1
|
Fang X, Mo C, Zheng L, Gao F, Xue FS, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413364. [PMID: 39836498 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China
| |
Collapse
|
2
|
Bendas G, Gobec M, Schlesinger M. Modulating Immune Responses: The Double-Edged Sword of Platelet CD40L. Semin Thromb Hemost 2024. [PMID: 39379039 DOI: 10.1055/s-0044-1791512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The CD40-CD40L receptor ligand pair plays a fundamental role in the modulation of the innate as well as the adaptive immune response, regulating monocyte, T and B cell activation, and antibody isotype switching. Although the expression and function of the CD40-CD40L dyad is mainly attributed to the classical immune cells, the majority of CD40L is expressed by activated platelets, either in a membrane-bound form or shed as soluble molecules in the circulation. Platelet-derived CD40L is involved in the communication with different immune cell subpopulations and regulates their functions effectively. Thus, platelet CD40L contributes to the containment and clearance of bacterial and viral infections, and additionally guides leukocytes to sites of infection. However, platelet CD40L promotes inflammatory cellular responses also in a pathophysiological context. For example, in HIV infections, platelet CD40L is supportive of neuronal inflammation, damage, and finally HIV-related dementia. In sepsis, platelet CD40L can induce extensive endothelial and epithelial damage resulting in barrier dysfunction of the gut, whereby the translocation of microbiota into the circulation further aggravates the uncontrolled systemic inflammation. Nevertheless, a distinct platelet subpopulation expressing CD40L under septic conditions can attenuate systemic inflammation and reduce mortality in mice. This review focuses on recent findings in the field of platelet CD40L biology and its physiological and pathophysiological implications, and thereby highlights platelets as vital immune cells that are essential for a proper immune surveillance. In this context, platelet CD40L proves to be an interesting target for various inflammatory diseases. However, either an agonism or a blockade of CD40L needs to be well balanced since both the approaches can cause severe adverse events, ranging from hyperinflammation to immune deficiency. Thus, an interference in CD40L activities should be likely done in a context-dependent and timely restricted manner.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
3
|
Hwang JH, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Extracellular vesicles in fresh frozen plasma and cryoprecipitate: Impact on in vitro endothelial cell viability. Transfusion 2024; 64:1709-1718. [PMID: 39021332 DOI: 10.1111/trf.17959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) remains a major contributor to transfusion-associated mortality. While the pathogenesis of TRALI remains unclear, there is evidence of a role for blood components. We therefore investigated the potential effects of fresh frozen plasma (FFP), cryoprecipitate, and extracellular vesicles (EVs) derived from these blood components, on the viability of human lung microvascular endothelial cells (HLMVECs) in vitro. METHODS EVs were isolated from FFP and cryoprecipitate using size-exclusion chromatography and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscopy. The potential effects of these blood components and their EVs on HLMVEC viability (determined by trypan blue exclusion) were examined in the presence and absence of neutrophils, either with or without prior treatment of HLMVECs with LPS. RESULTS EVs isolated from FFP and cryoprecipitate displayed morphological and biochemical properties conforming to latest international criteria. While FFP, cryoprecipitate, and EVs derived from FFP, each reduced HLMVEC viability, no effect was observed for EVs derived from cryoprecipitate. CONCLUSION Our findings demonstrate clear differences in the effects of FFP, cryoprecipitate, and their respective EVs on HLMVEC viability in vitro. Examination of the mechanisms underlying these differences may lead to an improved understanding of the factors that promote development of TRALI.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Mansour A, Massart N, Gouin-Thibault I, Seite T, Cognasse F, Anselmi A, Parasido A, Piau C, Flécher E, Verhoye JP, Nesseler N. Impact of Intraoperative Allogeneic Platelet Transfusion on Healthcare-Associated Infections in Cardiac Surgery: Insights From a Large Single-Center Cohort Study. J Cardiothorac Vasc Anesth 2024; 38:1650-1658. [PMID: 38604882 DOI: 10.1053/j.jvca.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVES Despite significant improvement in patient blood management, cardiac surgery remains a high hemorrhagic risk procedure. Platelet transfusion is used commonly to treat thrombocytopenia-associated perioperative bleeding. Allogeneic platelet transfusion may induce transfusion-related immunomodulation. However, its association with postoperative healthcare-associated infections is still a matter of debate. The objective was to evaluate the impact of allogeneic platelet transfusion during cardiac surgery on postoperative healthcare-associated infection incidence. DESIGN Retrospective cohort study. SETTING Tertiary referral academic center. PARTICIPANTS Patients undergoing cardiac surgery from 2012 to 2018. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Intraoperative platelet transfusion was defined as exposure in a causal model. The primary outcome was the incidence of healthcare-associated infections comprised of bloodstream infection, hospital-acquired pneumonia, and surgical-site infection. Among 7,662 included patients, 528 patients (6.8%) were exposed to intraoperative platelet transfusion, and 329 patients (4.3%) developed 454 postoperative infections. Bloodstream infection affected 106 patients (1.4%), hospital-acquired pneumonia affected 174 patients (2.3%), and surgical-site infection affected 148 patients (1.9%). Intraoperative platelet transfusion was associated with an increased risk of bloodstream infection after adjustment by multivariable logistic regression (odds ratio [OR] 2.85; 95% CI 1.40-5.8; p = 0.004; n = 7,662), propensity score matching (OR 3.95; 95% CI 1.57-12.0), p = 0.007; n = 766), and propensity score overlap weighting (OR 3.04; 95% CI 1.51-6.1, p = 0.002; n = 7,762). Surgical-site infection and hospital-acquired pneumonia were not significantly associated with platelet transfusion. CONCLUSIONS These results suggested that intraoperative allogeneic platelet transfusion is a risk factor for bloodstream infection after cardiac surgery. These results supported the development of patient blood management strategies aimed at minimizing perioperative platelet transfusion in cardiac surgery.
