1
|
Mizukami Y, Hashimoto S, Ando T, Ishikawa Y, Eguchi H, Yoshino Y, Matsunaga T, Matsuhashi N, Ikari A. Reduction of Chemoresistance by Claudin-14-Targeting Peptide in Human Colorectal Cancer Cells. J Cell Biochem 2024:e30675. [PMID: 39564693 DOI: 10.1002/jcb.30675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The expression of claudins (CLDNs), major components of tight junctions (TJs), is abnormal in various solid tumors. CLDN14 is highly expressed in human colorectal cancer (CRC) tissues and confers chemoresistance. CLDN14 may become a novel therapeutic target for CRC, but CLDN14-targeting drugs have not been developed. Here, we searched for a CLDN14-targeting peptide, which can suppress CLDN14 expression and chemoresistance using human CRC-derived DLD-1 and LoVo cells. Among some short peptides which mimic the second extracellular loop structure of CLDN14, PSGMK most strongly suppressed the protein expression of CLDN14. The mRNA expression of other endogenous TJ components was unchanged by PSGMK. The PSGMK-induced reduction of CLDN14 protein was inhibited by chloroquine, a lysosome inhibitor, and monodansylcadaverine, a clathrin-dependent endocytosis inhibitor, indicating that PSGMK may enhance endocytosis and lysosomal degradation of CLDN14. In a three-dimensional culture model, the oxidative stress was significantly reduced by PSGMK, whereas hypoxia stress was not. Furthermore, the expression levels of nuclear factor erythroid 2-related factor 2, an oxidative stress response factor, and its target genes were decreased by PSGMK. These results suggest that PSGMK relieves stress conditions in spheroids. The cell viability of spheroids was decreased by anticancer drugs such as doxorubicin and oxaliplatin, which was exaggerated by the cotreatment with PSGMK. Our data indicate that CLDN14-targeting peptide, PSGMK has an anti-chemoresistance effect in CRC cells.
Collapse
Affiliation(s)
- Yuko Mizukami
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Shotaro Hashimoto
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoka Ando
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Totsuka-ku, Yokohama, Japan
| | - Hiroaki Eguchi
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Yoshino
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | | | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery, Pediatric Surgery, Gifu Graduate School of Medicine, Gifu, Japan
| | - Akira Ikari
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
2
|
Kimura R, Hashimoto S, Eguchi H, Morikawa Y, Suenami K, Yoshino Y, Matsunaga T, Endo S, Ikari A. Enhancement of chemoresistance by claudin-1-mediated formation of amino acid barriers in human lung adenocarcinoma A549 cells. Arch Biochem Biophys 2024; 759:110106. [PMID: 39067558 DOI: 10.1016/j.abb.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Claudin-1 (CLDN1) is highly expressed in human lung adenocarcinoma-derived A549 cells and is involved in the augmentation of chemoresistance. However, the mechanism of chemoresistance is not fully understood. In the tumor microenvironment, cancer cells are exposed to stress conditions such as hypoxia and malnutrition. Here, we investigated the effect of CLDN1 expression on amino acid (AA) flux and chemoresistance using A549 cells. The expression of L-type AA transporters, LAT1 and LAT3, was decreased by CLDN1 silencing in A549 spheroids. A reduction in extracellular AA concentration increased the expression of these AA transporters in two-dimensional (2D) cultured cells. The paracellular AA flux except for Ser, Thr, Tyr, Ala, and Gly was enhanced by CLDN1 silencing. These results suggest that CLDN1 forms a paracellular barrier to some AAs, leading to the elevation of LAT1/3 expression in spheroids. The production of reactive oxygen species in the mitochondria and cytosol was decreased by CLDN1 silencing in spheroids, resulting in downregulation of the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target antioxidant genes. CLDN1 silencing enhanced the cytotoxicity of anticancer drugs including doxorubicin and cisplatin, which was blocked by sulforaphane, an inducer of Nrf2 signaling. Similarly, the anticancer-induced toxicity was enhanced by Nrf2 silencing. In 2D cultured cells, the anticancer-induced toxicity was attenuated by AA deficiency and sulforaphane. We suggest that CLDN1 forms an AA barrier in spheroids, leading to the augmentation of Nrf2-dependent chemoresistance in A549 cells.
