1
|
Veth L, Windhorst AD, Vugts DJ. [ 18F]Trifluoroiodomethane - Enabling Photoredox-mediated Radical [ 18F]Trifluoromethylation for Positron Emission Tomography. Angew Chem Int Ed Engl 2024:e202416901. [PMID: 39349368 DOI: 10.1002/anie.202416901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The development of new tracers for positron emission tomography (PET) is highly dependent on the available synthetic tools for their radiosynthesis. Herein, we present the radiosynthesis and application of [18F]trifluoroiodomethane - the first reagent for broad scope radical [18F]trifluoromethylation chemistry in high molar activity. CF2 18FI can be prepared from [18F]fluoroform with 67±5 % AY and >99 % RCP. Its synthetic utility is demonstrated by the radiosynthesis of previously unprecedented 18F-labeled α-trifluoromethyl ketones and 18F-labeled trifluoromethyl sulfides, important motifs that are present in a range of bioactive compounds. Both protocols are Ru- and photo-mediated and proceed under mild reaction conditions. They show good functional group tolerance evidenced by the respective reaction scopes and make use of easily obtainable starting materials. The products can be isolated in 8.3-11.1 GBq/μmol (starting from ca. 5 GBq [18F]fluoride). The applicability to PET tracer synthesis is shown by the radiolabeling of bioactive compounds, such as derivatives of probenecid and febuxostat. In a broader context, this work opens the door to the utilization of radical [18F]trifluoromethylation chemistry for the radiolabeling of PET tracers in high molar activity.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology and Nuclear Medicine Amsterdam UMC, location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Dept. of Radiology and Nuclear Medicine Amsterdam UMC, location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Dept. of Radiology and Nuclear Medicine Amsterdam UMC, location Vrije Universiteit, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Veth L, Windhorst AD, Vugts DJ. Synthesis of 18F-labelled aryl trifluoromethyl ketones with improved molar activity. Chem Commun (Camb) 2024; 60:6801-6804. [PMID: 38869169 DOI: 10.1039/d4cc01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A method for the radiosynthesis of 18F-labelled aryl trifluoromethyl ketones starting from widely available Weinreb amides using [18F]fluoroform is presented. The method uses potassium hexamethyldisilazane as base and delivers products in high molar activity (up to 24 GBq μmol-1) and excellent radiochemical conversions. The applicability for PET tracer synthesis is demonstrated by the radiosynthesis of ten (hetero)aryl trifluoromethylketones, bearing electron-withdrawing and -donating substituents including a derivative of bioactive probenecid.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology & Nuclear Medicine Amsterdam UMC, Location Vrije Universiteit Amsterdam De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - Albert D Windhorst
- Dept. of Radiology & Nuclear Medicine Amsterdam UMC, Location Vrije Universiteit Amsterdam De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Dept. of Radiology & Nuclear Medicine Amsterdam UMC, Location Vrije Universiteit Amsterdam De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Jana S, Telu S, Jakobsson JE, Yang BY, Pike VW. Copper(I)-free syntheses of [ 11C/ 18F]trifluoromethyl ketones from alkyl or aryl esters and [ 11C/ 18F]fluoroform. Chem Commun (Camb) 2024; 60:4589-4592. [PMID: 38577766 PMCID: PMC11047764 DOI: 10.1039/d4cc00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Herein, we report a copper(I)-free method for labeling the trifluoroacetyl group with positron-emitting carbon-11 (t1/2 = 20.4 min) or fluorine-18 (t1/2 = 109.8 min) as part of our exploration of radiolabeled fluoroforms to access new radiolabeled chemotypes of interest for tracer development. Treatment of alkyl esters and aryl esters, containing electron-donating or electron-withdrawing groups, with [11C/18F]fluoroform in the presence of strong base, gave [11C/18F]trifluoromethyl ketones as novel radiolabeling synthons in moderate to high yields within 15 minutes.
Collapse
Affiliation(s)
- Susovan Jana
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Sanjay Telu
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Jimmy E Jakobsson
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Bo Yeun Yang
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Victor W Pike
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| |
Collapse
|
4
|
Bernardes E, Caravan P, van Dam RM, Deuther-Conrad W, Ellis B, Furumoto S, Guillet B, Huang YY, Jia H, Laverman P, Li Z, Liu Z, Lodi F, Miao Y, Perk L, Schirrmacher R, Vercoullie J, Yang H, Yang M, Yang X, Zhang J, Zhang MR, Zhu H. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2022; 7:9. [PMID: 35471681 PMCID: PMC9043146 DOI: 10.1186/s41181-022-00162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development.