Collapse
Affiliation(s)
- Alexandre Mansour
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, INSERM, CIC 1414, IRSET, UMR_S1085, FHU SUPORT, Univ Rennes, Rennes, France; Department of Hematology, Pontchaillou, University Hospital of Rennes, INSERM, IRSET, UMR_S1085, Univ Rennes, Rennes, France
| | - Nicolas Massart
- Intensive Care Unit, Saint Brieuc General Hospital, Saint Brieuc, France
| | - Isabelle Gouin-Thibault
- Department of Hematology, Pontchaillou, University Hospital of Rennes, France, Rennes, France
| | - Thibault Seite
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, France, Rennes, France
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France; University Jean Monnet, Saint-Etienne, France
| | - Amedeo Anselmi
- Department of Thoracic and Cardiovascular Surgery, Pontchaillou University Hospital, Rennes, France
| | - Alessandro Parasido
- Department of Cardiothoracic Surgery, Pontchaillou, University Hospital of Rennes, France, Rennes, France
| | - Caroline Piau
- Department of Microbiology, Pontchaillou, University Hospital of Rennes, France, Rennes, France
| | - Erwan Flécher
- Department of Thoracic and Cardiovascular Surgery, Pontchaillou University Hospital, Rennes, France
| | - Jean-Philippe Verhoye
- Department of Thoracic and Cardiovascular Surgery, Pontchaillou University Hospital, Rennes, France
| | - Nicolas Nesseler
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, CHU Rennes, INSERM, CIC 1414 , NuMeCan UMR_S124, FHU SUPORT, Univ Rennes, Rennes, France.
| |
Collapse
|
5
|
Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 2023; 34:2242708. [PMID: 37578045 DOI: 10.1080/09537104.2023.2242708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Extracellular vesicles (EVs) contain the characteristics of their cell of origin and mediate cell-to-cell communication. Platelet-derived extracellular vesicles (PEVs) not only have procoagulant activity but also contain platelet-derived inflammatory factors (CD40L and mtDNA) that mediate inflammatory responses. Studies have shown that platelets are activated during storage to produce large amounts of PEVs, which may have implications for platelet transfusion therapy. Compared to platelets, PEVs have a longer storage time and greater procoagulant activity, making them an ideal alternative to platelets. This review describes the reasons and mechanisms by which PEVs may have a role in blood transfusion therapy.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junyan Feng
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, China
| | - Nian Dong
- Department of Clinical Laboratory, Gulin People's Hospital, Guilin, China
| | - Pan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Yu Y, Lian Z. Update on transfusion-related acute lung injury: an overview of its pathogenesis and management. Front Immunol 2023; 14:1175387. [PMID: 37251400 PMCID: PMC10213666 DOI: 10.3389/fimmu.2023.1175387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a severe adverse event and a leading cause of transfusion-associated death. Its poor associated prognosis is due, in large part, to the current dearth of effective therapeutic strategies. Hence, an urgent need exists for effective management strategies for the prevention and treatment of associated lung edema. Recently, various preclinical and clinical studies have advanced the current knowledge regarding TRALI pathogenesis. In fact, the application of this knowledge to patient management has successfully decreased TRALI-associated morbidity. This article reviews the most relevant data and recent progress related to TRALI pathogenesis. Based on the existing two-hit theory, a novel three-step pathogenesis model composed of a priming step, pulmonary reaction, and effector phase is postulated to explain the process of TRALI. TRALI pathogenesis stage-specific management strategies based on clinical studies and preclinical models are summarized with an explication of their models of prevention and experimental drugs. The primary aim of this review is to provide useful insights regarding the underlying pathogenesis of TRALI to inform the development of preventive or therapeutic alternatives.