Collapse
Affiliation(s)
- Riho Kimura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shotaro Hashimoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Drug Design Laboratory, Gifu University, Gifu, 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
3
|
Lee S, Yoon SJ, Oh JH, Ryu JS, Park Y, Hwang ES. MPoMA protects against lung epithelial cell injury via p65 degradation. Biomed Pharmacother 2024; 175:116674. [PMID: 38703509 DOI: 10.1016/j.biopha.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1β, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Soheun Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hyun Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunjeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Liu K, Wang Y, Shao W, Tang C, Zhao S, Xu J, Xu P, Cheng Q, Huang S, Ji P, Qiu S. Unveiling the oncogenic role of CLDN11-secreting fibroblasts in gastric cancer peritoneal metastasis through single-cell sequencing and experimental approaches. Int Immunopharmacol 2024; 129:111647. [PMID: 38335659 DOI: 10.1016/j.intimp.2024.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Fibroblasts are necessary to the progression of cancer. However, the role of fibroblasts in peritoneal metastasis (PM) of gastric cancer (GC) remains elusive. In this study, we would explore the role of fibroblasts mediated cell interaction in PM of GC. METHODS Single-cell sequencing data from public database GSE183904 was used to explore the specific fibroblast cluster. Fibroblasts were extracted from PM and GC tissues. The expression level of CXCR7 was verified by western blot, immunohistochemistry. The role of CLDN11 was investigate through in vitro and in vivo study. Multiple immunohistochemistry was used to characterize the tumor microenvironment. RESULTS CXCR7-positive fibroblasts were significantly enriched in PM of GC. CXCR7 could promote the expression of CLDN11 through activation of the AKT pathway in fibroblasts. Fibroblasts promote the GC proliferation and peritoneal metastasis by secreting CLDN11 in vitro and in vivo. Furthermore, it was revealed that CXCR7-positive fibroblasts were significantly associated with M2-type macrophages infiltration in tissues. CONCLUSION CXCR7-positive fibroblasts play an essential role in PM of GC via CLDN11. Therapy targeting CXCR7-positive fibroblasts or CLDN11 may be helpful in the treatment of GC with PM.
Collapse
Affiliation(s)
- Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China
| | - Siguo Zhao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jiafeng Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shengkui Qiu
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China.
| |
Collapse
|
5
|
Eguchi H, Yu Y, Matsunaga T, Yoshino Y, Ikari A. Acrolein suppresses anticancer drug-induced toxicity mediated by activating claudin-1 and Nrf2 axis in a spheroid model of human lung squamous cell carcinoma cells. Toxicol Lett 2024; 392:46-55. [PMID: 38142011 DOI: 10.1016/j.toxlet.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Tobacco smoke contains various carcinogenic ingredients such as nicotine, acrolein, and benzopyrene; however, their effects on cancer treatment are not fully understood. Claudin-1 (CLDN1), a component of tight junctions, is involved in the increased resistance to anticancer drugs. In this study, we found that acrolein increases the mRNA and protein levels of CLDN1 in RERF-LC-AI cells derived from human lung squamous cell carcinoma (SCC). Acrolein increased the p-extracellular signal-regulated kinase (ERK) 1/2 levels without affecting the p-Akt level. The acrolein-induced elevation of CLDN1 expression was attenuated by U0126, a mitogen-activated protein kinase kinas (MEK) inhibitor. These results indicate that the activation of MEK/ERK pathway is involved in the acrolein-induced elevation of CLDN1 expression. In a spheroid model, acrolein suppressed the accumulation and toxicity of doxorubicin (DXR), which were rescued by CLDN1 silencing. The acrolein-induced effects were also observed in lung SCC-derived EBC-1 and LK-2 cells. Acrolein also increased the expression level of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates antioxidant and detoxifying genes, which were inhibited by CLDN1 silencing. In spheroid cells, the levels of reactive oxygen species were enhanced by acrolein, which was inhibited by CLDN1 silencing. Taken together, acrolein may reduce the anticancer drug-induced toxicity in human lung SCC cells mediated by high CLDN1 expression followed by the upregulation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yaqing Yu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|
6
|
Nagaoka Y, Oshiro K, Yoshino Y, Matsunaga T, Endo S, Ikari A. Activation of the TGF-β1/EMT signaling pathway by claudin-1 overexpression reduces doxorubicin sensitivity in small cell lung cancer SBC-3 cells. Arch Biochem Biophys 2024; 751:109824. [PMID: 37984759 DOI: 10.1016/j.abb.