1
|
Hafez RM, Tawfik A, Hassan GK, Zahran MK, Younes AA, Ziembińska-Buczyńska A, Gamoń F, Nasr M. Synergism of floated paperboard sludge cake /sewage sludge for maximizing biomethane yield and biochar recovery from digestate: A step towards circular economy. CHEMOSPHERE 2024; 362:142639. [PMID: 38909865 DOI: 10.1016/j.chemosphere.2024.142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Anaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch experimental assays were conducted at different SS:PS mixing ratios of 70:30, 50:50, 30:70, and 20:80 (w/w), and their anaerobic co-digestion performances were compared to the mono-digestion systems at 35 ± 0.2 °C for 45 days. The highest methane yield (MY) of 241.68 ± 14.81 mL/g CODremoved was obtained at the optimum SS:PS ratio of 50:50 (w/w). This experimental condition was accompanied by protein, carbohydrate, and VFA conversion efficiencies of 47.3 ± 3.2%, 46.8 ± 3.2%, and 56.3 ± 3.8%, respectively. The synergistic effect of SS and PS cake encouraged the dominance of Bacteroidota (23.19%), Proteobacteria (49.65%), Patescibacteria (8.12%), and Acidovorax (12.60%) responsible for hydrolyzing the complex organic compounds and converting the VFAs into biomethane. Further, the solid fraction of digestate was subjected to thermal treatment at a temperature of 500 °C for 2.0 h, under an oxygen-limited condition. The obtained biochar had a yield of 0.48 g/g dry digestate, and its oxygen-to-carbon (O/C), carbon-to-nitrogen (C/N), and carbon-to-phosphorous (C/P) ratios were 0.55, 10.23, and 16.42, respectively. A combined anaerobic co-digestion/pyrolysis system (capacity 50 m3/d) was designed based on the COD mass balance experimental data and biogenic CO2 market price of 22 USD/ton. This project could earn profits from biogas (12,565 USD/yr), biochar (6641 USD/yr), carbon credit (8014 USD/yr), and COD shadow price (6932 USD/yr). The proposed project could maintain a payback period of 6.60 yr. However, further studies are required to determine the associated life cycle cost model that is useful to validate the batch experiment assumptions.
Collapse
Affiliation(s)
- Rania M Hafez
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Magdy Kandil Zahran
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Ahmed A Younes
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | | | - Filip Gamoń
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St, Gdansk, 80-233, Poland
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| |
Collapse
|
2
|
Al-Shemy MT, Gamoń F, Al-Sayed A, Hellal MS, Ziembińska-Buczyńska A, Hassan GK. Silver nanoparticles incorporated with superior silica nanoparticles-based rice straw to maximize biogas production from anaerobic digestion of landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121715. [PMID: 38968898 DOI: 10.1016/j.jenvman.2024.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.
Collapse
Affiliation(s)
- Mona T Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Filip Gamoń
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, Gdansk, 80-233, Poland
| | - Aly Al-Sayed
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed S Hellal
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | | | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
3
|
Hassa J, Tubbesing TJ, Maus I, Heyer R, Benndorf D, Effenberger M, Henke C, Osterholz B, Beckstette M, Pühler A, Sczyrba A, Schlüter A. Uncovering Microbiome Adaptations in a Full-Scale Biogas Plant: Insights from MAG-Centric Metagenomics and Metaproteomics. Microorganisms 2023; 11:2412. [PMID: 37894070 PMCID: PMC10608942 DOI: 10.3390/microorganisms11102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.