Collapse
Affiliation(s)
| | - Zhengqiu Lian
- Department of Blood Transfusion, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Chang M, Yi L, Zhou Z, Yi X, Chen H, Liang X, Jin R, Huang X. GEF-H1/RhoA signaling pathway mediates pro-inflammatory effects of NF-κB on CD40L-induced pulmonary endothelial cells. Mol Immunol 2023; 157:42-52. [PMID: 36989839 DOI: 10.1016/j.molimm.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
One of the key targets of the inflammatory response in acute lung injury (ALI) is the human pulmonary micro-vascular endothelial cells (HPMVECs). Owing to its role in the activation of endothelial cells (ECs), CD40L figures prominently in the pathogenesis of ALI. Increasing evidences have showed that CD40L mediates inflammatory effects on ECs, at least in part, by triggering NF-κB-dependent gene expression. However, the mechanisms of such signal transmission remain unknown. In this study, we found that CD40L stimulated the transactivation of NF-κB and expression of its downstream cytokines in a p38 MAPK-dependent mechanism in HPMVECs. In addition, CD40L-mediated inflammatory effects might be correlated with the activation of the IKK/IκB/NF-κB pathway and nuclear translocation of NF-κB, being accompanied by dynamic cytoskeletal changes. GEF-H1/RhoA signaling is best known for its role in regulating cytoskeletal rearrangements. An interesting finding was that CD40L induced the activation of p38 and IKK/IκB, and the subsequent transactivation of NF-κB via GEF-H1/RhoA signaling. The critical role of GEF-H1/RhoA in CD40L-induced inflammatory responses in the lung was further confirmed in GEF-H1 and RhoA knockout mouse models, both of which were established by adeno-associated virus (AAV)-mediated delivery of sgRNAs into mice with EC-specific Cas9 expression. These results taken together suggested that p38 and IKK/IκB-mediated signaling pathways, both of which lied downstream of GEF-H1/RhoA, may coordinately regulate the transactivation of NF-κB in CD40L-activated HPMVECs. These findings may help to determine key pharmacological targets of intervention for CD40L-activated inflammatory effects associated with ALI.
Collapse
|
9
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
10
|
Cognasse F, Hamzeh-Cognasse H, Rosa M, Corseaux D, Bonneaudeau B, Pierre C, Huet J, Arthaud CA, Eyraud MA, Prier A, Duchez AC, Ebermeyer T, Heestermans M, Audoux-Caire E, Philippot Q, Le Voyer T, Hequet O, Fillet AM, Chavarin P, Legrand D, Richard P, Pirenne F, Gallian P, Casanova JL, Susen S, Morel P, Lacombe K, Bastard P, Tiberghien P. Inflammatory markers and auto-Abs to type I IFNs in COVID-19 convalescent plasma cohort study. EBioMedicine 2022; 87:104414. [PMID: 36535107 PMCID: PMC9758484 DOI: 10.1016/j.ebiom.2022.104414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) contains neutralising anti-SARS-CoV-2 antibodies that may be useful as COVID-19 passive immunotherapy in patients at risk of developing severe disease. Such plasma from convalescent patients may also have additional immune-modulatory properties when transfused to COVID-19 patients. METHODS CCP (n = 766) was compared to non-convalescent control plasma (n = 166) for soluble inflammatory markers, ex-vivo inflammatory bioactivity on endothelial cells, neutralising auto-Abs to type I IFNs and reported adverse events in the recipients. FINDINGS CCP exhibited a statistically significant increase in IL-6 and TNF-alpha levels (0.531 ± 0.04 vs 0.271 ± 0.04; (95% confidence interval [CI], 0.07371-0.4446; p = 0.0061) and 0.900 ± 0.07 vs 0.283 ± 0.07 pg/mL; (95% [CI], 0.3097-0.9202; p = 0.0000829) and lower IL-10 (0.731 ± 0.07 vs 1.22 ± 0.19 pg/mL; (95% [CI], -0.8180 to -0.1633; p = 0.0034) levels than control plasma. Neutralising auto-Abs against type I IFNs were detected in 14/766 (1.8%) CCPs and were not associated with reported adverse events when transfused. Inflammatory markers and bioactivity in CCP with or without auto-Abs, or in CCP whether or not linked to adverse events in transfused patients, did not differ to a statistically significant extent. INTERPRETATION Overall, CCP exhibited moderately increased inflammatory markers compared to the control plasma with no discernible differences in ex-vivo bioactivity. Auto-Abs to type I IFNs detected in a small fraction of CCP were not associated with reported adverse events or differences in inflammatory markers. Additional studies, including careful clinical evaluation of patients treated with CCP, are required in order to further define the clinical relevance of these findings. FUNDING French National Blood Service-EFS, the Association "Les Amis de Rémi" Savigneux, France, the "Fondation pour la Recherche Médicale (Medical Research Foundation)-REACTing 2020".