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Small-cell lung cancer (SCLC), which accounts for about 15 % of all lung cancers, progresses more rapidly than other histologic types and is rarely detected at an operable early stage. Therefore, chemotherapy, radiation therapy, or their combination are the primary treatments for this type of lung cancer. However, the tendency to acquire resistance to anticancer drugs is a severe problem. Recently, we found that an intercellular adhesion molecule, claudin (CLDN) 1, known to be involved in the migration and invasion of lung cancer cells, is involved in the acquisition of anticancer drug resistance. In the present study, we investigated the effect of CLDN1 on the anticancer-drug sensitivity of SCLC SBC-3 cells. Since epithelial-mesenchymal transition (EMT), which is involved in cancer cell migration and invasion, is well known for its involvement in anticancer-drug sensitivity via inhibition of apoptosis, we also examined EMT involvement in decreased anticancer-drug sensitivity by CLDN1. Sensitivity to doxorubicin (DOX) in SBC-3 cells was significantly decreased by CLDN1 overexpression. CLDN1 overexpression resulted in increased TGF-β1 levels, enhanced EMT induction, and increased migratory potency of SBC-3 cells. The decreased sensitivity of SBC-3 cells to anticancer drugs upon TGF-β1 treatment suggested that activation of the TGF-β1/EMT signaling pathway by CLDN1 causes the decreased sensitivity to anticancer drugs and increased migratory potency. Furthermore, treatments with antiallergic agents tranilast and zoledronic acid, known EMT inhibitors, significantly mitigated the decreased sensitivity of CLDN1-overexpressing SBC-3 cells to DOX. These results suggest that EMT inhibitors might effectively overcome reduced sensitivity to anticancer drugs in CLDN1-overexpressing SCLC cells.
Collapse
Affiliation(s)
- Yuri Nagaoka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kotone Oshiro
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
7
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
8
|
Elfadadny A, Ragab RF, Hamada R, Al Jaouni SK, Fu J, Mousa SA, El-Far AH. Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: Anticancer efficacy and safety. Toxicol Appl Pharmacol 2023; 461:116405. [PMID: 36716865 DOI: 10.1016/j.taap.2023.116405] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Rokaia F Ragab
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Rania Hamada
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
9
|
Salari N, Faraji F, Jafarpour S, Faraji F, Rasoulpoor S, Dokaneheifard S, Mohammadi M. Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review. Indian J Surg Oncol 2022; 13:681-690. [PMID: 36687219 PMCID: PMC9845454 DOI: 10.1007/s13193-022-01550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Chrysin is a natural bioactive compound that is extracted from many trees, honey, and propolis. Chrysin has several pharmacological activities such as anti-inflammatory, anti-cancer, and antioxidant properties. This study was performed to evaluate the anti-cancer activities of chrysin in cancer therapy. The present study was conducted by systematic review of studies published up to August 2021. Related studies were identified by searching Web of Science (WoS), PubMed, Science Direct, SID, MagIran, Scopus, and Google Scholar databases. The keywords of chrysin, cancer, anti-cancer, and cancer therapy were used for searching. The quality of the studies was assessed by the CONSORT checklist. A total of 21 studies were identified. The results of studies showed that chrysin has an anticancer effect by stimulating apoptosis in a wide range of human cells and rats. Chrysin is also an important factor in inhibiting tumor growth and neoplasticity. Chrysin inhibits the growth and proliferation of cancer cells by inducing cytotoxic effects. Therefore, due to the antitumor effects of chrysin and its safety and non-toxicity towards normal cells, this compound can be considered as an adjuvant along with chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Jafarpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Faraji
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shna Rasoulpoor
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadat Dokaneheifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
10
|
Li L, Li L, Cheng G, Wei S, Wang Y, Huang Q, Wu W, Liu X, Chen G. Study of the Preparation and Properties of Chrysin Binary Functional Monomer Molecularly Imprinted Polymers. Polymers (Basel) 2022; 14:polym14142771. [PMID: 35890545 PMCID: PMC9317971 DOI: 10.3390/polym14142771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chrysin is a natural bioactive molecule with various groups, and it has been a challenge to separate and enrich chrysin from natural products. Molecularly imprinted polymers have been widely used in the extraction of natural products, but the number and type of functional monomers limits the separation effect. The synergistic action of multiple functional monomers can improve the separation effect. In this paper, molecularly imprinted polymers (Bi-MIPs) were prepared using methacrylic acid and acrylamide as binary functional monomers for the separation and enrichment of chrysin. The Bi-MIPs were characterized using thermogravimetric analyzer (TGA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The performances of Bi-MIPs were assessed, which included adsorption isotherms, selective recognition and adsorption kinetics. The experimental results show that Bi-MIPs are shaped as a uniform sphere with an abundant pocket structure on its surface. The adsorption of chrysin on the Bi-MIPs followed a pseudo-second-order and adapted Langmuir–Freundlich isotherm models. The adsorption performance of the Bi-MIPs was determined at different temperatures, and the Bi-MIPs showed excellent adsorption performance at 30 °C. The initial decomposition temperature of the Bi-MIPs was 220 °C. After five times of adsorption and desorption, the adsorption performance of the Bi-MIPs decreased by only 7%. In contrast with single functional monomer molecularly imprinted polymers (Si-MIPs), the Bi-MIPs showed excellent specificity, with an imprinting factor of 1.54. The Bi-MIPs are promising materials in the separation and enrichment of chrysin for their high adsorption capacity, low cost and being environmentally friendly.