Results This commentary of highlights has resulted in 23 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals and also a contribution in relation to MRI-agents is included. Conclusion Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
| | - Peter Caravan
- Massuchusetts General Hospital, Harvard University, Cambridge, USA
| | | | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Leipzig, Germany. .,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Beverley Ellis
- Manchester University NHS Foundation Trust, Manchester, UK
| | | | | | - Ya-Yao Huang
- National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | - Lars Perk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | | | | - Hua Zhu
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
5
|
Siméon FG, Lee JH, Morse CL, Stukes I, Zoghbi SS, Manly LS, Liow JS, Gladding RL, Dick RM, Yan X, Taliani S, Costa B, Martini C, Da Settimo F, Castellano S, Innis RB, Pike VW. Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising 18F-Labeled Ligand. J Med Chem 2021; 64:16731-16745. [PMID: 34756026 PMCID: PMC8817670 DOI: 10.1021/acs.jmedchem.1c01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translocator protein 18 kDa (TSPO) is a biomarker of neuroinflammation. [11C]ER176 robustly quantifies TSPO in the human brain with positron emission tomography (PET), irrespective of subject genotype. We aimed to develop an ER176 analog with potential for labeling with longer-lived fluorine-18 (t1/2 = 109.8 min). New fluoro and trifluoromethyl analogs of ER176 were prepared through a concise synthetic strategy. These ligands showed high TSPO affinity and low human genotype sensitivity. Each ligand was initially labeled by a generic 11C-methylation procedure, thereby enabling speedy screening in mice. Each radioligand was rapidly taken up and well retained in the mouse brain at baseline after intravenous injection. Preblocking of TSPO showed that high proportions of brain uptake were specifically bound to TSPO at baseline. Overall, the 3-fluoro analog of [11C]ER176 ([11C]3b) displayed the most promising imaging properties. Therefore, a method was developed to label 3b with [18F]fluoride ion. [18F]3b gave similarly promising PET imaging results and deserves evaluation in higher species.
Collapse
Affiliation(s)
- Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03772, South Korea
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ian Stukes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rachel M Dick
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Francis F, Wuest F. Advances in [ 18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021; 26:molecules26216478. [PMID: 34770885 PMCID: PMC8587676 DOI: 10.3390/molecules26216478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) is a preclinical and clinical imaging technique extensively used to study and visualize biological and physiological processes in vivo. Fluorine-18 (18F) is the most frequently used positron emitter for PET imaging due to its convenient 109.8 min half-life, high yield production on small biomedical cyclotrons, and well-established radiofluorination chemistry. The presence of fluorine atoms in many drugs opens new possibilities for developing radioligands labelled with fluorine-18. The trifluoromethyl group (CF3) represents a versatile structural motif in medicinal and pharmaceutical chemistry to design and synthesize drug molecules with favourable pharmacological properties. This fact also makes CF3 groups an exciting synthesis target from a PET tracer discovery perspective. Early attempts to synthesize [18F]CF3-containing radiotracers were mainly hampered by low radiochemical yields and additional challenges such as low radiochemical purity and molar activity. However, recent innovations in [18F]trifluoromethylation chemistry have significantly expanded the chemical toolbox to synthesize fluorine-18-labelled radiotracers. This review presents the development of significant [18F]trifluoromethylation chemistry strategies to apply [18F]CF3-containing radiotracers in preclinical and clinical PET imaging studies. The continuous growth of PET as a crucial functional imaging technique in biomedical and clinical research and the increasing number of CF3-containing drugs will be the primary drivers for developing novel [18F]trifluoromethylation chemistry strategies in the future.