Collapse
Affiliation(s)
- Julia Hassa
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Tom Jonas Tubbesing
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Robert Heyer
- Multidimensional Omics Data Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
- Multidimensional Omics Data Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Dirk Benndorf
- Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, Postfach 1458, 06366 Köthen, Germany
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Mathias Effenberger
- Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Straße 36, 85354 Freising, Germany
| | - Christian Henke
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Benedikt Osterholz
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Michael Beckstette
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Alexander Sczyrba
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| |
Collapse
|
4
|
Hasaka S, Sakamoto S, Fujii K. The Potential of Digested Sludge-Assimilating Microflora for Biogas Production from Food Processing Wastes. Microorganisms 2023; 11:2321. [PMID: 37764166 PMCID: PMC10535770 DOI: 10.3390/microorganisms11092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Food processing wastes (FPWs) are residues generated in food manufacturing, and their composition varies depending on the type of food product being manufactured. Therefore, selecting and acclimatizing seed microflora during the initiation of biogas production is crucial for optimal outcomes. The present study examined the biogas production capabilities of digested sludge-assimilating and biogas-yielding soil (DABYS) and enteric (DABYE) microflorae when used as seed cultures for biogas production from FPWs. After subculturing and feeding these microbial seeds with various FPWs, we assessed their biogas-producing abilities. The subcultures produced biogas from many FPWs, except orange peel, suggesting that the heterogeneity of the bacterial members in the seed microflora facilitates quick adaptation to FPWs. Microflorae fed with animal-derived FPWs contained several methanogenic archaeal families and produced methane. In contrast, microflorae fed with vegetable-, fruit-, and crop-derived FPWs generated hydrogen, and methanogenic archaeal populations were diminished by repeated subculturing. The subcultured microflorae appear to hydrolyze carbohydrates and protein in FPWs using cellulase, pectinase, or protease. Despite needing enhancements in biogas yield for future industrial scale-up, the DABYS and DABYE microflorae demonstrate robust adaptability to various FPWs.
Collapse
Affiliation(s)
- Sato Hasaka
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Saki Sakamoto
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
- Applied Chemistry and Chemical Engineering Program, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| |
Collapse
|
5
|
Prem EM, Schwarzenberger A, Markt R, Wagner AO. Effects of phenyl acids on different degradation phases during thermophilic anaerobic digestion. Front Microbiol 2023; 14:1087043. [PMID: 37089573 PMCID: PMC10113666 DOI: 10.3389/fmicb.2023.1087043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Aromatic compounds like phenyl acids (PA) can accumulate during anaerobic digestion (AD) of organic wastes due to an increased entry of lignocellulose, secondary plant metabolites or proteins, and thermodynamic challenges in degrading the benzene ring. The effects of aromatic compounds can be various - from being highly toxic to be stimulating for methanogenesis - depending on many parameters like inoculum or molecular characteristics of the aromatic compound. To contribute to a better understanding of the consequences of PA exposure during AD, the aim was to evaluate the effects of 10 mM PA on microbial communities degrading different, degradation phase-specific substrates in thermophilic batch reactors within 28 days: Microcrystalline cellulose (MCC, promoting hydrolytic to methanogenic microorganisms), butyrate or propionate (promoting syntrophic volatile fatty acid (VFA) oxidisers to methanogens), or acetate (promoting syntrophic acetate oxidisers to methanogens). Methane production, VFA concentrations and pH were evaluated, and microbial communities and extracellular polymeric substances (EPS) were assessed. The toxicity of PA depended on the type of substrate which in turn determined the (i) microbial diversity and composition and (ii) EPS quantity and quality. Compared with the respective controls, methane production in MCC reactors was less impaired by PA than in butyrate, propionate and acetate reactors which showed reductions in methane production of up to 93%. In contrast to the controls, acetate concentrations were high in all PA reactors at the end of incubation thus acetate was a bottle-neck intermediate in those reactors. Considerable differences in EPS quantity and quality could be found among substrates but not among PA variants of each substrate. Methanosarcina spp. was the dominant methanogen in VFA reactors without PA exposure and was inhibited when PA were present. VFA oxidisers and Methanothermobacter spp. were abundant in VFA assays with PA exposure as well as in all MCC reactors. As MCC assays showed higher methane yields, a higher microbial diversity and a higher EPS quantity and quality than VFA reactors when exposed to PA, we conclude that EPS in MCC reactors might have been beneficial for absorbing/neutralising phenyl acids and keeping (more susceptible) microorganisms shielded in granules or biofilms.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
6
|
Nagy VD, Zhumakayev A, Vörös M, Bordé Á, Szarvas A, Szűcs A, Kocsubé S, Jakab P, Monostori T, Škrbić BD, Mohai E, Hatvani L, Vágvölgyi C, Kredics L. Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation. Microorganisms 2023; 11:microorganisms11040914. [PMID: 37110337 PMCID: PMC10143537 DOI: 10.3390/microorganisms11040914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation.