Collapse
Affiliation(s)
- Fabrice Cognasse
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France,Corresponding author. Etablissement Français du Sang Auvergne-Rhône-Alpes, INSERM U1059, Campus Santé Innovation - 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Hind Hamzeh-Cognasse
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Mickael Rosa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Delphine Corseaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | | | - Chloe Pierre
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Julie Huet
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Charles Antoine Arthaud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marie Ange Eyraud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Amélie Prier
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Anne Claire Duchez
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Theo Ebermeyer
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marco Heestermans
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Estelle Audoux-Caire
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Olivier Hequet
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - Patricia Chavarin
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Dominique Legrand
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - France Pirenne
- Univ Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale (Mondor Biomedical Research Institute) (IMRB), Creteil, France & Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Gallian
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR “Unité des Virus Emergents” (Emerging Virus Unit), Aix-Marseille University - IRD 190 - INSERM 1207 - IRBA - EFS - IHU Méditerranée Infection, Marseille, France
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA,Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Pascal Morel
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Karine Lacombe
- Sorbonne University, Inserm IPLESP, Infectious Diseases Department, Saint-Antoine Hospital, APHP (University Hospital Trust), Paris, France
| | - Paul Bastard
- Etablissement Français du Sang, La Plaine, St Denis, France,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR RIGHT U1098, INSERM, Etablissement Français du Sang, University of Franche-Comté, Besançon, France
| |
Collapse
|
11
|
Platelet CD40L Expression Response to Mixing of pRBCs and Washed Platelets but no Causality Association between Platelet ROS Generation and CD40L Expression: An In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11061108. [PMID: 35740005 PMCID: PMC9219937 DOI: 10.3390/antiox11061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Platelets play a role in transfusion reaction via reactive oxygen species (ROS) generation and CD40 ligand (CD40L) expression. In this study, we aimed to test the hypothesis that the mixing of packed red blood cells (pRBCs) and washed platelets has a causal effect on platelet ROS generation and CD40L expression. Thus, a better understanding of this causality relationship may help interrupt the chain of events and avoid an uncontrollable transfusion reaction. We simulated transfusion in vitro by mixing pRBCs and washed platelets. Donor cross-matched stored pRBCs) from our blood bank and recipient whole blood from patients undergoing coronary artery bypass graft surgery prepared into washed platelets were used. Briefly, donor pRBCs were added to washed recipient platelets to form 1%, 5%, or 10% (v/v) mixtures. The mixed blood sample was used to determine platelet ROS generation (dichlorofluorescein fluorescence levels) and CD40L expression. The effect of antioxidants (20 mM glutamine and 20 mM dipeptiven) on ROS generation and CD40L expression was also evaluated. Platelet ROS generation was not significantly associated with the mixing of pRBCs and washed platelets (p = 0.755), glutamine treatment (p = 0.800), or dipeptiven treatment (p = 0.711). The expression of CD40L by platelets increased significantly (p < 0.001), and no significant difference was noted after treatment with glutamine (p = 0.560) or dipeptiven (p = 0.618). We observed that the mixing pRBCs and washed platelets had no effect via ROS, whereas CD40L could directly induce transfusion reactions. Furthermore, platelets did not causally express ROS or CD40L after being mixed with pRBCs. Although antioxidants are more accessible than anti-CD40L antibodies, platelet ROS may not serve as a therapeutic target for antioxidants. Nevertheless, CD40L expression may be a valuable therapeutic target for managing transfusion reactions.
