1
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
2
|
Zhao J. Memory, attention and creativity as cognitive processes in musical performance: A case study of students and professionals among non-musicians and musicians. Atten Percept Psychophys 2024; 86:2042-2052. [PMID: 39174815 DOI: 10.3758/s13414-024-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/24/2024]
Abstract
This research discusses that cognitive processes such as memory, attention and creativity differ in students and professionals, among musicians and non-musicians, dealing with musical performance. The purpose of the study was to evaluate and compare the role of memory, attention and creativity as cognitive processes in musical performance, focusing on the differences between non-musicians and musicians. The sample involved 400 individuals, students and professionals, specialising in music and economics. The research instruments used by the scholars were the Wechsler Memory Scale, the Conners Performance Test, and the Torrance Tests of Creative Thinking. Musical students possessed better-developed auditory and short-term memory, while professional musicians had better auditory, visual working and short-term memory. Analysis of attention reveals that music students score better than non-musicians on all four aspects: inattention, impulsivity, sustained attention, and vigilance. For professionals, the key aspects are impulsivity and sustained attention with better results revealed in musicians. Creative thinking was the only factor where the differences were statistically significant in all five scales and the findings proved that creativity was better developed among musicians. This study provides an in-depth analysis and adds new knowledge to existing literature and empirical data on the cognitive processes associated with musical performance, focusing on memory, attention and creativity. By examining the differences between non-musicians and musicians, as well as students and professionals, the study provides insight into how musical performance can be used as a way to develop these cognitive processes.
Collapse
Affiliation(s)
- Jingtao Zhao
- Mykola Lysenko Lviv National Academy of Music, Lviv Vocal Room, Ostapa Nyzhankivskoho srt., 5, Lviv, 79000, Ukraine.
| |
Collapse
|
3
|
Pierce ZP, Bogatz AS, Johnson ER, Lear BE, Nelson CC, Black JM. RETRACTED: Left hemisphere lateralization of the limbic system and frontoparietal network (FPN) correlates with positive and negative symptom improvement following cannabidiol (CBD) administration in psychosis and ultra-high risk (UHR) populations: A voxel-wise meta-analysis. J Psychiatr Res 2024; 175:160-169. [PMID: 38735261 DOI: 10.1016/j.jpsychires.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors when they discovered and reported to the editors that articles containing population samples drawn from similar cohorts of healthy participants without psychosis were erroneously included in the psychosis subgroup of the meta-analysis. This error in the systematic review processes ultimately affects the findings in the meta-analysis. The authors deeply apologize for this error.
Collapse
Affiliation(s)
- Zachary P Pierce
- Community Behavioral Health Center, Riverside Community Care, Milford, MA, USA; Cell to Society Lab, Boston College School of Social Work, Chestnut Hill, MA, USA.
| | - Andrew S Bogatz
- Cell to Society Lab, Boston College School of Social Work, Chestnut Hill, MA, USA; Boston College School of Social Work, Chestnut Hill, MA, USA
| | - Emily R Johnson
- Cell to Society Lab, Boston College School of Social Work, Chestnut Hill, MA, USA; Primary Care Department, Boston Children's Hospital, Boston, MA, USA
| | - Brianna E Lear
- Cell to Society Lab, Boston College School of Social Work, Chestnut Hill, MA, USA
| | - Collin C Nelson
- Community Behavioral Health Center, Riverside Community Care, Milford, MA, USA
| | - Jessica M Black
- Cell to Society Lab, Boston College School of Social Work, Chestnut Hill, MA, USA; Boston College School of Social Work, Chestnut Hill, MA, USA
| |
Collapse
|
4
|
Palumbo A, Groves K, Munoz-Vidal EL, Turry A, Codio R, Raghavan P, Schambra H, Voelbel GT, Ripollés P. Improvisation and live accompaniment increase motor response and reward during a music playing task. Sci Rep 2024; 14:13112. [PMID: 38849348 PMCID: PMC11161496 DOI: 10.1038/s41598-024-62794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Music provides a reward that can enhance learning and motivation in humans. While music is often combined with exercise to improve performance and upregulate mood, the relationship between music-induced reward and motor output is poorly understood. Here, we study music reward and motor output at the same time by capitalizing on music playing. Specifically, we investigate the effects of music improvisation and live accompaniment on motor, autonomic, and affective responses. Thirty adults performed a drumming task while (i) improvising or maintaining the beat and (ii) with live or recorded accompaniment. Motor response was characterized by acceleration of hand movements (accelerometry), wrist flexor and extensor muscle activation (electromyography), and the drum strike count (i.e., the number of drum strikes played). Autonomic arousal was measured by tonic response of electrodermal activity (EDA) and heart rate (HR). Affective responses were measured by a 12-item Likert scale. The combination of improvisation and live accompaniment, as compared to all other conditions, significantly increased acceleration of hand movements and muscle activation, as well as participant reports of reward during music playing. Improvisation, regardless of type of accompaniment, increased the drum strike count and autonomic arousal (including tonic EDA responses and several measures of HR), as well as participant reports of challenge. Importantly, increased motor response was associated with increased reward ratings during music improvisation, but not while participants were maintaining the beat. The increased motor responses achieved with improvisation and live accompaniment have important implications for enhancing dose of movement during exercise and physical rehabilitation.