Collapse
Affiliation(s)
- Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Anuar Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Ádám Bordé
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Adrienn Szarvas
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Péter Jakab
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Tamás Monostori
- Faculty of Agriculture, University of Szeged, Andrássy Street 15, 6800 Hódmezővásárhely, Hungary
| | - Biljana D. Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Edina Mohai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
7
|
Halla FF, Massawa SM, Joseph EK, Acharya K, Sabai SM, Mgana SM, Werner D. Attenuation of bacterial hazard indicators in the subsurface of an informal settlement and their application in quantitative microbial risk assessment. ENVIRONMENT INTERNATIONAL 2022; 167:107429. [PMID: 35914337 DOI: 10.1016/j.envint.2022.107429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pit latrines provide essential onsite sanitation services to over a billion people, but there are concerns about their role in infectious disease transmission, and impacts on groundwater resources. We conducted fieldwork in an informal settlement in Dar es Salaam, where cholera is endemic. We combined plate counting with portable MinION sequencing and quantitative polymerase chain reaction (qPCR) methods for characterization of bacteria in pit latrine sludge, leachate, shallow and deep groundwater resources. Pit latrine sludge was characterized by log10 marker gene concentrations per 100 mL of 11.2 ± 0.2, 9.9 ± 0.9, 6.0 ± 0.3, and 4.4 ± 0.8, for total bacteria (16S rRNA), E. coli (rodA), human-host-associated Bacteroides (HF183), and Vibrio cholerae (ompW), respectively. The ompW gene observations suggested 5 % asymptomatic Vibrio cholerae carriers amongst pit latrine users. Pit leachate percolation through one-meter-thick sand beds attenuated bacterial hazard indicators by 1 to 4 log10 units. But first-order removal rates derived from these data substantially overestimated the longer-range hazard attenuation in the sand aquifers. Cooccurrence of human sewage marker gene HF183 in all shallow groundwater samples testing positive for ompW genes demonstrated the human origin of Vibrio cholerae hazards in the subsurface. All borehole water samples tested negative for ompW and HF183 genes, but 16S rRNA gene sequencing data suggested ingress of faecal pollution into boreholes at the peak of the "long rainy season". Quantitative microbial risk assessment (QMRA) predicted a gastrointestinal disease burden of 0.05 DALY per person per year for the community, well above WHO targets of 10-4-10-6 DALY for disease related to drinking water.
Collapse
Affiliation(s)
- Franella Francos Halla
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Said Maneno Massawa
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Elihaika Kengalo Joseph
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shadrack Mwita Sabai
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania
| | - Shaaban Mrisho Mgana
- Department of Environmental Engineering, School of Environmental Science and Technology, Ardhi University, Dar es Salaam, Tanzania.
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
8
|
Berninghaus AE, Radniecki TS. Anaerobic digester microbiome dynamics in response to moderate and failure-inducing shock loads of fats, oils and greases. BIORESOURCE TECHNOLOGY 2022; 359:127400. [PMID: 35654324 DOI: 10.1016/j.biortech.2022.127400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Accidental organic overloading (shock loading) is common during the anaerobic co-digestion of fats, oils and greases (FOG) and may lead to decreased performance or reactor failure due to the effects on the microbiome. Here, adapted and non-adapted lab-scale anaerobic digesters were exposed to FOG shocks of varying organic strengths. The microbiome was sequenced during the recovery periods employed between each shock event. Non-failure-inducing shocks resulted in enrichment of fermentative bacteria, and acetoclastic and methylotrophic methanogens. However, sub-dominant bacterial populations were largely responsible for increased biogas production observed after adaptation. Following failure events, early recovery communities were dominated by Pseudomonas and Methanosaeta while late recovery communities shifted toward sub-dominant bacterial taxa and Methanosarcina. Generally, the recovered microbiome structure diverged from that of both the initial and optimized microbiomes. Thus, while non-failure-inducing FOG shocks can be beneficial, the adaptations gained are lost after a failure event and adaptation must begin again.
