, France; (G.D.); (A.P.); (A.P.); (G.L.F.)
| | - Stéphanie Madec
- CNRS, IRD, Ifremer, LEMAR, Université de Brest, F-29280 Plouzané, France;
| | - Erwan Corre
- Station Biologique de Roscoff, FR2424 CNRS Sorbonne Université, Place Georges Teissier, 29680 Roscoff, France;
| | - Audrey Pawtowski
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, F-29280 Plouzané, France; (G.D.); (A.P.); (A.P.); (G.L.F.)
| | - Riccardo Baroncelli
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Calle del Duero 12, 37185 Villamayor (Salamanca), Spain;
| | - Michel Zivy
- INRAE le Moulon, Plateforme PAPPSO, ferme du Moulon, 91190 Gif-sur-Yvette, France; (M.Z.); (T.B.)
| | - Thierry Balliau
- INRAE le Moulon, Plateforme PAPPSO, ferme du Moulon, 91190 Gif-sur-Yvette, France; (M.Z.); (T.B.)
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, F-29280 Plouzané, France; (G.D.); (A.P.); (A.P.); (G.L.F.)
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, F-29280 Plouzané, France; (G.D.); (A.P.); (A.P.); (G.L.F.)
- Correspondence: ; Tel.: +33-(0)298-017-200
| |
Collapse
|
26
|
Roberts C, Allen R, Bird KE, Cunliffe M. Chytrid fungi shape bacterial communities on model particulate organic matter. Biol Lett 2020; 16:20200368. [PMID: 32991826 PMCID: PMC7532721 DOI: 10.1098/rsbl.2020.0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microbial colonization and degradation of particulate organic matter (POM) are important processes that influence the structure and function of aquatic ecosystems. Although POM is readily used by aquatic fungi and bacteria, there is a limited understanding of POM-associated interactions between these taxa, particularly for early-diverging fungal lineages. Using a model ecological system with the chitin-degrading freshwater chytrid fungus Rhizoclosmatium globosum and chitin microbeads, we assessed the impacts of chytrid fungi on POM-associated bacteria. We show that the presence of chytrids on POM alters concomitant bacterial community diversity and structure, including differing responses between chytrid life stages. We propose that chytrids can act as ecosystem facilitators through saprotrophic feeding by producing ‘public goods’ from POM degradation that modify bacterial POM communities. This study suggests that chytrid fungi have complex ecological roles in aquatic POM degradation not previously considered, including the regulation of bacterial colonization, community succession and subsequent biogeochemical potential.
Collapse
Affiliation(s)
- Cordelia Roberts
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Ro Allen
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Kimberley E Bird
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Cunliffe
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
27
|
Characterization of the CAZy Repertoire from the Marine-Derived Fungus Stemphylium lucomagnoense in Relation to Saline Conditions. Mar Drugs 2020; 18:md18090461. [PMID: 32916905 PMCID: PMC7551824 DOI: 10.3390/md18090461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023] Open
Abstract
Even if the ocean represents a large part of Earth's surface, only a few studies describe marine-derived fungi compared to their terrestrial homologues. In this ecosystem, marine-derived fungi have had to adapt to the salinity and to the plant biomass composition. This articles studies the growth of five marine isolates and the tuning of lignocellulolytic activities under different conditions, including the salinity. A de novo transcriptome sequencing and assembly were used in combination with a proteomic approach to characterize the Carbohydrate Active Enzymes (CAZy) repertoire of one of these strains. Following these approaches, Stemphylium lucomagnoense was selected for its adapted growth on xylan in saline conditions, its high xylanase activity, and its improved laccase activities in seagrass-containing cultures with salt. De novo transcriptome sequencing and assembly indicated the presence of 51 putative lignocellulolytic enzymes. Its secretome composition was studied in detail when the fungus was grown on either a terrestrial or a marine substrate, under saline and non-saline conditions. Proteomic analysis of the four S. lucomagnoense secretomes revealed a minimal suite of extracellular enzymes for plant biomass degradation and highlighted potential enzyme targets to be further studied for their adaptation to salts and for potential biotechnological applications.