Collapse
Affiliation(s)
- Anna Palumbo
- Rehabilitation Sciences Program, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, 10003, USA.
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Music and Audio Research Lab, New York University, New York, NY, 10003, USA.
- Center for Language, Music, and Emotion (CLaME), New York University, New York, NY, 10003, USA.
| | - Karleigh Groves
- Department of Psychology, New York University, New York, NY, 10003, USA
- Music and Audio Research Lab, New York University, New York, NY, 10003, USA
- Center for Language, Music, and Emotion (CLaME), New York University, New York, NY, 10003, USA
| | - Eva Luna Munoz-Vidal
- Rehabilitation Sciences Program, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, 10003, USA
- Department of Psychology, New York University, New York, NY, 10003, USA
- Music and Audio Research Lab, New York University, New York, NY, 10003, USA
- Center for Language, Music, and Emotion (CLaME), New York University, New York, NY, 10003, USA
| | - Alan Turry
- Department of Music and Performing Arts Professions, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, 10003, USA
- Nordoff-Robbins Center for Music Therapy, New York University, New York, NY, 10003, USA
| | - Robert Codio
- Music and Audio Research Lab, New York University, New York, NY, 10003, USA
- Nordoff-Robbins Center for Music Therapy, New York University, New York, NY, 10003, USA
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Heidi Schambra
- New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Gerald T Voelbel
- Rehabilitation Sciences Program, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, 10003, USA
- Department of Occupational Therapy, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY, 10003, USA
- Center of Health and Rehabilitation Research, New York University, New York, NY, 10003, USA
- Department of Rehabilitation Medicine, Rusk Rehabilitation, NYU Langone Health, New York, NY, 10016, USA
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Music and Audio Research Lab, New York University, New York, NY, 10003, USA.
- Center for Language, Music, and Emotion (CLaME), New York University, New York, NY, 10003, USA.
| |
Collapse
|
5
|
Omigie D, Bhattacharya J. Beyond novelty: Learnability in the interplay between creativity, curiosity and artistic endeavours. Behav Brain Sci 2024; 47:e109. [PMID: 38770867 DOI: 10.1017/s0140525x23003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Using art and aesthetics as context, we explore the notion that curiosity and creativity emanate from a single novelty-seeking mechanism and outline support for the idea. However, we also highlight the importance of learning progress tracking in exploratory action and advocate for a nuanced understanding that aligns novelty-seeking with learnability. This, we argue, offers a more comprehensive framework of how curiosity and creativity are related.
