1
|
Román‐Domínguez L, Salazar‐León J, Meza‐Sosa KF, Pérez‐Martínez L, Pedraza‐Alva G. Adipose tissue IL-18 production is independent of caspase-1 and caspase-11. Immun Inflamm Dis 2024; 12:e1241. [PMID: 38629728 PMCID: PMC11022623 DOI: 10.1002/iid3.1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Inflammation in adipose tissue, resulting from imbalanced caloric intake and energy expenditure, contributes to the metabolic dysregulation observed in obesity. The production of inflammatory cytokines, such as IL-1β and IL-18, plays a key role in this process. While IL-1β promotes insulin resistance and diabetes, IL-18 regulates energy expenditure and food intake. Previous studies have suggested that caspase-1, activated by the Nlrp3 inflammasome in response to lipid excess, mediates IL-1β production, whereas activated by the Nlrp1b inflammasome in response to energy excess, mediates IL-18 production. However, this has not been formally tested. METHODS Wild-type and caspase-1-deficient Balb/c mice, carrying the Nlrp1b1 allele, were fed with regular chow or a high-fat diet for twelve weeks. Food intake and mass gain were recorded weekly. At the end of the twelve weeks, glucose tolerance and insulin resistance were evaluated. Mature IL-18 protein levels and the inflammatory process in the adipose tissue were determined. Fasting lipid and cytokine levels were quantified in the sera of the different experimental groups. RESULTS We found that IL-18 production in adipose tissue is independent of caspase-1 activity, regardless of the metabolic state, while Nlrp3-mediated IL-1β production remains caspase-1 dependent. Additionally, caspase-1 null Balb/c mice did not develop metabolic abnormalities in response to energy excess from the high-fat diet. CONCLUSION Our findings suggest that IL-18 production in the adipose tissue is independent of Nlrp3 inflammasome and caspase-1 activation, regardless of caloric food intake. In contrast, Nlrp3-mediated IL-1β production is caspase-1 dependent. These results provide new insights into the mechanisms underlying cytokine production in the adipose tissue during both homeostatic conditions and metabolic stress, highlighting the distinct roles of caspase-1 and the Nlrp inflammasomes in regulating inflammatory responses.
Collapse
Affiliation(s)
- Luis Román‐Domínguez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMexico
| | - Jonathan Salazar‐León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMexico
| | - Karla F. Meza‐Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMexico
- Present address:
Laboratorio de Neurobioquímica y ConductaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuarezCiudad de MéxicioMexico
| | - Leonor Pérez‐Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMexico
| | - Gustavo Pedraza‐Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMexico
| |
Collapse
|
2
|
Geng S, Chen D, Wang Y, Yu X, Zuo D, Lv X, Zhou X, Hu C, Yang X, Ma X, Hu W, Xi J, Yu S. Serum levels of Vanin-2 increase with obesity in relation to inflammation of adipose tissue and may be a predictor of bariatric surgery outcomes. Front Nutr 2023; 10:1270435. [PMID: 38156278 PMCID: PMC10753581 DOI: 10.3389/fnut.2023.1270435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Excessive obesity can lead to dysfunction in adipose tissue, which contributes to the development of comorbidities associated with obesity, such as type 2 diabetes (T2D), cardiovascular and cerebrovascular disease, among others. Previous research has mainly focused on the Vanin family in systemic inflammatory diseases or predicting its role in tumor prognosis, while neglecting its role as a secretory protein in adipose tissue inflammation and metabolism. The objective of this study was to compare the changes in Vanin-2 levels in the circulating blood of normal and obese individuals, and to assess its correlation with inflammatory factors in vivo. Furthermore, the study aimed to systematically evaluate its effectiveness in human weight loss surgery. Methods Serum concentrations of Vanin-2 and inflammatory indicators were measured in 518 volunteers. Furthermore, the concentrations of Vanin-2 were measured both before and after weight loss through a dietetic program or laparoscopic sleeve gastrectomy (LSG). Additionally, we assessed the levels of insulin, adiponectin, and inflammation-related factors. The hormonal profile and changes in body weight were evaluated at baseline and 3 months after surgery. Results Serum levels of Vanin-2 were found to be significantly increased in individuals with overweight/obesity (OW/OB) group (controls 438.98 ± 72.44, OW/OB 530.89 ± 79.39 ug/L; p < 0.001). These increased levels were associated with IL-18, BMI, FAT%, and HOMA-IR. However, levels of Vanin-2 remained unchanged after conventional dietary treatment. On the other hand, weight loss induced by LSG resulted in a significant decrease in Vanin-2 concentrations from 586.44 ± 48.84 to 477.67 ± 30.27 ug/L (p < 0.001), and this decrease was associated with the Vanin-2 concentrations observed before the operation. Conclusion Serum Vanin-2 is a highly effective biomarker for assessing adipose tissue inflammation in obesity and has the potential to serve as a predictor of bariatric surgery outcomes.