Collapse
Affiliation(s)
- Long Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Lanfu Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
| | - Gege Cheng
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Sentao Wei
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
| | - Yaohui Wang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Qin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Wei Wu
- Jihua Laboratory, 13 Nanpingxi Road, Foshan 528200, China;
| | - Xiuyu Liu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; (L.L.); (L.L.); (G.C.); (S.W.); (Y.W.); (Q.H.)
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China
- Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
- Correspondence: (X.L.); (G.C.)
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
- Correspondence: (X.L.); (G.C.)
| |
Collapse
|
11
|
Jangid A, Solanki R, Patel S, Medicherla K, Pooja D, Kulhari H. Improving Anticancer Activity of Chrysin using Tumor Microenvironment pH-Responsive and Self-Assembled Nanoparticles. ACS OMEGA 2022; 7:15919-15928. [PMID: 35571829 PMCID: PMC9096951 DOI: 10.1021/acsomega.2c01041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 05/11/2023]
Abstract
Chrysin is a natural bioactive compound with potential biological activities. However, unfavorable physicochemical properties of native chrysin make it difficult to achieve good therapeutic efficacies. In this study, poly(ethylene) glycol (PEG4000)-conjugated chrysin nanoparticles were prepared. The PEG4000 was conjugated to chrysin through cis-aconityl and succinoyl linkers to achieve tumor microenvironment-specific drug release from PEGylated nanoparticles. The conjugation of PEG and chrysin via succinoyl (PCNP-1) and cis-aconityl (PCNP-2) linkers was confirmed by the 1H NMR and FTIR analysis. The nanoparticles were characterized by DLS, TEM, XRD, and DSC analysis. Comparatively, PCNP-2 showed a better drug release profile and higher anticancer activity against human breast cancer cells than chrysin or PCNP-1. The apoptosis studies and colony formation inhibition assay revealed that the PCNP-2 induced more apoptosis and more greatly controlled the growth of human breast cancer cells than pure chrysin. Thus, the use of PCNPs may help to overcome the issues of chrysin and could be a better therapeutic approach.
Collapse
Affiliation(s)
- Ashok
Kumar Jangid
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Raghu Solanki
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Sunita Patel
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
| | - Kanakaraju Medicherla
- Department
of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India
| | - Deep Pooja
- School
of Pharmacy, National Forensic Sciences
University, Sector 9, Gandhinagar, Gujarat 382007, India
| | - Hitesh Kulhari
- School
of Nano Sciences and School of Life Sciences, Central University
of Gujarat, Gandhinagar 382030, India
- Department
of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
12
|
Raj S, Sasidharan S, Tripathi T, Saudagar P. Biofunctionalized Chrysin-conjugated gold nanoparticles neutralize Leishmania parasites with high efficacy. Int J Biol Macromol 2022; 205:211-219. [PMID: 35183598 DOI: 10.1016/j.ijbiomac.2022.02.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Current treatments for leishmaniasis involve various drugs, including miltefosine and amphotericin B, which are associated with several side effects and high costs. Long-term use of these drugs may lead to the development of resistance, thereby reducing their efficiency. Chrysin (CHY) is a well-known, non-toxic flavonoid with antioxidant, antiviral, anti-inflammatory, anti-cancer, hepatoprotective, and neuroprotective properties. Recently we have shown that CHY targets the MAP kinase 3 enzyme of Leishmania and neutralizes the parasite rapidly. However, CHY is associated with low bioavailability, poor absorption, and rapid excretion issues, limiting its usage. In this study, we developed and tested a novel CHY-gold nanoformulation with improved efficacy against the parasites. The reducing power of CHY was utilized to reduce and conjugate with gold nanoparticles. Gold nanoparticles, which are already known for their anti-leishmanial properties, along with conjugated CHY, exhibited a decreased parasite burden in mammalian macrophages. Our findings showed that this biofunctionalized nanoformulation could be used as a potential therapeutic tool against leishmaniasis.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India.