Collapse
Affiliation(s)
- Diana Omigie
- Department of Psychology, Goldsmiths, University of London, London, UK ://www.gold.ac.uk/psychology/staff/omigie/https://www.gold.ac.uk/psychology/staff/bhattacharya/
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, UK ://www.gold.ac.uk/psychology/staff/omigie/https://www.gold.ac.uk/psychology/staff/bhattacharya/
| |
Collapse
|
6
|
Velasquez MA, Winston JL, Sur S, Yurgil K, Upman AE, Wroblewski SR, Huddle A, Colombo PJ. Music training is related to late ERP modulation and enhanced performance during Simon task but not Stroop task. Front Hum Neurosci 2024; 18:1384179. [PMID: 38711801 PMCID: PMC11070544 DOI: 10.3389/fnhum.2024.1384179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Increasing evidence suggests that music training correlates with better performance in tasks measuring executive function components including inhibitory control, working memory and selective attention. The Stroop and Simon tasks measure responses to congruent and incongruent information reflecting cognitive conflict resolution. However, there are more reports of a music-training advantage in the Simon than the Stroop task. Reports indicate that these tasks may differ in the timing of conflict resolution: the Stroop task might involve early sensory stage conflict resolution, while the Simon task may do so at a later motor output planning stage. We hypothesize that musical experience relates to conflict resolution at the late motor output stage rather than the early sensory stage. Behavioral responses, and event-related potentials (ERP) were measured in participants with varying musical experience during these tasks. It was hypothesized that musical experience correlates with better performance in the Simon but not the Stroop task, reflected in ERP components in the later stage of motor output processing in the Simon task. Participants were classified into high- and low-music training groups based on the Goldsmith Musical Sophistication Index. Electrical brain activity was recorded while they completed visual Stroop and Simon tasks. The high-music training group outperformed the low-music training group on the Simon, but not the Stroop task. Mean amplitude difference (incongruent-congruent trials) was greater for the high-music training group at N100 for midline central (Cz) and posterior (Pz) sites in the Simon task and midline central (Cz) and frontal (Fz) sites in the Stroop task, and at N450 at Cz and Pz in the Simon task. N450 difference peaks occurred earlier in the high-music training group at Pz. Differences between the groups at N100 indicate that music training may be related to better sensory discrimination. These differences were not related to better behavioral performance. Differences in N450 responses between the groups, particularly in regions encompassing the motor and parietal cortices, suggest a role of music training in action selection during response conflict situations. Overall, this supports the hypothesis that music training selectively enhances cognitive conflict resolution during late motor output planning stages.
Collapse
Affiliation(s)
| | - Jenna L. Winston
- Department of Psychological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | - Sandeepa Sur
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kate Yurgil
- Department of Psychological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | - Anna E. Upman
- Department of Psychological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| | | | - Annabelle Huddle
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Paul J. Colombo
- Department of Psychology, Tulane University, New Orleans, LA, United States
- Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
7
|
Eierud C, Michael A, Banks D, Andrews E. Resting-state functional connectivity in lifelong musicians. PSYCHORADIOLOGY 2023; 3:kkad003. [PMID: 38666119 PMCID: PMC10917383 DOI: 10.1093/psyrad/kkad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 04/28/2024]
Abstract
Background It has been postulated that musicianship can lead to enhanced brain and cognitive reserve, but the neural mechanisms of this effect have been poorly understood. Lifelong professional musicianship in conjunction with novel brain imaging techniques offers a unique opportunity to examine brain network differences between musicians and matched controls. Objective In this study we aim to investigate how resting-state functional networks (FNs) manifest in lifelong active musicians. We will evaluate the FNs of lifelong musicians and matched healthy controls using resting-state functional magnetic resonance imaging. Methods We derive FNs using the data-driven independent component analysis approach and analyze the functional network connectivity (FNC) between the default mode (DMN), sensory-motor (SMN), visual (VSN), and auditory (AUN) networks. We examine whether the linear regressions between FNC and age are different between the musicians and the control group. Results The age trajectory of average FNC across all six pairs of FNs shows significant differences between musicians and controls. Musicians show an increase in average FNC with age while controls show a decrease (P = 0.013). When we evaluated each pair of FN, we note that in musicians FNC values increased with age in DMN-AUN, DMN-VSN, and SMN-VSN and in controls FNC values decreased with age in DMN-AUN, DMN-SMN, AUN-SMN, and SMN-VSN. Conclusion This result provides early evidence that lifelong musicianship may contribute to enhanced brain and cognitive reserve. Results of this study are preliminary and need to be replicated with a larger number of participants.