Collapse
Affiliation(s)
- Felix Francis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
| | - Frank Wuest
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Correspondence: ; Tel.: +1-780-391-7666; Fax: +1-780-432-8483
| |
Collapse
|
7
|
Pees A, Vosjan MJWD, Chai JY, Cha H, Chi DY, Windhorst AD, Vugts DJ. Evaluating N-difluoromethyltriazolium triflate as a precursor for the synthesis of high molar activity [ 18 F]fluoroform. J Labelled Comp Radiopharm 2021; 64:466-476. [PMID: 34382259 PMCID: PMC9293032 DOI: 10.1002/jlcr.3939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/24/2023]
Abstract
The trifluoromethyl group is a prominent motif in biologically active compounds and therefore of great interest for the labeling with the positron emitter fluorine-18 for positron emission tomography (PET) imaging. Multiple labeling strategies have been explored in the past; however, most of them suffer from low molar activity due to precursor degradation. In this study, the potential of 1-(difluoromethyl)-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium triflate as precursor for the synthesis of the [18 F]trifluoromethylation building block [18 F]fluoroform with high molar activity was investigated. The triazolium precursor was reacted under various conditions with [18 F]fluoride, providing [18 F]fluoroform with radiochemical yields (RCY) and molar activities (Am ) comparable and even superior with already existing methods. Highest molar activities (Am = 153 ± 14 GBq/μmol, dc, EOS) were observed for the automated procedure on the Neptis® perform module. Due to its easy handling and good RCY and Am in the [18 F]fluoroform synthesis, the triazolium precursor is a valuable alternative to already known precursors.
Collapse
Affiliation(s)
- Anna Pees
- Amsterdam UMC, Radiology and Nuclear Medicine, Radionuclide CenterVU UniversityAmsterdamThe Netherlands
| | | | - Jin Young Chai
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Hyojin Cha
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Dae Yoon Chi
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Albert D. Windhorst
- Amsterdam UMC, Radiology and Nuclear Medicine, Radionuclide CenterVU UniversityAmsterdamThe Netherlands
| | - Danielle J. Vugts
- Amsterdam UMC, Radiology and Nuclear Medicine, Radionuclide CenterVU UniversityAmsterdamThe Netherlands
| |
Collapse
|
8
|
Ajenjo J, Destro G, Cornelissen B, Gouverneur V. Closing the gap between 19F and 18F chemistry. EJNMMI Radiopharm Chem 2021; 6:33. [PMID: 34564781 PMCID: PMC8464544 DOI: 10.1186/s41181-021-00143-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Positron emission tomography (PET) has become an invaluable tool for drug discovery and diagnosis. The positron-emitting radionuclide fluorine-18 is frequently used in PET radiopharmaceuticals due to its advantageous characteristics; hence, methods streamlining access to 18F-labelled radiotracers can make a direct impact in medicine. For many years, access to 18F-labelled radiotracers was limited by the paucity of methodologies available, and the poor diversity of precursors amenable to 18F-incorporation. During the last two decades, 18F-radiochemistry has progressed at a fast pace with the appearance of numerous methodologies for late-stage 18F-incorporation onto complex molecules from a range of readily available precursors including those that do not require pre-functionalisation. Key to these advances is the inclusion of new activation modes to facilitate 18F-incorporation. Specifically, new advances in late-stage 19F-fluorination under transition metal catalysis, photoredox catalysis, and organocatalysis combined with the availability of novel 18F-labelled fluorination reagents have enabled the invention of novel processes for 18F-incorporation onto complex (bio)molecules. This review describes these major breakthroughs with a focus on methodologies for C-18F bond formation. This reinvigorated interest in 18F-radiochemistry that we have witnessed in recent years has made a direct impact on 19F-chemistry with many laboratories refocusing their efforts on the development of methods using nucleophilic fluoride instead of fluorination reagents derived from molecular fluorine gas.