| |
Collapse
|
13
|
Zulhendri F, Perera CO, Tandean S, Abdulah R, Herman H, Christoper A, Chandrasekaran K, Putra A, Lesmana R. The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review. Biomed Pharmacother 2022; 146:112595. [PMID: 35062065 DOI: 10.1016/j.biopha.2021.112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Propolis is a resinous beehive product that is collected by the bees from plant resin and exudates, to protect and maintain hive homeostasis. Propolis has been used by humans therapeutically to treat many ailments including respiratory tract-related diseases and disorders. The aim of the present systematic scoping review is to evaluate the experimental evidence to support the use of propolis as a primary or an adjunctive therapy in respiratory tract-related diseases and disorders. After applying the exclusion criteria, 158 research publications were retrieved and identified from Scopus, Web of Science, Pubmed, and Google Scholar. The key themes of the included studies were pathogenic infection-related diseases and disorders, inflammation-related disorders, lung cancers, and adverse effects. Furthermore, the potential molecular and biochemical mechanisms of action of propolis in alleviating respiratory tract-related diseases and disorders are discussed. In conclusion, the therapeutic benefits of propolis have been demonstrated by various in vitro studies, in silico studies, animal models, and human clinical trials. Based on the weight and robustness of the available experimental and clinical evidence, propolis is effective, either as a primary or an adjunctive therapy, in treating respiratory tract-related diseases.
Collapse
Affiliation(s)
- Felix Zulhendri
- Kebun Efi, Kabanjahe 22171, North Sumatra, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia; Research Fellow, Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia.
| | - Conrad O Perera
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland CBD, Auckland 1010, New Zealand.
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia.
| | - Herry Herman
- Department of Orthopaedics, Faculty of Medicine, Universitas Padjadjaran, Indonesia.
| | - Andreas Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Indonesia.
| | | | - Arfiza Putra
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara Medan 20222, Sumatera Utara, Indonesia.
| | - Ronny Lesmana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia; Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
14
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127529] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother 2021; 141:111906. [PMID: 34328092 DOI: 10.1016/j.biopha.2021.111906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases are responsible for a large number of morbidities and mortalities in the world. Flavonoids are phytochemicals that possess various health-promoting impacts. Chrysin, a natural flavonoid isolated from diverse fruits, vegetables, and even mushrooms, has several pharmacological activities comprising antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. The current study was designed to review the relationship between chrysin administration and neurological complications by discussing the feasible mechanism and signaling pathways. Herein, we mentioned the sources, pharmacological properties, chemistry, and drug delivery systems associated with chrysin pharmacotherapy. The role of chrysin was discussed in depression, anxiety, neuroinflammation, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, cerebral ischemia, spinal cord injury, neuropathy, Multiple Sclerosis, and Guillain-Barré Syndrome. The findings indicate that chrysin has protective effects against neurological conditions by modulating oxidative stress, inflammation, and apoptosis in animal models. However, more studies should be done to clear the neuroprotective effects of chrysin.