Collapse
Affiliation(s)
- Cyrus Eierud
- Linguistics Program, Duke University, Durham, NC 27708, USA
| | - Andrew Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
| | - David Banks
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Edna Andrews
- Linguistics Program, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, USA
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Ai M, Loui P, Morris TP, Chaddock-Heyman L, Hillman CH, McAuley E, Kramer AF. Musical Experience Relates to Insula-Based Functional Connectivity in Older Adults. Brain Sci 2022; 12:1577. [PMID: 36421901 PMCID: PMC9688373 DOI: 10.3390/brainsci12111577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Engaging in musical activities throughout the lifespan may protect against age-related cognitive decline and modify structural and functional connectivity in the brain. Prior research suggests that musical experience modulates brain regions that integrate different modalities of sensory information, such as the insula. Most of this research has been performed in individuals classified as professional musicians; however, general musical experiences across the lifespan may also confer beneficial effects on brain health in older adults. The current study investigated whether general musical experience, characterized using the Goldsmith Music Sophistication Index (Gold-MSI), was associated with functional connectivity in older adults (age = 65.7 ± 4.4, n = 69). We tested whether Gold-MSI was associated with individual differences in the functional connectivity of three a priori hypothesis-defined seed regions in the insula (i.e., dorsal anterior, ventral anterior, and posterior insula). We found that older adults with more musical experience showed greater functional connectivity between the dorsal anterior insula and the precentral and postcentral gyrus, and between the ventral anterior insula and diverse brain regions, including the insula and prefrontal cortex, and decreased functional connectivity between the ventral anterior insula and thalamus (voxel p < 0.01, cluster FWE p < 0.05). Follow-up correlation analyses showed that the singing ability subscale score was key in driving the association between functional connectivity differences and musical experience. Overall, our findings suggest that musical experience, even among non-professional musicians, is related to functional brain reorganization in older adults.
Collapse
Affiliation(s)
- Meishan Ai
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Psyche Loui
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Department of Music, Northeastern University, Boston, MA 02115, USA
| | - Timothy P. Morris
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Laura Chaddock-Heyman
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Charles H. Hillman
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Edward McAuley
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Arthur F. Kramer
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Quabs J, Caspers S, Schöne C, Mohlberg H, Bludau S, Dickscheid T, Amunts K. Cytoarchitecture, probability maps and segregation of the human insula. Neuroimage 2022; 260:119453. [PMID: 35809885 DOI: 10.1016/j.neuroimage.2022.119453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022] Open
Abstract
The human insular cortex supports multifunctional integration including interoceptive, sensorimotor, cognitive and social-emotional processing. Different concepts of the underlying microstructure have been proposed over more than a century. However, a 3D map of the cytoarchitectonic segregation of the insula in standard reference space, that could be directly linked to neuroimaging experiments addressing different cognitive tasks, is not yet available. Here we analyzed the middle posterior and dorsal anterior insula with image analysis and a statistical mapping procedure to delineate cytoarchitectonic areas in ten human postmortem brains. 3D-probability maps of seven new areas with granular (Ig3, posterior), agranular (Ia1, posterior) and dysgranular (Id2-Id6, middle to dorsal anterior) cytoarchitecture have been calculated to represent the new areas in stereotaxic space. A hierarchical cluster analysis based on cytoarchitecture resulted in three distinct clusters in the superior posterior, inferior posterior and dorsal anterior insula, providing deeper insights into the structural organization of the insula. The maps are openly available to support future studies addressing relations between structure and function in the human insula.
Collapse
Affiliation(s)
- Julian Quabs
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany.
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Claudia Schöne
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| |
Collapse
|
10
|
EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Much evidence shows that music training influences the development of functional brain organization and cerebral asymmetry in an auditory-motor integrative neural system also associated with language and speech. Such overlap suggests that music training could be used for interventions in disadvantaged populations. Accordingly, we investigated neurofunctional changes associated with the influence of socially based classical ensemble music (CEM) training on executive auditory functions of children from low socioeconomic status (LSES), as compared to untrained counterparts. We conducted a novel ROI-focused reanalysis of stimulus-locked event-related electroencephalographic (EEG) band power data previously recorded from fifteen LSES children (9–10 years), with and without CEM, while performing a series of auditory Go/No-Go trials (involving 1100 Hz or 2000 Hz tones). An analysis of collapsed Alpha2, Beta1, Beta2, Delta, and Theta EEG bands showed significant differences in increased and decreased left asymmetry between the CEM and the Comparison group in key frontal and central electrodes typically associated with learning music. Overall, in Go trials, the CEM group responded more quickly and accurately. Linear regression analyses revealed both positive and negative correlations between left hemispheric asymmetry and behavioral measures of PPVT score, auditory sensitivity, Go accuracy, and reaction times. The pattern of results suggests that tone frequency and EEG asymmetries may be attributable to a shift to left lateralization as a byproduct of CEM. Our findings suggest that left hemispheric laterality associated with ensemble music training may improve the efficiency of productive language processing and, accordingly, may be considered as a supportive intervention for LSES children and youth.