Collapse
|
12
|
Cognasse F, Duchez AC, Audoux E, Ebermeyer T, Arthaud CA, Prier A, Eyraud MA, Mismetti P, Garraud O, Bertoletti L, Hamzeh-Cognasse H. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front Immunol 2022; 13:825892. [PMID: 35185916 PMCID: PMC8850464 DOI: 10.3389/fimmu.2022.825892] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Platelets are anucleate cytoplasmic fragments derived from the fragmentation of medullary megakaryocytes. Activated platelets adhere to the damaged endothelium by means of glycoproteins on their surface, forming the platelet plug. Activated platelets can also secrete the contents of their granules, notably the growth factors contained in the α-granules, which are involved in platelet aggregation and maintain endothelial activation, but also contribute to vascular repair and angiogenesis. Platelets also have a major inflammatory and immune function in antibacterial defence, essentially through their Toll-like Receptors (TLRs) and Sialic acid-binding immunoglobulin-type lectin (SIGLEC). Platelet activation also contributes to the extensive release of anti- or pro-inflammatory mediators such as IL-1β, RANTES (Regulated on Activation, Normal T Expressed and Secreted) or CD154, also known as the CD40-ligand. Platelets are involved in the direct activation of immune cells, polynuclear neutrophils (PNNs) and dendritic cells via the CD40L/CD40 complex. As a general rule, all of the studies presented in this review show that platelets are capable of covering most of the stages of inflammation, primarily through the CD40L/CD40 interaction, thus confirming their own role in this pathophysiological condition.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Anne Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Estelle Audoux
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Theo Ebermeyer
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Charles Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Amelie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Marie Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France.,SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Etienne, France
| | - Olivier Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France
| | - Laurent Bertoletti
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Etienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Etienne, France
| | | |
Collapse
|
13
|
Arzoun H, Srinivasan M, Adam M, Thomas SS, Lee B, Yarema A. A Systematic Review on the Management of Transfusion-Related Acute Lung Injury in Transfusion-Dependent Sickle Cell Disease. Cureus 2022; 14:e22101. [PMID: 35165647 PMCID: PMC8830742 DOI: 10.7759/cureus.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
The onset of respiratory distress and acute lung injury (ALI) following a blood transfusion is known as transfusion-related acute lung injury (TRALI), although its pathophysiology remains unknown. Even though sickle cell disease (SCD) has been studied for more than a century, few therapeutic and management strategies adequately address the emergence of TRALI. TRALI, an immune-mediated transfusion response that can result in life-threatening consequences, is diagnosed based on clinical signs and symptoms. Early detection and treatment increase the chances of survival and, in most cases, result in a complete recovery. Our objective is to provide a firm grasp of the present status of SCD-related TRALI care and therapy. After exploring multiple databases, this study offers evidence-based guidelines to aid clinicians and other healthcare professionals make decisions concerning transfusion assistance for SCD and the management of transfusion-related complications. Other risk factors for acute lung injury including sepsis aspiration should be ruled out throughout the diagnostic process. Several recent studies have shown that immunotherapy or immunological targets can effectively prevent these complications. Red cell transfusions, red cell antigen matching optimization, and iron chelation can also help reduce negative consequences. It is to be noted that poor clinical outcomes can be avoided by early detection and treatment of hemolytic transfusion reactions. Finally, preventing the onset of TRALI may be the most effective therapeutic strategy for SCD patients who rely on blood transfusions for survival.
Collapse
Affiliation(s)
- Hadia Arzoun
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mirra Srinivasan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mona Adam
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Siji S Thomas
- Internal Medicine, St. Bernards Medical Center, Jonesboro, USA
| | - Bridget Lee
- Internal Medicine, St. Bernards Medical Center, Jonesboro, USA
| | - Alena Yarema
- Internal Medicine, St. Bernards Medical Center, Jonesboro, USA
| |
Collapse
|
14
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
15
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
16
|
Transfusion of target antigens to preimmunized recipients: a new mechanism in transfusion-related acute lung injury. Blood Adv 2021; 5:3975-3985. [PMID: 34438443 PMCID: PMC8945619 DOI: 10.1182/bloodadvances.2020003843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/04/2021] [Indexed: 01/13/2023] Open
Abstract
The recipients’ preformed alloantibodies may initiate TRALI reaction in recipients transfused with soluble antigen. The antibody interaction with absorbed antigen on ECs leads to endothelial barrier dysfunction and lung injury.