Collapse
|
16
|
Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Samarghandian S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int 2021; 21:214. [PMID: 33858433 PMCID: PMC8050922 DOI: 10.1186/s12935-021-01906-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysin has been shown to exert several beneficial pharmacological activities. Chrysin has anti-cancer, anti-viral, anti-diabetic, neuroprotective, cardioprotective, hepatoprotective, and renoprotective as well as gastrointestinal, respiratory, reproductive, ocular, and skin protective effects through modulating signaling pathway involved in apoptosis, oxidative stress, and inflammation. In the current review, we discussed the emerging cellular and molecular mechanisms underlying therapeutic indications of chrysin in various cancers. Online databases comprising Scopus, PubMed, Embase, ProQuest, Science Direct, Web of Science, and the search engine Google Scholar were searched for available and eligible research articles. The search was conducted by using MeSH terms and keywords in title, abstract, and keywords. In conclusion, experimental studies indicated that chrysin could ameliorate cancers of the breast, gastrointestinal tract, liver and hepatocytes, bladder, male and female reproductive systems, choroid, respiratory tract, thyroid, skin, eye, brain, blood cells, leukemia, osteoblast, and lymph. However, more studies are needed to enhance the bioavailability of chrysin and evaluate this agent in clinical trial studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1991953381, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Food Safety Net Services (FSNS), San Antonio, TX, 78216, USA
| | - Tahereh Farkhondeh
- Cardiovscular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, 32004, Ourense, Spain
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, 50161, Kaunas, Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, 50161, Kaunas, Lithuania
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Hur W, Son SE, Kim SN, Seong GH. Cell-based electrochemical cytosensor for rapid and sensitive evaluation of the anticancer effects of saponin on human malignant melanoma cells. Bioelectrochemistry 2021; 140:107813. [PMID: 33848876 DOI: 10.1016/j.bioelechem.2021.107813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Discovering new anticancer agents and analyzing their activities is a vital part of drug development, but it requires a huge amount of time and resources, leading to the increasing demands for more-effective techniques. Herein, a novel and simple cell-based electrochemical biosensor, referred to as a cytosensor, was proposed to investigate the electrochemical behavior of human skin malignant melanoma (SK-MEL28) cells and the anticancer effect of saponin on cell viability. To enhance both electrocatalytic properties and biocompatibility, gold nanoparticles were electrochemically deposited onto a conductive substrate, and poly-L-lysine was further added to the electrode surface. Electric signals from SK-MEL28 cells on the electrodes were obtained from cyclic voltammetry and differential pulse voltammetry. The cathodic peak current was proportional to the cell viability and showed a detection range of 2,880-40,000 cells per device with an excellent linear cell number-intensity relationship (R2= 0.9952). Furthermore, the anticancer effect of saponin on SK-MEL28 cells was clearly established at concentrations higher than 20 μM, which was highly consistent with conventional assays. Moreover, the developed electrochemical cytosensor for evaluating anticancer effects enabled rapid (<2 min), sensitive (LOQ: 2,880cells/device), and non-invasive measurements, thus providing a new avenue for assessing the anticancer drugs in vitro.
Collapse
Affiliation(s)
- Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Nyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
18
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
19
|
Eguchi H, Matsunaga H, Onuma S, Yoshino Y, Matsunaga T, Ikari A. Down-Regulation of Claudin-2 Expression by Cyanidin-3-Glucoside Enhances Sensitivity to Anticancer Drugs in the Spheroid of Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2021; 22:ijms22020499. [PMID: 33419064 PMCID: PMC7825397 DOI: 10.3390/ijms22020499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Claudin-2 (CLDN2), an integral membrane protein located at tight junctions, is abnormally expressed in human lung adenocarcinoma tissues, and is linked to drug resistance in human lung adenocarcinoma A549 cells. CLDN2 may be a target for the prevention of lung adenocarcinoma, but there are few compounds which can reduce CLDN2 expression. We found that cyanidin-3-glucoside (C3G), the anthocyanin with two hydroxyl groups on the B-ring, and cyanidin significantly reduce the protein level of CLDN2 in A549 cells. In contrast, pelargonidin-3-glucoside (P3G), the anthocyanin with one hydroxyl group on the B-ring, had no effect. These results suggest that cyanidin and the hydroxyl group at the 