Collapse
Affiliation(s)
- Javier Ajenjo
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gianluca Destro
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
9
|
Alves F, Antunes IF, Cazzola E, Cleeren F, Cornelissen B, Denkova A, Engle J, Faivre-Chauvet A, Gillings N, Hendrikx JJMA, Jalilian AR, van der Meulen NP, Mikolajczak R, Neels OC, Pillai MRA, Reilly R, Rubow S, Seimbille Y, Spreckelmeyer S, Szymanski W, Taddei C. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2021; 6:31. [PMID: 34495412 PMCID: PMC8426445 DOI: 10.1186/s41181-021-00146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development. RESULTS This commentary of highlights has resulted in 21 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals. Also the first contribution in relation to MRI-agents is included. CONCLUSIONS Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Oliver C. Neels
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Chai JY, Cha H, Lee SS, Oh YH, Lee S, Chi DY. Mechanistic study of nucleophilic fluorination for the synthesis of fluorine-18 labeled fluoroform with high molar activity from N-difluoromethyltriazolium triflate. RSC Adv 2021; 11:6099-6106. [PMID: 35423150 PMCID: PMC8694808 DOI: 10.1039/d0ra09827b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The synthesis of fluorine-18 labeled fluoroform with high molar activity has grown in importance for the development of fluorine-18 labeled aryl-CF3 radiopharmaceuticals that are useful as diagnostic radiotracers for the powerful technique of positron emission tomography (PET). We designed a strategy of synthesizing fluorine-18 labeled fluoroform from N1-difluoromethyl-N3-methyltriazolium triflate (1) via SN2 fluorination without stable fluorine isotope scrambling. Fluoroform was generated at rt in 10 min by fluorination of the triazolium precursor with TBAF (6 equiv.). We propose three routes (a), (b), and (c) for this fluorination. Quantum chemical calculations have been carried out to elucidate the mechanism of experimentally observed nucleophilic attack of fluoride at difluoromethyl group via route (a), not N3-methyl via route (b). 1H and 19F NMR studies using deuterium source have been performed to examine the competition between SN2 fluorination (route (a)) and the formation of difluorocarbene (route (c)). The observed superiority of SN2 pathway to formation of difluorocarbene in the reaction of the precursor using CsF in (CD3CN/(CD3)3COD (17.8 : 1)) gives the possibility of preparing the fluorine-18 labeled fluoroform in high molar activity. Route a: desired SN2 reaction of fluoride to form fluoroform with high molar activity; route b: side reaction to form methyl fluoride; route c: side reaction to form difluorocarbene to give fluoroform with lower molar activity.![]()
Collapse
Affiliation(s)
- Jin Young Chai
- Department of Chemistry
- Sogang University
- Seoul 04107
- Korea
| | - Hyojin Cha
- Department of Chemistry
- Sogang University
- Seoul 04107
- Korea
| | - Sung-Sik Lee
- Department of Applied Chemistry
- Kyung Hee University
- Yongin-si
- Korea
| | - Young-Ho Oh
- Department of Applied Chemistry
- Kyung Hee University
- Yongin-si
- Korea
| | - Sungyul Lee
- Department of Applied Chemistry
- Kyung Hee University
- Yongin-si
- Korea
| | - Dae Yoon Chi
- Department of Chemistry
- Sogang University
- Seoul 04107
- Korea
| |
Collapse
|
12
|
Ramos-Torres KM, Zhou YP, Yang BY, Guehl NJ, Sung-Hyun M, Telu S, Normandin MD, Pike VW, Brugarolas P. Syntheses of [ 11C]2- and [ 11C]3-trifluoromethyl-4-aminopyridine: potential PET radioligands for demyelinating diseases. RSC Med Chem 2020; 11:1161-1167. [PMID: 33479620 PMCID: PMC7651860 DOI: 10.1039/d0md00190b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Trifluoromethyl groups are of great interest in PET radiopharmaceuticals. Radiolabelled 4-aminopyridine (4AP) derivatives have been proposed for imaging demyelinating diseases. Here, we describe methods for producing 11C-trifluoromethylated derivatives of 4AP and present early imaging results with [11C]3-trifluoromethyl-4AP in a rhesus macaque. This study shows the utility of [11C]CuCF3 for labelling pyridines and provides initial evidence for the potential use of [11C]3-trifluoromethyl-4AP as a PET radioligand.
Collapse
Affiliation(s)
- Karla M Ramos-Torres
- Gordon Center for Medical Imaging , Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA .
| | - Yu-Peng Zhou
- Gordon Center for Medical Imaging , Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA .
| | - Bo Yeun Yang
- Molecular Imaging Branch , National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA .
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging , Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA .
| | - Moon Sung-Hyun
- Gordon Center for Medical Imaging , Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA .
| | - Sanjay Telu
- Molecular Imaging Branch , National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA .
| | - Marc D Normandin
- Gordon Center for Medical Imaging , Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA .
| | - Victor W Pike
- Molecular Imaging Branch , National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA .
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging , Department of Radiology , Massachusetts General Hospital and Harvard Medical School , Boston , MA , USA .