Collapse
|
11
|
Brown S, Kim E. The neural basis of creative production: A cross-modal ALE meta-analysis. OPEN PSYCHOLOGY 2021. [DOI: 10.1515/psych-2020-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
One of the central questions about the cognitive neuroscience of creativity is the extent to which creativity depends on either domain-specific or domain-general mechanisms. To address this question, we carried out two parallel activation likelihood estimation meta-analyses of creativity: 1) a motoric analysis that combined studies across five domains of creative production (verbalizing, music, movement, writing, and drawing), and 2) an analysis of the standard ideational task used to study divergent thinking, the Alternate Uses task. All experiments contained a contrast between a creative task and a matched non-creative or less-creative task that controlled for the sensorimotor demands of task performance. The activation profiles of the two meta-analyses were non-overlapping, but both pointed to a domain-specific interpretation in which creative production is, at least in part, an enhancement of sensorimotor brain areas involved in non-creative production. The most concordant areas of activation in the motoric meta-analysis were high-level motor areas such as the pre-supplementary motor area and inferior frontal gyrus that interface motor planning and executive control, suggesting a means of uniting domain-specificity and -generality in creative production.
Collapse
Affiliation(s)
- Steven Brown
- Department of Psychology, Neuroscience & Behaviour , McMaster University , Hamilton , ON , Canada
| | - Eunseon Kim
- Department of Psychology, Neuroscience & Behaviour , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
12
|
Manting CL, Gulyas B, Ullén F, Lundqvist D. Auditory steady-state responses during and after a stimulus: Cortical sources, and the influence of attention and musicality. Neuroimage 2021; 233:117962. [PMID: 33744455 DOI: 10.1016/j.neuroimage.2021.117962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
The auditory steady-state response (ASSR) is an oscillatory brain response generated by periodic auditory stimuli and originates mainly from the temporal auditory cortices. Recent data show that while the auditory cortices are indeed strongly activated by the stimulus when it is present (ON ASSR), the anatomical distribution of ASSR sources involves also parietal and frontal cortices, indicating that the ASSR is a more complex phenomenon than previously believed. Furthermore, while the ASSR typically continues to oscillate even after the stimulus has stopped (OFF ASSR), very little is known about the characteristics of the OFF ASSR and how it compares to the ON ASSR. Here, we assessed whether the OFF and ON ASSR powers are modulated by the stimulus properties (i.e. volume and pitch), selective attention, as well as individual musical sophistication. We also investigated the cortical source distribution of the OFF ASSR using a melody tracking task, in which attention was directed between uniquely amplitude-modulated melody streams that differed in pitch. The ON and OFF ASSRs were recorded with magnetoencephalography (MEG) on a group of participants varying from low to high degree of musical sophistication. Our results show that the OFF ASSR is different from the ON ASSR in nearly every aspect. While the ON ASSR was modulated by the stimulus properties and selective attention, the OFF ASSR was not influenced by any of these factors. Furthermore, while the ON ASSR was generated primarily from temporal sources, the OFF ASSR originated mainly from the frontal cortex. These findings challenge the notion that the OFF ASSR is merely a continuation of the ON ASSR. Rather, they suggest that the OFF ASSR is an internally-driven signal that develops from an initial sensory processing state (ON ASSR), with both types of ASSRs clearly differing in cortical representation and character. Furthermore, our results show that the ON ASSR power was enhanced by selective attention at cortical sources within each of the bilateral frontal, temporal, parietal and insular lobes. Finally, the ON ASSR proved sensitive to musicality, demonstrating positive correlations between musical sophistication and ASSR power, as well as with the degree of attentional ASSR modulation at the left and right parietal cortices. Taken together, these results show new aspects of the ASSR response, and demonstrate its usefulness as an effective tool for analysing how selective attention interacts with individual abilities in music perception.