3-position on the B-ring play an important role in the reduction of CLDN2 expression. The phosphorylation of Akt, an activator of CLDN2 expression at the transcriptional level, was inhibited by C3G, but not by P3G. The endocytosis and lysosomal degradation are suggested to be involved in the C3G-induced decrease in CLDN2 protein expression. C3G increased the phosphorylation of p38 and the p38 inhibitor SB203580 rescued the C3G-induced decrease in CLDN2 expression. In addition, SB203580 rescued the protein stability of CLDN2. C3G may reduce CLDN2 expression at the transcriptional and post-translational steps mediated by inhibiting Akt and activating p38, respectively. C3G enhanced the accumulation and cytotoxicity of doxorubicin (DXR) in the spheroid models. The percentages of apoptotic and necrotic cells induced by DXR were increased by C3G. Our data suggest that C3G-rich foods can prevent the chemoresistance of lung adenocarcinoma A549 cells through the reduction of CLDN2 expression.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Haruka Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Saki Onuma
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (H.E.); (H.M.); (S.O.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
20
|
Kamat S, Kumari M, Sajna KV, Jayabaskaran C. Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of Chrysin. Sci Rep 2020; 10:18726. [PMID: 33127928 PMCID: PMC7603332 DOI: 10.1038/s41598-020-72497-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/02/2020] [Indexed: 01/29/2023] Open
Abstract
The marine ecosystem is an extraordinary reserve of pharmaceutically important, bioactive compounds even in this “synthetic age”. Marine algae-associated endophytic fungi have gained prominence as an important source of bioactive compounds. This study was conducted on secondary metabolites of Chaetomium globosum-associated with marine green alga Chaetomorpha media from the Konkan coastline, India. Its ethyl acetate extract (CGEE) exhibited an IC50 value of 7.9 ± 0.1 µg/mL on MCF-7 cells. CGEE exhibited G2M phase cell cycle arrest, ROS production and MMP loss in MCF-7 cells. The myco-components in CGEE contributing to the cytotoxicity were found by Gas Chromatography/Mass Spectrometry analyses. Chrysin, a dihydroxyflavone was one of the forty-six myco-components which is commonly found in honey, propolis and passionflower extracts. The compound was isolated and characterized as fungal chrysin using HPLC, UV–Vis spectroscopy, LC–MS, IR and NMR analyses by comparing with standard chrysin. The purified compound exhibited an IC50 value of 49.0 ± 0.6 µM while that of standard chrysin was 48.5 ± 1.6 µM in MCF-7 cells. It induced apoptosis, G1 phase cell cycle arrest, MMP loss, and ROS production. This is the first report of chrysin from an alternative source with opportunities for yield enhancement.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
21
|
Mehranfard N, Yazdi A, Sardooi AR, Shakerin Z, Ghasemi M. Honey protects against chronic unpredictable mild stress induced- intestinal barrier disintegration and hepatic inflammation. Mol Biol Rep 2020; 47:8475-8484. [PMID: 33047241 DOI: 10.1007/s11033-020-05888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 01/19/2023]
Abstract
Chronic stress is linked to liver injury by increasing intestinal permeability to lipopolysaccharide (LPS), which in turn can result in systemic and liver inflammation and damage. Beneficial effect of honey in the prevention of liver injury has been shown in previous studies, but mechanisms underlying are still less known. Here, we examined the therapeutic impacts of honey on intestinal nuclear factor-κB (NF-κB; an important regulator of stress-induced immune and inflammatory responses) and ileal tight junction (TJ) proteins of claudin-1 and ZO-1, serum LPS, liver inflammation and oxidative markers of malondialdehyde (MDA), nitric oxide (NO), (erythroid-derived 2)-like 2 (Nrf2), tumor necrosis factor (TNF)-α and total antioxidant capacity (TAC) following chronic unpredictable mild stress (CUMS) using Western blotting, ELISA kit and spectrophotometry. Male rats were subjected to CUMS for 28 consecutive days. Honey (0.2 and 2 g/kg/day, by gavage) was administered pretreatment (10 days) and during stress. Honey reduced stress-induced LPS elevation by preventing reduction in the intestinal TJ proteins of claudin-1 and ZO-1, while did not affect NF-kB levels. In liver, honey significantly suppressed stress-induced increase in MDA, NO, TNF-α and Nrf2 expression and normalized TAC. Noteworthy, honey high-dose provoked a greater decrease in TNF-α, Nrf2 and LPS levels than honey low-dose. Together, our study indicated that honey protects against stress-induced liver damage by modulating at least two pathways; intestinal barrier protection via increased TJ protein complex expression, and hepatic TAC protection that may be involved in the inhibition of MDA, NO, TNF-α and Nrf2 expression.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asiye Rafiee Sardooi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Shakerin