Collapse
|
28
|
Vallet M, Meziane T, Thiney N, Prado S, Hubas C. Laminariales Host Does Impact Lipid Temperature Trajectories of the Fungal Endophyte Paradendryphiella salina (Sutherland.). Mar Drugs 2020; 18:E379. [PMID: 32708010 PMCID: PMC7460085 DOI: 10.3390/md18080379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes under different conditions is important to have a better understanding of their impacts on host performance. In this context, fatty acid composition is essential to a given algae fitness and of interest to food web studies either to measure its nutritional quality or to infer about its contribution to consumers diets. In the present study, Paradendryphiella salina, a fungal endophyte was isolated from Saccharina latissima (L.) and Laminaria digitata (Hudson.) and its fatty acid composition was assessed at increasing salinity and temperature conditions. Results showed that fungal composition in terms of fatty acids displayed algal-dependent trajectories in response to temperature increase. This highlights that C18 unsaturated fatty acids are key components in the host-dependant acclimation of P. salina to salinity and temperature changes.
Collapse
Affiliation(s)
- Marine Vallet
- Molécules de Comunications et Adaptation des Microorganismes (MCAM) Muséum National d'Histoire Naturelle, CNRS, 63 Rue Buffon, FR-75005 Paris, France
| | - Tarik Meziane
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, IRD, SU, CNRS, UA, UCN, 61 Rue Buffon, FR-75005 Paris, France
| | - Najet Thiney
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, IRD, SU, CNRS, UA, UCN, 61 Rue Buffon, FR-75005 Paris, France
| | - Soizic Prado
- Molécules de Comunications et Adaptation des Microorganismes (MCAM) Muséum National d'Histoire Naturelle, CNRS, 63 Rue Buffon, FR-75005 Paris, France
| | - Cédric Hubas
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, IRD, SU, CNRS, UA, UCN, Station Marine de Concarneau, FR-29900 Concarneau, France
| |
Collapse
|
29
|
Han G, Ma H, Ren S, Gao X, He X, Zhu S, Deng R, Zhang S. Insights into the mechanism of cyanobacteria removal by the algicidal fungi Bjerkandera adusta and Trametes versicolor. Microbiologyopen 2020; 9:e1042. [PMID: 32529805 PMCID: PMC7424253 DOI: 10.1002/mbo3.1042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023] Open
Abstract
Fungal mycelia can eliminate almost all cocultured cyanobacterial cells within a short time. However, molecular mechanisms of algicidal fungi are poorly understood. In this study, a time‐course transcriptomic analysis of algicidal fungus Bjerkandera adusta T1 was applied to investigate gene expression and regulation. A total of 132, 300, 422, and 823 differentially expressed genes (DEGs) were identified at 6, 12, 24, and 48 hr, respectively. Most DEGs exhibited high endopeptidase activity, cellulose catabolic process, and transmembrane transporter activity by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Many decomposition genes encoding endopeptidases were induced a little later in B. adusta T1 when compared with previously investigated algicidal fungus Trametes versicolor F21a. Besides, the accumulated expression of Polysaccharide lyases8 (PL8) gene with peptidoglycan and alginate decomposition abilities was greatly delayed in B. adusta T1 relative to T. versicolor F21a. It was implied that endopeptidases and enzymes of PL8 might be responsible for the strong algicidal ability of B. adusta T1 as well as T. versicolor F21a.