Collapse
Affiliation(s)
- Ashley E Berninghaus
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA
| | - Tyler S Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA.
| |
Collapse
|
9
|
Kim D, Choi H, Yu H, Kim H, Baek G, Lee C. Potential treatment of aged cow manure using spare capacity in anaerobic digesters treating a mixture of food waste and pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 148:22-32. [PMID: 35653950 DOI: 10.1016/j.wasman.2022.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
With the increasing production of cow manure (CM) and the continuing decrease in the demand for manure compost, CM management has become an urgent and challenging task in Korea. In most cattle farms in Korea, CM mixed with bedding materials is left in pens exposed to the open air for several months before treatment, which makes CM an unsuitable feedstock for anaerobic digestion. This study examined the co-digestion of aged CM with a mixture of food waste and pig manure as the base substrate to assess the possibility of treating and valorizing CM using spare capacity in existing anaerobic digesters dealing with other wastes. The duplicate digesters initially fed with the base substrate were subjected to the addition of increasing amounts of CM (3-10% in the feed, w/v) over nine months. Co-feeding CM up to 5% in the feed (w/v) did not compromise the methanogenic degradation of the substrates, but adding more CM led to a significant performance deterioration likely related to the buildup of inhibitory free ammonia and H2S. Adding CM substantially influenced the digester microbial communities, especially methanogenic communities, and induced a dominance shift from aceticlastic Methanothrix to hydrogenotrophic methanogens as the CM fraction increased. The overall results suggest that the CM fraction should not exceed 5% in the feed (w/v) for its stable treatment with the base substrate in the experimental digesters. Although further studies are needed, anaerobic treatment using spare capacity in existing digesters can be a useful strategy for the management of aged CM.
Collapse
Affiliation(s)
- Danbee Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyungmin Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyeonjung Yu
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hanwoong Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Gahyun Baek
- Enrivonmental Research Group, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Jiang M, Song S, Liu H, Dai X, Wang P. Responses of methane production, microbial community and antibiotic resistance genes to the mixing ratio of gentamicin mycelial residues and wheat straw in anaerobic co-digestion process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150488. [PMID: 34607101 DOI: 10.1016/j.scitotenv.2021.150488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic co-digestion (AcoD) of gentamicin mycelial residues (GMRs), a kind of nitrogen-rich biowaste, and wheat straw (WS) is an attractive technology for the recycling of GMRs. However, the effects of the co-substrate ratio on methane production, system stability and antimicrobial resistance during co-digestion remain unclear. Thus, this study aimed to fill in the blanks through AcoD of GMRs and WS with different mixing ratios (1:0, 2:1, 1:1, 1:2, 0:1, VS basis) via batch tests. Results showed that AcoD facilitated methane production than mono anaerobic digestion and reduced the accumulation of the toxic substances, such as ammonia nitrogen and humic-like substances. The maximum methane production was obtained at the reactors with the mixing ratio of 1:1 and 1:2 (R-1:1 and R-1:2), which matched with the relative abundance of key enzymes related to methanogenesis predicted by PICRUSt. Microbial community analysis indicated that Methanosaeta was the most dominant methanogen in the AcoD reactors. The highest relative abundance of Methanosaeta (45.1%) was obtained at R-1:1 due to the appropriate AcoD conditions, thus, providing greater possibilities for high stability of AcoD system. Additionally, AcoD of the GMRs and WS under the mixing ratio of 1:1 and 1:2 did not prompt the increase of antibiotic resistance genes (ARGs). Not only that, the likelihood of horizontal gene transfer declined in R-1:1 due to the weaker connection and transport between host and recipient bacteria. Findings of this study suggested that the suitable mixing ratio of GMRs and WS contributes to methane production and system stability, and reduces the dissemination risks of ARGs.