Transfusion-related lung injury (TRALI) is a serious side effect of blood transfusion. Exclusion of antibody carriers from the donor pool has significantly decreased the number of cases, but TRALI remains the leading cause of transfusion-related morbidity and mortality in industrialized countries. Here, we show that proteins released from donor cells during processing of blood components are capable of inducing a new type of reverse TRALI when transfused to preimmunized recipients. First, we show that soluble neutrophil surface protein CD177 in complex with proteinase 3 (sCD177/PR3) is not only present in human plasma but also in packed red blood cell (PRBC) supernatant. Filtration or storage enhances the concentration of sCD177/PR3 in PRBCs. Second, we show that sCD177/PR3 specifically binds to PECAM-1 on stimulated (but not on unstimulated) endothelial cells (ECs). Third, we provide evidence that the sCD177/PR3/PECAM-1 complex is functional. In the presence of monoclonal or human antibodies against CD177 or PR3, ECs produce reactive oxygen species and become apoptotic. Albumin flux through an EC monolayer increases significantly whenever antibodies and the cognate antigens are present. Finally, we describe a clinical case in which anti-CD177 present in a transfusion recipient precipitated TRALI after the transfusion of CD177-positive, but not CD177-negative, PRBCs. In conclusion, we introduce a new TRALI mechanism based on the specific binding of transfused, soluble antigens to activated ECs in preimmunized recipients. We suggest that further studies and clinical work-up of TRALI should also include antibody investigation of the recipient.
Collapse
|
17
|
Morrissey SM, Geller AE, Hu X, Tieri D, Ding C, Klaes CK, Cooke EA, Woeste MR, Martin ZC, Chen O, Bush SE, Zhang HG, Cavallazzi R, Clifford SP, Chen J, Ghare S, Barve SS, Cai L, Kong M, Rouchka EC, McLeish KR, Uriarte SM, Watson CT, Huang J, Yan J. A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight 2021; 6:148435. [PMID: 33986193 PMCID: PMC8262329 DOI: 10.1172/jci.insight.148435] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - Anne E Geller
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - Xiaoling Hu
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - David Tieri
- Department of Biochemistry and Molecular Genetics
| | - Chuanlin Ding
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | | | | | - Matthew R Woeste
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | | | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine
| | - Sarah E Bush
- Department of Anesthesiology and Perioperative Medicine
| | | | - Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care and Sleep Disorders, Department of Medicine
| | | | - James Chen
- Department of Anesthesiology and Perioperative Medicine
| | - Smita Ghare
- University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology
| | - Shirish S Barve
- University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics
| | | | | | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry
| | | | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine
| | - Jun Yan
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| |
Collapse
|
18
|
Guo K, Ma S. The Immune System in Transfusion-Related Acute Lung Injury Prevention and Therapy: Update and Perspective. Front Mol Biosci 2021; 8:639976. [PMID: 33842545 PMCID: PMC8024523 DOI: 10.3389/fmolb.2021.639976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
As an initiator of respiratory distress, transfusion-related acute lung injury (TRALI) is regarded as one of the rare complications associated with transfusion medicine. However, to date, the pathogenesis of TRALI is still unclear, and specific therapies are unavailable. Understanding the mechanisms of TRALI may promote the design of preventive and therapeutic strategies. The immune system plays vital roles in reproduction, development and homeostasis. Sterile tissue damage, such as physical trauma, ischemia, or reperfusion injury, induces an inflammatory reaction that results in wound healing and regenerative mechanisms. In other words, in addition to protecting against pathogens, the immune response may be strongly associated with TRALI prevention and treatment through a variety of immunomodulatory strategies to inhibit excessive immune system activation. Immunotherapy based on immune cells or immunological targets may eradicate complications. For example, IL-10 therapy is a promising therapeutic strategy to explore further. This review will focus on ultramodern advances in our understanding of the potential role of the immune system in TRALI prevention and treatment.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
19
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Bedside Allogeneic Erythrocyte Washing with a Cell Saver to Remove Cytokines, Chemokines, and Cell-derived Microvesicles. Anesthesiology 2021; 134:395-404. [PMID: 33503656 DOI: 10.1097/aln.0000000000003689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Removal of cytokines, chemokines, and microvesicles from the supernatant of allogeneic erythrocytes may help mitigate adverse transfusion reactions. Blood bank-based washing procedures present logistical difficulties; therefore, we tested the hypothesis that on-demand bedside washing of allogeneic erythrocyte units is capable of removing soluble factors and is feasible in a clinical setting. METHODS There were in vitro and prospective, observation cohort components to this a priori planned substudy evaluating bedside allogeneic erythrocyte washing, with a cell saver, during cardiac surgery. Laboratory data were collected from the first 75 washed units given to a subset of patients nested in the intervention arm of a parent clinical trial. Paired pre- and postwash samples from the blood