Collapse
Affiliation(s)
- Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shenrong Ren
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xueyan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaolong He
- Institute of Applied Mathematics, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Ruining Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shihua Zhang
- Institute of Applied Mathematics, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Dharani SR, Srinivasan R, Sarath R, Ramya M. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiol (Praha) 2020; 65:937-954. [DOI: 10.1007/s12223-020-00802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
31
|
Nguyen TT, Mikkelsen MD, Tran VHN, Trang VTD, Rhein-Knudsen N, Holck J, Rasin AB, Cao HTT, Van TTT, Meyer AS. Enzyme-Assisted Fucoidan Extraction from Brown Macroalgae Fucus distichus subsp. evanescens and Saccharina latissima. Mar Drugs 2020; 18:E296. [PMID: 32498331 PMCID: PMC7344474 DOI: 10.3390/md18060296] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Fucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds. This enzyme-assisted extraction protocol involves a one-step combined use of a commercial cellulase preparation (Cellic®CTec2) and an alginate lyase from Sphingomonas sp. (SALy), reaction at pH 6.0, 40 °C, removal of non-fucoidan polysaccharides by Ca2+ precipitation, and ethanol-precipitation of crude fucoidan. The workability of this method is demonstrated for fucoidan extraction from Fucus distichus subsp. evanescens (basionym Fucus evanescens) and Saccharina latissima as compared with mild acidic extraction. The crude fucoidans resulting directly from the enzyme-assisted method contained considerable amounts of low molecular weight alginate, but this residual alginate was effectively removed by an additional ion-exchange chromatographic step to yield pure fucoidans (as confirmed by 1H NMR). The fucoidan yields that were obtained by the enzymatic method were comparable to the chemically extracted yields for both F. evanescens and S. latissima, but the molecular sizes of the fucoidans were significantly larger with enzyme-assisted extraction. The molecular weight distribution of the fucoidan fractions was 400 to 800 kDa for F. evanescens and 300 to 800 kDa for S. latissima, whereas the molecular weights of the corresponding chemically extracted fucoidans from these seaweeds were 10-100 kDa and 50-100 kDa, respectively. Enzyme-assisted extraction represents a new gentle strategy for fucoidan extraction and it provides new opportunities for obtaining high yields of native fucoidan structures from brown macroalgae.
Collapse
Affiliation(s)
- Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Vy Ha Nguyen Tran
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Vo Thi Dieu Trang
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Nanna Rhein-Knudsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Jesper Holck
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| | - Anton B. Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (H.T.T.C.); (T.T.T.V.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (T.T.N.); (V.H.N.T.); (V.T.D.T.); (N.R.-K.); (J.H.); (A.S.M.)
| |
Collapse
|
32
|
Huang X, Zhang R, Qiu Y, Wu H, Xiang Q, Yu X, Zhao K, Zhang X, Chen Q, Penttinen P, Gu Y. RNA-seq Profiling Showed Divergent Carbohydrate-Active Enzymes (CAZymes) Expression Patterns in Lentinula edodes at Brown Film Formation Stage Under Blue Light Induction. Front Microbiol 2020; 11:1044. [PMID: 32536907 PMCID: PMC7267012 DOI: 10.3389/fmicb.2020.01044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Lentinula edodes (shiitake mushroom) is one of the most important edible mushrooms worldwide. The L. edodes cultivation cycle includes a unique developing stage called brown film formation that directly affects the development of primordium and the quality of fruiting body. Brown film formation is induced by light, especially blue light. To promote our understanding of the role of blue light in brown film formation mechanisms of L. edodes, we used RNA-seq and compared the transcriptomes of L. edodes grown under blue light and in dark, and validated the expression profiles using qRT-PCR. Blue light stimulated the formation of brown film and increased the content of polysaccharides in L. edodes. Blue light also promoted L. edodes to absorb more polysaccharides by enhancing the activities of enzymes. Among the 730 differentially expressed genes (DEGs), 433 genes were up-regulated and 297 were down-regulated. Most of the DEGs were in the oxidoreductase activity group. Pentose and glucuronic acid conversion and starch and sucrose metabolism were the most important pathways in the formation of brown film. A total of 79 genes of DEGs were identified as genes encoding carbohydrate-active enzymes (CAZymes). Fifty-one of the CAZymes genes were up-regulated, suggesting that CAZymes play important roles in brown film formation to provide sufficient nutrition for L. edodes. The results will facilitate future functional investigations of the genes involved in the developmental control of L. edodes.
Collapse
Affiliation(s)
- Xiying Huang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Runji Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yijie Qiu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Haibing Wu
- Department of Livestock and Fisheries, Mianyang Academy of Agricultural University, Mianyang, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|