Collapse
Affiliation(s)
- Shan Geng
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dongmei Chen
- Department of Otorhinolaryngology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Dan Zuo
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Chengju Hu
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuesong Yang
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xujue Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wenjing Hu
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhuang Xi
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Rodrigues E-Lacerda R, Fang H, Robin N, Bhatwa A, Marko DM, Schertzer JD. Microbiota and Nod-like receptors balance inflammation and metabolism during obesity and diabetes. Biomed J 2023; 46:100610. [PMID: 37263539 PMCID: PMC10505681 DOI: 10.1016/j.bj.2023.100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Gut microbiota influence host immunity and metabolism during obesity. Bacterial sensors of the innate immune system relay signals from specific bacterial components (i.e., postbiotics) that can have opposing outcomes on host metabolic inflammation. NOD-like receptors (NLRs) such as Nod1 and Nod2 both recruit receptor-interacting protein kinase 2 (RIPK2) but have opposite effects on blood glucose control. Nod1 connects bacterial cell wall-derived signals to metabolic inflammation and insulin resistance, whereas Nod2 can promote immune tolerance, insulin sensitivity, and better blood glucose control during obesity. NLR family pyrin domain containing (NLRP) inflammasomes can also generate divergent metabolic outcomes. NLRP1 protects against obesity and metabolic inflammation potentially because of a bias toward IL-18 regulation, whereas NLRP3 appears to have a bias toward IL-1β-mediated metabolic inflammation and insulin resistance. Targeting specific postbiotics that improve immunometabolism is a key goal. The Nod2 ligand, muramyl dipeptide (MDP) is a short-acting insulin sensitizer during obesity or during inflammatory lipopolysaccharide (LPS) stress. LPS with underacylated lipid-A antagonizes TLR4 and counteracts the metabolic effects of inflammatory LPS. Providing underacylated LPS derived from Rhodobacter sphaeroides improved insulin sensitivity in obese mice. Therefore, certain types of LPS can generate metabolically beneficial metabolic endotoxemia. Engaging protective adaptive immunoglobulin immune responses can also improve blood glucose during obesity. A bacterial vaccine approach using an extract of the entire bacterial community in the upper gut promotes protective adaptive immune response and long-lasting improvements in blood glucose control. A key future goal is to identify and combine postbiotics that cooperate to improve blood glucose control.
Collapse
Affiliation(s)
- Rodrigo Rodrigues E-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ 2023; 30:279-292. [PMID: 36175539 PMCID: PMC9520110 DOI: 10.1038/s41418-022-01062-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over, glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the adipose tissue as a key player in metabolic inflammation.
Collapse
Affiliation(s)
- Ximena Hildebrandt
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mohamed Ibrahim
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nieves Peltzer
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
5
|
Somm E, Jornayvaz FR. Interleukin-18 in metabolism: From mice physiology to human diseases. Front Endocrinol (Lausanne) 2022; 13:971745. [PMID: 36313762 PMCID: PMC9596921 DOI: 10.3389/fendo.2022.971745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1β, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rβ) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Effects of Vitamin D Supplementation on Adipose Tissue Inflammation and NF-κB/AMPK Activation in Obese Mice Fed a High-Fat Diet. Int J Mol Sci 2022; 23:ijms231810915. [PMID: 36142842 PMCID: PMC9506068 DOI: 10.3390/ijms231810915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Adipose tissue expansion is strongly associated with increased adipose macrophage infiltration and adipocyte-derived pro-inflammatory cytokines, contributing to obesity-associated low-grade inflammation. Individuals with vitamin D deficiency have an increased prevalence of obesity and increased circulating inflammatory cytokines. However, the effect of vitamin D supplementation on obesity-induced inflammation remains controversial. Male C57BL/6J mice received a low-fat (10% fat) or high-fat (HF, 60% fat diet) containing 1000 IU vitamin D/kg diet, or HF supplemented with 10,000 IU vitamin D/kg diet for 16 weeks (n = 9/group). Vitamin D supplementation did not decrease HF-increased body weight but attenuated obesity-induced adipose hypertrophy and macrophage recruitment as demonstrated by the number of crown-like structures. Vitamin D supplementation significantly reduced the mRNA expression of CD11c, CD68, and iNOS, specific for inflammatory M1-like macrophages, and decreased serum levels of NO. In addition, significant reductions in pro-inflammatory gene expression of IL-6, MCP-1, and TNFα and mRNA levels of ASC-1, CASP1, and IL-1β involved in NLRP3 inflammasome were found in obese mice supplemented with vitamin D. Vitamin D supplementation significantly increased obesity-decreased AMPK activity and suppressed HF-increased NF-κB phosphorylation in adipose tissue from obese mice. These observed beneficial effects of vitamin D supplementation on adipose tissue expansion, macrophage recruitment, and inflammation might be related to AMPK/NF-κB signaling.