Collapse
Affiliation(s)
- Mingye Jiang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siqi Song
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Peng Wang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Effect of Elevated Hydrogen Partial Pressure on Mixed Culture Homoacetogenesis. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Llamas M, Greses S, Tomás-Pejó E, González-Fernández C. Tuning microbial community in non-conventional two-stage anaerobic bioprocess for microalgae biomass valorization into targeted bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125387. [PMID: 34134053 DOI: 10.1016/j.biortech.2021.125387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Unspecific microorganisms consortia are normally used in anaerobic biodegradation of solid wastes. However, these consortia can be tuned to optimally obtain determined bioproducts. In this study, high value-added products and biogas were obtained via an innovative two-stage anaerobic bioprocess from microalgae biomass. The anaerobic fermentation (AF) entailed the production of short-chain fatty acids (SCFAs) and subsequently, only the solid spent of AF effluent was valorized for methane production via conventional anaerobic digestion (AD). Applied conditions in AF (25 °C, HRT 8 days) favored Firmicutes predominance (64%) enabling a conversion efficiency of 32.1% g SCFAs-COD/g CODin. Opposite, a wider microbial biodiversity was determined in the AD reactor (35 °C, HRT 20 days), being mainly composed by Firmicutes (28.6%), Euryarchaeota (17.7%) and Proteobacteria (15.3%). AD of the AF-solid spent reached 168.9 mL CH4 /g CODin. Strikingly, operational conditions imposed mediated a microbial specialization that maximized product output.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | | |
Collapse
|
13
|
Singh A, Moestedt J, Berg A, Schnürer A. Microbiological Surveillance of Biogas Plants: Targeting Acetogenic Community. Front Microbiol 2021; 12:700256. [PMID: 34484143 PMCID: PMC8415747 DOI: 10.3389/fmicb.2021.700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
Acetogens play a very important role in anaerobic digestion and are essential in ensuring process stability. Despite this, targeted studies of the acetogenic community in biogas processes remain limited. Some efforts have been made to identify and understand this community, but the lack of a reliable molecular analysis strategy makes the detection of acetogenic bacteria tedious. Recent studies suggest that screening of bacterial genetic material for formyltetrahydrofolate synthetase (FTHFS), a key marker enzyme in the Wood-Ljungdahl pathway, can give a strong indication of the presence of putative acetogens in biogas environments. In this study, we applied an acetogen-targeted analyses strategy developed previously by our research group for microbiological surveillance of commercial biogas plants. The surveillance comprised high-throughput sequencing of FTHFS gene amplicons and unsupervised data analysis with the AcetoScan pipeline. The results showed differences in the acetogenic community structure related to feed substrate and operating parameters. They also indicated that our surveillance method can be helpful in the detection of community changes before observed changes in physico-chemical profiles, and that frequent high-throughput surveillance can assist in management towards stable process operation, thus improving the economic viability of biogas plants. To our knowledge, this is the first study to apply a high-throughput microbiological surveillance approach to visualise the potential acetogenic population in commercial biogas digesters.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Moestedt
- Tekniska Verken i Linköping AB, Department R&D, Linköping, Sweden
| | | | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Singh A, Müller B, Schnürer A. Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP. Sci Rep 2021; 11:13298. [PMID: 34168213 PMCID: PMC8225771 DOI: 10.1038/s41598-021-92658-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Acetogens play a key role in anaerobic degradation of organic material and in maintaining biogas process efficiency. Profiling this community and its temporal changes can help evaluate process stability and function, especially under disturbance/stress conditions, and avoid complete process failure. The formyltetrahydrofolate synthetase (FTHFS) gene can be used as a marker for acetogenic community profiling in diverse environments. In this study, we developed a new high-throughput FTHFS gene sequencing method for acetogenic community profiling and compared it with conventional terminal restriction fragment length polymorphism of the FTHFS gene, 16S rRNA gene-based profiling of the whole bacterial community, and indirect analysis via 16S rRNA profiling of the FTHFS gene-harbouring community. Analyses and method comparisons were made using samples from two laboratory-scale biogas processes, one operated under stable control and one exposed to controlled overloading disturbance. Comparative analysis revealed satisfactory detection of the bacterial community and its changes for all methods, but with some differences in resolution and taxonomic identification. FTHFS gene sequencing was found to be the most suitable and reliable method to study acetogenic communities. These results pave the way for community profiling in various biogas processes and in other environments where the dynamics of acetogenic bacteria have not been well studied.