unit bags were centrifuged. The supernatant was aspirated and frozen at -70°C, then batch-tested for cell-derived microvesicles, soluble CD40 ligand, chemokine ligand 5, and neutral lipids (all previously associated with transfusion reactions) and cell-free hemoglobin (possibly increased by washing). From the entire cohort randomized to the intervention arm of the trial, bedside washing was defined as feasible if at least 75% of prescribed units were washed per protocol. RESULTS Paired data were available for 74 units. Washing reduced soluble CD40 ligand (median [interquartile range]; from 143 [1 to 338] ng/ml to zero), chemokine ligand 5 (from 1,314 [715 to 2,551] to 305 [179 to 488] ng/ml), and microvesicle numbers (from 6.90 [4.10 to 20.0] to 0.83 [0.33 to 2.80] × 106), while cell-free hemoglobin concentration increased from 72.6 (53.6 to 171.6) mg/dl to 210.5 (126.6 to 479.6) mg/dl (P < 0.0001 for each). There was no effect on neutral lipids. Bedside washing was determined as feasible for 80 of 81 patients (99%); overall, 293 of 314 (93%) units were washed per protocol. CONCLUSIONS Bedside erythrocyte washing was clinically feasible and greatly reduced concentrations of soluble factors thought to be associated with transfusion-related adverse reactions, increasing concentrations of cell-free hemoglobin while maintaining acceptable (less than 0.8%) hemolysis. EDITOR’S PERSPECTIVE
Collapse
|
21
|
Proinflammatory cytokines and ARDS pulmonary edema fluid induce CD40 on human mesenchymal stromal cells-A potential mechanism for immune modulation. PLoS One 2020; 15:e0240319. [PMID: 33021986 PMCID: PMC7537876 DOI: 10.1371/journal.pone.0240319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) are a promising therapy for acute respiratory distress syndrome (ARDS) and other inflammatory conditions. While considerable research has focused on paracrine effects and mitochondrial transfer that improve lung fluid balance, hMSCs are well known to have immunomodulatory properties as well. Some of these immunomodulatory properties have been related to previously reported paracrine effectors such as indoleamine-2,3-dioxygenase (IDO), but these effects cannot fully account for cell-contact dependent immunomodulation. Here, we report that CD40 is upregulated on hMSCs under the same conditions previously reported to induce IDO. Further, CD40 transcription is also upregulated on hMSCs by ARDS pulmonary edema fluid but not by hydrostatic pulmonary edema fluid. Transcription of CD40, as well as paracrine effectors TSG6 and PTGS2 remained significantly upregulated for at least 12 hours after withdrawal of cytokine stimulation. Finally, induction of this immune phenotype altered the transdifferentiation of hMSCs, one of their hallmark properties. CD40 may play an important role in the immunomodulatory effects of hMSCs in ARDS and inflammation.
Collapse
|
22
|
Nicolai L, Leunig A, Brambs S, Kaiser R, Weinberger T, Weigand M, Muenchhoff M, Hellmuth JC, Ledderose S, Schulz H, Scherer C, Rudelius M, Zoller M, Höchter D, Keppler O, Teupser D, Zwißler B, von Bergwelt-Baildon M, Kääb S, Massberg S, Pekayvaz K, Stark K. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation 2020; 142:1176-1189. [PMID: 32755393 PMCID: PMC7497892 DOI: 10.1161/circulationaha.120.048488] [Citation(s) in RCA: 401] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Severe acute respiratory syndrome corona virus 2 infection causes severe pneumonia (coronavirus disease 2019 [COVID-19]), but the mechanisms of subsequent respiratory failure and complicating renal and myocardial involvement are poorly understood. In addition, a systemic prothrombotic phenotype has been reported in patients with COVID-19. Methods: A total of 62 subjects were included in our study (n=38 patients with reverse transcriptase polymerase chain reaction–confirmed COVID-19 and n=24 non–COVID-19 controls). We performed histopathologic assessment of autopsy cases, surface marker–based phenotyping of neutrophils and platelets, and functional assays for platelet, neutrophil functions, and coagulation tests, as well. Results: We provide evidence that organ involvement and prothrombotic features in COVID-19 are linked by immunothrombosis. We show that, in COVID-19, inflammatory microvascular thrombi are present in the lung, kidney, and heart, containing neutrophil extracellular traps associated with platelets and fibrin. Patients with COVID-19 also present with neutrophil-platelet aggregates and a distinct neutrophil and platelet activation pattern in blood, which changes with disease severity. Whereas cases of intermediate severity show an exhausted platelet and hyporeactive neutrophil phenotype, patients severely affected with COVID-19 are characterized by excessive platelet and neutrophil activation in comparison with healthy controls and non–COVID-19 pneumonia. Dysregulated immunothrombosis in severe acute respiratory syndrome corona virus 2 pneumonia is linked to both acute respiratory distress syndrome and systemic hypercoagulability. Conclusions: Taken together, our data point to immunothrombotic dysregulation as a key marker of disease severity in COVID-19. Further work is necessary to determine the role of immunothrombosis in COVID-19.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Alexander Leunig
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Sophia Brambs
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany
| | - Rainer Kaiser
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Michael Weigand
- Institute of Laboratory Medicine (M.W., D.T.), University Hospital Ludwig-Maximilian University Munich, Germany
| | - Maximilian Muenchhoff
- Virology, Max von Pettenkofer Institute (M.M., O.K.), Ludwig-Maximilian University Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich (M.M., O.K.)