Collapse
|
7
|
Effects of starch-rich or fat-rich diets on metabolism, adiposity, and glycemia in immune-biased, C57BL/6 and BALB/c mice. J Nutr Biochem 2022; 108:109086. [PMID: 35691592 DOI: 10.1016/j.jnutbio.2022.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Diet is an essential factor to maintain health by regulating host metabolism and immunity. Host immunity acts as a critical regulator of metabolic changes. By using differentially immune-biased mice C57BL/6 and BALB/c, we demonstrated the metabolic consequence of consuming diets rich in non-resistant starch (starch-rich), unsaturated fat (sunflower oil-rich), and saturated fat (coconut oil-rich) for shorter (four weeks) or longer (eight weeks) duration. Time kinetics of various diets on two differentially immune-biased mice revealed that starch-rich and unsaturated fat-rich diets reduced insulin resistance (IR) and visceral adiposity in BALB/c mice. In contrast, a saturated fat-rich diet enhanced both parameters. In C57BL/6 mice, a fat-rich diet enhanced IR with time while visceral adiposity remained unchanged. Eight weeks' consumption of a saturated fat-rich diet led to the highest visceral adiposity in C57BL/6 mice, while the same diet resulted in the maximum IR in BALB/c mice. The current report presented a detailed metabolomic analysis of treatments with various diets using a) uni- and b) multi-variate analyses. We also calculated the differential index for each treatment for each mouse strain using a vector analysis of the multivariate linear discriminant data. The outcome of the vector analysis of metabolite profiles identified metabolites that affected lipid and glucose metabolism to establish the inter-strain physiological differences.
Collapse
|
8
|
de León-Guerrero SD, Salazar-León J, Meza-Sosa KF, Valle-Garcia D, Aguilar-León D, Pedraza-Alva G, Pérez-Martínez L. An enriched environment reestablishes metabolic homeostasis by reducing obesity-induced inflammation. Dis Model Mech 2022; 15:274225. [PMID: 35112705 PMCID: PMC9227715 DOI: 10.1242/dmm.048936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Obesity can lead to chronic inflammation in different tissues, generating insulin and leptin resistance and alterations in glucose and lipid metabolism, favoring the development of degenerative diseases, including type II diabetes. Congruently, the inflammatory signaling inhibition prevents the development of obesity and restores insulin sensitivity. Via the enhancement of central nervous system activity, an enriched environment (EE) has beneficial effects on learning and memory as well as on immune cell functions and inflammation in different disease models. Here, we explored whether an EE can restore energy balance in obese mice that previously presented metabolic alterations. We discovered that an EE improved glucose metabolism, increased insulin signaling in liver, and reduced hepatic steatosis and inflammation, and increased lipolysis and browning in the white adipose tissue of high-fat diet (HFD)-fed mice. Finally, we found reduced inflammatory signaling and increased anorexigenic signaling in the hypothalamus of HFD-fed mice exposed to an EE. These data indicate that an EE is able to restore the metabolic imbalance caused by HFD feeding. Thus, we propose EE as a novel therapeutic approach for treating obesity-related metabolic alterations. This article has an associated First Person interview with the first author of the paper. Summary: A series of physiological, histochemical and molecular analyses reveal that enriched environment decreases inflammation in adipose tissue and in hypothalamus, re-establishing glucose metabolism in metabolically compromised mice.
Collapse
Affiliation(s)
- Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Karla F Meza-Sosa
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - David Valle-Garcia
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Diana Aguilar-León
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Tlalpan, Ciudad de México, CP 14000, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, México
| |
Collapse
|
9
|
Mukherjee R, Aich P. The starch-rich diet causes lipidemia while the fat-rich diet induces visceral adiposity, meta-inflammation, and insulin resistance differentially in immune biased mouse strains. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Mitrofanova A, Fontanella AM, Merscher S, Fornoni A. Lipid deposition and metaflammation in diabetic kidney disease. Curr Opin Pharmacol 2020; 55:60-72. [PMID: 33137677 DOI: 10.1016/j.coph.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
A critical link between metabolic disorders and a form of low-grade systemic and chronic inflammation has been recently established and named 'Metaflammation'. Metaflammation has been recognized as a key mediator of both microvascular and macrovascular complications of diabetes and as a significant contributor to the development of diabetic kidney disease (DKD). The goal of this review is to summarize the contribution of diabetes-induced inflammation and the related signaling pathways to diabetic complications, with a particular focus on how innate immunity and lipid metabolism influence each other.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antonio M Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|