Collapse
Affiliation(s)
- Abhijeet Singh
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Bettina Müller
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Anna Schnürer
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|
15
|
Szilágyi Á, Bodor A, Tolvai N, Kovács KL, Bodai L, Wirth R, Bagi Z, Szepesi Á, Markó V, Kakuk B, Bounedjoum N, Rákhely G. A comparative analysis of biogas production from tomato bio-waste in mesophilic batch and continuous anaerobic digestion systems. PLoS One 2021; 16:e0248654. [PMID: 33730081 PMCID: PMC7968646 DOI: 10.1371/journal.pone.0248654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Annually, agricultural activity produces an enormous amount of plant biomass by-product. Many studies have reported the biomethane potential of agro-industrial wastes, but only a few studies have investigated applying the substrates in both batch and continuous mode. Tomato is one of the most popular vegetables globally; its processing releases a substantial amount of by-product, such as stems and leaves. This study examined the BMP of tomato plant (Solanum lycopersicum Mill. L. cv. Alfred) waste. A comparative test revealed that the BMPs of corn stover, tomato waste,and their combination were approximately the same, around 280 mL methane/g Volatile Solid. In contrast, the relative biogas production decreased in the presence of tomato waste in a continuous mesophilic anaerobic digestion system; the daily biogas productions were 860 ± 80, 290 ± 50, and 570 ± 70 mL biogas/gVolatile Solid/day in the case of corn stover, tomato waste, and their mixture, respectively. The methane content of biogas was around 46–48%. The fermentation parameters of the continuous AD experiments were optimal in all cases; thus, TW might have an inhibitory effect on the microbial community. Tomato plant materials contain e.g. flavonoids, glycoalkaloids (such as tomatine and tomatidine), etc. known as antimicrobial and antifungal agents. The negative effect of tomatine on the biogas yield was confirmed in batch fermentation experiments. Metagenomic analysis revealed that the tomato plant waste caused significant rearrangements in the microbial communities in the continuously operated reactors. The results demonstrated that tomato waste could be a good mono-substrate in batch fermentations or a co-substrate with corn stover in a proper ratio in continuous anaerobic fermentations for biogas production. These results also point to the importance of running long-term continuous fermentations to test the suitability of a novel biomass substrate for industrial biogas production.
Collapse
Affiliation(s)
- Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Environmental Sciences, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Norbert Tolvai
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Kornél L. Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Viktória Markó
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Environmental Sciences, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- * E-mail:
| |
Collapse
|
16
|
Tajmirriahi M, Momayez F, Karimi K. The critical impact of rice straw extractives on biogas and bioethanol production. BIORESOURCE TECHNOLOGY 2021; 319:124167. [PMID: 33017776 DOI: 10.1016/j.biortech.2020.124167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Extractives are nonstructural constituents of lignocellulosic materials available in small portions; however, their influence on the bioconversion processes cannot be disregarded. This study evaluated the effect of various concentrations of rice straw water extractives (RWE) and ethanol extractives (REE) on enzymatic hydrolysis, anaerobic digestion, and simultaneous saccharification and fermentation productivity. By increasing the RWE or REE concentration, the glucose yield did not change after 72 h of enzymatic hydrolysis. The RWE increment enhanced ethanol yield to 95.6%. However, the REE increment decreased ethanol yield to 32.1%. Adding RWE caused a considerable reduction in the accumulated biogas and changed the composition of produced biogas from 74% methane to less than 1%. By increasing the REE concentration, the accumulated biogas increased from 167.9 to 524.4 ml/g VS. According to the gas chromatography-mass spectrometry (GC/MS) results, the most abundant RWE and REE components were 3-hydroxy-Spirost-8-en-11-one and guaiazulene, respectively.
Collapse
Affiliation(s)
- Mina Tajmirriahi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Forough Momayez
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|