| | - Johannes C Hellmuth
- Medizinische Klinik und Poliklinik III (J.C.H., M.v.B.-B.), University Hospital Ludwig-Maximilian University Munich, Germany.,German Cancer Consortium (DKTK), Munich (J.C.H., M.v.B.-B.)
| | - Stephan Ledderose
- Institute of Pathology (S.L., H.S., M.R.), Ludwig-Maximilian University Munich, Germany
| | - Heiko Schulz
- Institute of Pathology (S.L., H.S., M.R.), Ludwig-Maximilian University Munich, Germany
| | - Clemens Scherer
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Martina Rudelius
- Institute of Pathology (S.L., H.S., M.R.), Ludwig-Maximilian University Munich, Germany
| | - Michael Zoller
- Department of Anesthesiology (M.Z., B.Z.), University Hospital Ludwig-Maximilian University Munich, Germany
| | | | - Oliver Keppler
- Virology, Max von Pettenkofer Institute (M.M., O.K.), Ludwig-Maximilian University Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich (M.M., O.K.)
| | - Daniel Teupser
- Institute of Laboratory Medicine (M.W., D.T.), University Hospital Ludwig-Maximilian University Munich, Germany
| | - Bernhard Zwißler
- Department of Anesthesiology (M.Z., B.Z.), University Hospital Ludwig-Maximilian University Munich, Germany
| | - Michael von Bergwelt-Baildon
- Medizinische Klinik und Poliklinik III (J.C.H., M.v.B.-B.), University Hospital Ludwig-Maximilian University Munich, Germany.,German Cancer Consortium (DKTK), Munich (J.C.H., M.v.B.-B.)
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I (L.N., A.L., S.B., R.K., T.W., C.S., S.K., S.M., K.P., K.S.), University Hospital Ludwig-Maximilian University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (L.N., A.L., R.K., T.W., C.S., S.K., S.M., K.P., K.S.)
| |
Collapse
|
23
|
Chen B, Xia R. Pro‐inflammatory effects after platelet transfusion: a review. Vox Sang 2020; 115:349-357. [PMID: 32293034 DOI: 10.1111/vox.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Bin‐Zhen Chen
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| | - Rong Xia
- Department of Transfusion Medicine Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
24
|
Hu A, Chen W, Wu S, Pan B, Zhu A, Yu X, Huang Y. An animal model of transfusion-related acute lung injury and the role of soluble CD40 ligand. Vox Sang 2020; 115:303-313. [PMID: 32064628 DOI: 10.1111/vox.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Transfusion-related acute lung injury (TRALI) is a life-threatening complication of transfusion and is one of leading causes of transfusion-associated fatalities. However, the pathogenesis of TRALI is still unclear. Soluble CD40 ligand (sCD40L) is a proinflammatory cytokine that accumulates during blood component storage and is involved in transfusion reactions. The objective of this study was to establish a clinically relevant TRALI animal model and to evaluate the role of sCD40L in TRALI. MATERIALS AND METHODS Rats' red-blood-cell (RBC) suspensions were prepared, and the quality of RBC was evaluated. A trauma-haemorrhage-transfusion strategy was applied to build the animal model. Lung oedema was evaluated by histopathology examination, total bronchoalveolar lavage fluid (BALF) protein concentration, Evans blue dye (EBD) leakage and inflammatory cytokines. The sCD40L concentrations were measured. RESULTS Storage lesions of RBCs gradually increased over time. Obvious histological evidence of lung injury of rats transfused with a 35-day RBC was observed. The total BALF protein concentration, EBD leakage, inflammatory cytokines concentration were increased significantly in the Day 35 group. The sCD40L concentration increased significantly in the storage RBC suspension over time but was slightly elevated in rat plasma. CONCLUSIONS These findings indicated successful establishment of a TRALI animal model with trauma-haemorrhage-transfusion, in which sCD40L may play a minor role in the development of TRALI.
Collapse
Affiliation(s)
- Ai Hu
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Weiyun Chen
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Shubin Wu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Boju Pan
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Xuerong Yu
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|