- PhD of Anatomical Science, Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Sudhakaran M, Parra MR, Stoub H, Gallo KA, Doseff AI. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem Pharmacol 2020; 182:114259. [PMID: 33011162 DOI: 10.1016/j.bcp.2020.114259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/14/2023]
Abstract
Acquired resistance to doxorubicin is a major hurdle in triple-negative breast cancer (TNBC) therapy, emphasizing the need to identify improved strategies. Apigenin and other structurally related dietary flavones are emerging as potential chemo-sensitizers, but their effect on three-dimensional TNBC spheroid models has not been investigated. We previously showed that apigenin associates with heterogeneous ribonuclear protein A2/B1 (hnRNPA2), an RNA-binding protein involved in mRNA and co-transcriptional regulation. However, the role of hnRNPA2 in apigenin chemo-sensitizing activity has not been investigated. Here, we show that apigenin induced apoptosis in TNBC spheroids more effectively than apigenin-glycoside, owing to higher cellular uptake. Moreover, apigenin inhibited the growth of TNBC patient-derived organoids at an in vivo achievable concentration. Apigenin sensitized spheroids to doxorubicin-induced DNA damage, triggering caspase-9-mediated intrinsic apoptotic pathway and caspase-3 activity. Silencing of hnRNPA2 decreased apigenin-induced sensitization to doxorubicin in spheroids by diminishing apoptosis and partly abrogated apigenin-mediated reduction of ABCC4 and ABCG2 efflux transporters. Together these findings provide novel insights into the critical role of hnRNPA2 in mediating apigenin-induced sensitization of TNBC spheroids to doxorubicin by increasing the expression of efflux transporters and apoptosis, underscoring the relevance of using dietary compounds as a chemotherapeutic adjuvant.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/metabolism
- Apigenin/administration & dosage
- Apigenin/metabolism
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/metabolism
- Drug Delivery Systems/methods
- Female
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/deficiency
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Michael Ramirez Parra
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Hayden Stoub
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| | - Andrea I Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
23
|
Ganai SA, Sheikh FA, Baba ZA. Plant flavone Chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res 2020; 35:823-834. [PMID: 32930436 DOI: 10.1002/ptr.6869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 01/13/2023]
Abstract
Aberrations in epigenetic mechanisms provide a fertile platform for tumour initiation and progression. Thus, agents capable of modulating the epigenetic environment of neoplasms will be a valuable addition to the anticancer therapeutics. Flavones are emerging as befitting anticancer agents due to their inherent antioxidant activity and the ability to restrain epi-targets namely histone deacetylases (HDACs). HDACs have broader implications in pathogenesis of various cancers. Chrysin, a flavone possessing the ability to inhibit HDACs could prove as a potential anticancer drug. Thus, in this article we focussed on Chrysin and its distinct antineoplastic effect against bellicose malignancies including lung, colorectal, cervical, gastric, melanoma, hepatocellular carcinoma and breast cancer. The underlying signalling cascades triggered by Chrysin for inducing cytotoxic effect in these cancer models are discussed. Importantly, approaches towards combinatorial treatments by Chrysin and commercial anticancer agents are taken into account. The downstream molecular mechanism aroused by combined therapy for abrogating onerous cancer chemoresistance is delineated as well. Moreover, the nano-combinatorial approach involving co-encapsulation of Chrysin with other herbal and non-herbal agents for clinical excellence is elucidated.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Division of Basic Sciences and Humanities, Faculty of Agriculture, SKUAST-Kashmir, Wadura, Sopore, Jammu & Kashmir, India
| | - Farooq Ahmad Sheikh
- Division of Plant Breeding & Genetics, Faculty of Agriculture, SKUAST-Kashmir, Jammu & Kashmir, India
| | - Zahoor Ahmad Baba
- Division of Basic Sciences and Humanities, Faculty of Agriculture, SKUAST-Kashmir, Wadura, Sopore, Jammu & Kashmir, India
| |
Collapse
|
24
|
Huang SP, Jiang YF, Yang LJ, Yang J, Liang MT, Zhou HF, Luo J, Yang DP, Mo WJ, Chen G, Shi L, Gan TQ. Downregulation of miR-125b-5p and Its Prospective Molecular Mechanism in Lung Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:125-140. [PMID: 32614608 DOI: 10.1089/cbr.2020.3657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Fan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Mei-Ting Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Luo
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|