| |
Collapse
|
13
|
Young N, Pike VW, Taddei C. Rapid and Efficient Synthesis of [ 11C]Trifluoromethylarenes from Primary Aromatic Amines and [ 11C]CuCF 3. ACS OMEGA 2020; 5:19557-19564. [PMID: 32803050 PMCID: PMC7424730 DOI: 10.1021/acsomega.0c02027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 05/30/2023]
Abstract
Prior studies have shown that trifluoromethylarenes can be labeled in high molar activities (A m > 200 GBq/μmol) with positron-emitting carbon-11 (t 1/2 = 20.4 min) by the reaction of the copper(I) derivative of [11C]fluoroform [11C]CuCF3, with several types of precursors, such as aryl iodides, arylboronic acids, and aryldiazonium salts. Nonetheless, these precursors can be challenging to synthesize, and in the case of diazonium salts, are unstable. Methods that reduce challenges in precursor preparation for the synthesis of [11C]trifluoromethylarenes are desirable to enhance possibilities for developing biologically relevant 11C-labeled compounds as radiotracers for biomedical imaging with positron emission tomography (PET). Here, we explored the production of no-carrier-added [11C]trifluoromethylarenes from commercially available primary aromatic amines through reactions of [11C]CuCF3 with diazonium salts that were generated in situ. Moderate to high isolated decay-corrected radiochemical yields (RCY) (32-84%) were obtained rapidly (within 2 min) for many para-substituted and meta-substituted primary aromatic amines bearing a halo, methoxy, thiomethyl, hydroxy, nitro, nitrile, carboxyl, ethylcarboxy, or trifluoromethyl substituent. Null to low RCYs (0-13%) were observed only for ortho bromo-, nitro-, or nitrile-substituted precursors. This new radiosynthetic method usefully expands options for producing PET radiotracers bearing a [11C]trifluoromethyl group, especially from aryl amine precursors.
Collapse
Affiliation(s)
- Nicholas
J. Young
- Molecular Imaging Branch, National
Institute of Mental Health, National Institutes
of Health, 10 Center
Drive, Rm B3 C346, Bethesda, Maryland 20892-1003, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National
Institute of Mental Health, National Institutes
of Health, 10 Center
Drive, Rm B3 C346, Bethesda, Maryland 20892-1003, United States
| | - Carlotta Taddei
- Molecular Imaging Branch, National
Institute of Mental Health, National Institutes
of Health, 10 Center
Drive, Rm B3 C346, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
14
|
Jana S, Telu S, Yang BY, Haskali MB, Jakobsson JE, Pike VW. Rapid Syntheses of [ 11C]Arylvinyltrifluoromethanes through Treatment of ( E)-Arylvinyl(phenyl)iodonium Tosylates with [ 11C]Trifluoromethylcopper(I). Org Lett 2020; 22:4574-4578. [PMID: 32459101 DOI: 10.1021/acs.orglett.0c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method for labeling arylvinyltrifluoromethanes with carbon-11 (t1/2 = 20.4 min) as representatives of a new radiolabeled chemotype that has potential for developing radiotracers for biomedical imaging with positron emission tomography. Treatment of (E)-arylvinyl(phenyl)iodonium tosylates (1a-1k) with [11C[CuCF3 gave the corresponding [11C]arylvinyltrifluoromethanes ([11C]2a-[11C]2k) in high radiochemical yields (90-97%) under rapid (2 min) and mild (60 °C) conditions.
Collapse
Affiliation(s)
- Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive., Bethesda, Maryland 20892, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive., Bethesda, Maryland 20892, United States
| | - Bo Yeun Yang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive., Bethesda, Maryland 20892, United States
| | - Mohammad B Haskali
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive., Bethesda, Maryland 20892, United States
| | - Jimmy E Jakobsson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive., Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive., Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH. Copper-Mediated Late-stage Radiofluorination: Five Years of Impact on Pre-clinical and Clinical PET Imaging. Clin Transl Imaging 2020; 8:167-206. [PMID: 33748018 PMCID: PMC7968072 DOI: 10.1007/s40336-020-00368-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, and in-human imaging studies of new and established imaging agents containing aromatic C-18F bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, although key developments that have enabled or improved upon the syntheses of fluorine-18 imaging agents are discussed. METHODS A comprehensive literature search from April 2014 onwards of the Web of Science and PubMed library databases was performed to find reports that utilize CMRF for the synthesis of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in this minireview. Select conference proceedings, previous reports describing alternative methods for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been included for discussion. CONCLUSIONS CMRF has significantly expanded the chemical space that is accessible to fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the development of new radiofluorination methodologies.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Wiesner
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Abstract
Radioisotopes can be produced artificially from stable nuclei through the interaction with particles or highly energetic photons. In combination with modern detection and counting techniques, radioisotopes and radiochemical methods uniquely contribute to the health sciences. This Collection showcases salient aspects of medical radioisotope science ranging from the production, recovery and purification of radioisotopes to the methods used to attach them to biomolecules. The Collection also presents studies that highlight the importance of radiochemistry in the assessment of environmental radioactivity.
Collapse
|