Collapse
Affiliation(s)
- Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Cognitive Neuroimaging Centre (CoNiC), Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore.
| | - Balazs Gulyas
- Cognitive Neuroimaging Centre (CoNiC), Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Ullén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Cognitive Neuroimaging Centre (CoNiC), Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Carbo-Valverde S, Lacomba-Arias JA, Lagos-García FM, Rodriguez-Fernandez F, Verdejo-Román J. Brain substrates explain differences in the adoption and degree of financial digitalization. Sci Rep 2020; 10:17512. [PMID: 33060709 PMCID: PMC7567102 DOI: 10.1038/s41598-020-74554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
This study analyzes neural responses connected to trust and risk to explain financial digitalization decisions. It shows that brain responses distinctively inform differences in the adoption of digital financial channels that are not shown by any other sociodemographic or behavioral indicators. From a methodological standpoint, the study explores if usage patterns of digital financial channels and instruments are associated with psychological and biological indicators; it uses functional magnetic resonance imaging (fMRI) to investigate whether financial digitalization decisions are linked to the evoked brain response to the safety associated with video images of financial transactions through digitalized and non-digitalized channels; it conducts trust and risk neuro-experiments to identify their impact on financial digitalization decisions and it analyzes whether brain structure is linked to financial digitalization behavior. The findings suggest that high and low frequency users exhibit differences in brain function and also in volume and fractional anisotropy values. A higher frequency of use of financial digital financial services is associated with higher brain activation linked to insecurity (lower safety neural evoked responses during the video task and an altered white matter microstructure of the cingulum). Additionally, high frequency users of digital financial channels exhibit enhanced activation of brain areas linked to emotional processing during the trust game. These findings have important implications for the design of public policies to enhance financial inclusion through technology and the segmentation and service distribution strategies of private financial institutions.
Collapse
Affiliation(s)
- Santiago Carbo-Valverde
- CUNEF, Bangor University, Bangor, UK
- Funcas, Madrid, Spain
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Juan A Lacomba-Arias
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Francisco M Lagos-García
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Zayed University, Dubai, UAE
| | - Francisco Rodriguez-Fernandez
- Funcas, Madrid, Spain.
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain.
| | - Juan Verdejo-Román
- Department of Economics and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Laboratory for Cognitive and Computational Neuroscience (UCM - UPM) and Experimental Psychology Department, School of Psychology, UCM, Madrid, Spain
| |
Collapse
|
14
|
Bashwiner DM, Bacon DK, Wertz CJ, Flores RA, Chohan MO, Jung RE. Resting state functional connectivity underlying musical creativity. Neuroimage 2020; 218:116940. [PMID: 32422402 DOI: 10.1016/j.neuroimage.2020.116940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022] Open
Abstract
While the behavior of "being musically creative"- improvising, composing, songwriting, etc.-is undoubtedly a complex and highly variable one, recent neuroscientific investigation has offered significant insight into the neural underpinnings of many of the creative processes contributing to such behavior. A previous study from our research group (Bashwiner et al., 2016), which examined two aspects of brain structure as a function of creative musical experience, found significantly increased cortical surface area or subcortical volume in regions of the default-mode network, a motor planning network, and a "limbic" network. The present study sought to determine how these regions coordinate with one another and with other regions of the brain in a large number of participants (n = 218) during a task-neutral period, i.e., during the "resting state." Deriving from the previous study's results a set of eleven regions of interest (ROIs), the present study analyzed the resting-state functional connectivity (RSFC) from each of these seed regions as a function of creative musical experience (assessed via our Musical Creativity Questionnaire). Of the eleven ROIs investigated, nine showed significant correlations with a total of 22 clusters throughout the brain, the most significant being located in bilateral cerebellum, right inferior frontal gyrus, midline thalamus (particularly the mediodorsal nucleus), and medial premotor regions. These results support prior reports (by ourselves and others) implicating regions of the default-mode, executive, and motor-planning networks in musical creativity, while additionally-and somewhat unanticipatedly-including a potentially much larger role for the salience network than has been previously reported in studies of musical creativity.
Collapse
Affiliation(s)
- David M Bashwiner
- University of New Mexico, Department of Music, MSC04-2570, l University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Donna K Bacon
- University of New Mexico, Department of Music, MSC04-2570, l University of New Mexico, Albuquerque, NM, 87131, USA; Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA; University of New Mexico, Department of Psychology, MXC03-2220, l University of New Mexico, Albuquerque, NM, 87131, USA
| | - Christopher J Wertz
- Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA
| | - Ranee A Flores
- Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA
| | - Muhammad O Chohan
- University of New Mexico, Health Sciences Center SOM, Department of Neurosurgery, MSC10-5615, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rex E Jung
- Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA; University of New Mexico, Department of Psychology, MXC03-2220, l University of New Mexico, Albuquerque, NM, 87131, USA; University of New Mexico, Department of Neurosurgery, MSC10-5615, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|