1
|
Liu Y, Peng F, Wang S, Jiao H, Dang M, Zhou K, Guo W, Guo S, Zhang H, Song W, Xing J. Aberrant fragmentomic features of circulating cell-free mitochondrial DNA as novel biomarkers for multi-cancer detection. EMBO Mol Med 2024; 16:3169-3183. [PMID: 39478151 PMCID: PMC11628560 DOI: 10.1038/s44321-024-00163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Fragmentomic features of circulating cell free mitochondrial DNA (ccf-mtDNA) including fragmentation profile, 5' end base preference and motif diversity are poorly understood. Here, we generated ccf-mtDNA sequencing data of 1607 plasma samples using capture-based next generation sequencing. We firstly found that fragmentomic features of ccf-mtDNA were remarkably different from those of circulating cell free nuclear DNA. Furthermore, region-specific fragmentomic features of ccf-mtDNA were observed, which was associated with protein binding, base composition and special structure of mitochondrial DNA. When comparing to non-cancer controls, six types of cancer patients exhibited aberrant fragmentomic features. Then, cancer detection models were built based on the fragmentomic features. Both internal and external validation cohorts demonstrated the excellent capacity of our model in distinguishing cancer patients from non-cancer control, with all area under curve higher than 0.9322. The overall accuracy of tissue-of-origin was 89.24% and 87.92% for six cancer types in two validation cohort, respectively. Altogether, our study comprehensively describes cancer-specific fragmentomic features of ccf-mtDNA and provides a proof-of-principle for the ccf-mtDNA fragmentomics-based multi-cancer detection and tissue-of-origin classification.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanmin Jiao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Miao Dang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
3
|
Peng F, Wang S, Feng Z, Zhou K, Zhang H, Guo X, Xing J, Liu Y. Circulating cell-free mtDNA as a new biomarker for cancer detection and management. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0280. [PMID: 37823689 PMCID: PMC10884534 DOI: 10.20892/j.issn.2095-3941.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zehui Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| |
Collapse
|
4
|
Hou F, Sun XD, Deng ZY. Diagnostic value of cell-free DNA in thyroid cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e32928. [PMID: 36800605 PMCID: PMC9935987 DOI: 10.1097/md.0000000000032928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE An increasing number of studies have shown the potential diagnostic value of cell-free DNA (cfDNA) as a new biomarker in the management of thyroid cancer (TC); however, the accuracy of research results is inconsistent. This meta-analysis is the first to synthesize published results and evaluate the application value of circulating cfDNA in the diagnosis of TC. METHODS A search strategy was developed according to PICO (P: Patient; I: Intervention; C: Comparison; O: Outcome) principles. We searched 5 databases until October 2022. Original studies that examined cfDNA for the diagnosis of TC and used pathology as the gold standard were included in this meta-analysis. A random-effects model was used to pool the data extracted from individual studies, including the number of patients and the numbers of true positives, false positives, true negatives, and false negatives. RESULTS A total of 622 patients with TC, 547 patients with benign thyroid nodules, and 98 healthy individuals were included in 20 studies reported in 14 articles. The types of cfDNA included in the research include specific mutations of cfDNA, methylation of cfDNA, the content of cfDNA, and cfDNA index. After rigorous statistical analysis, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic curve were 0.76 (95% confidence interval [CI] 0.62-0.85), 0.87 (95% CI 0.78-0.93), 5.08 (95% CI 3.3-10.3), 0.28 (95% CI 0.17-0.46), 21 (95% CI 9-49), and 0.89 (95% CI 0.86-0.91), respectively. The meta-regression results showed that the number of cfDNAs, cfDNA methylation status, and sample size were the sources of heterogeneity in the specificity of the study. A subgroup analysis showed that the quantitative analysis group (cfDNA level) had a higher diagnostic accuracy than that of the qualitative analysis group (cfDNA methylation, mutation, or integrity index), with a sensitivity of 0.84, specificity of 0.89, and area under the curve of 0.91. CONCLUSIONS The results of this meta-analysis suggest that cfDNA has value as an adjunct for the diagnosis of TC. Quantitative detection of cfDNA can achieve relatively high diagnostic accuracy. However, due to heterogeneity, the test results based on cfDNA for TC should be interpreted with caution.
Collapse
Affiliation(s)
- Fei Hou
- Department of Nuclear Medicine, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Xiao-Dan Sun
- Publicity Department, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Zhi-Yong Deng
- Department of Nuclear Medicine, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, China
- * Correspondence: Zhi-Yong Deng, Department of Nuclear Medicine, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China (e-mail: )
| |
Collapse
|
5
|
Cuadrado‐Vilanova M, Burgueño V, Balaguer‐Lluna L, Aschero R, Castillo‐Ecija H, Liu J, Perez‐Jaume S, Pascual‐Pasto G, Olaciregui NG, Gomez‐Gonzalez S, Correa G, Suñol M, Schaiquevich P, Radvanyi F, Lavarino C, Mora J, Catala‐Mora J, Chantada GL, Carcaboso AM. Follow-up of intraocular retinoblastoma through the quantitative analysis of conserved nuclear DNA sequences in aqueous humor from patients. J Pathol Clin Res 2022; 9:32-43. [PMID: 36148636 PMCID: PMC9732679 DOI: 10.1002/cjp2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Fundoscopy is the standard method for diagnosis and follow-up of intraocular retinoblastoma, but it is sometimes insufficient to discern whether tumors are inactivated following treatments. In this work, we hypothesized that the amount of conserved nuclear DNA sequences in the cell-free DNA (cfDNA) fraction of the aqueous humor (AH) might complement fundoscopy for retinoblastoma follow-up. To address our hypothesis, we developed highly sensitive droplet digital polymerase chain reaction (ddPCR) methods to quantify highly conserved DNA sequences of nucleus-encoded genes (GAPDH and B4GALNT1) and of a mitochondrial gene, MT-ATP6. We obtained AH samples during intravitreal treatments. We analyzed 42 AH samples from 25 patients with intraocular retinoblastoma and 11 AH from controls (non-cancer patients). According to clinical criteria, we grouped patients as having progression-free or progressive retinoblastoma. cfDNA concentration in the AH was similar in both retinoblastoma groups. Copy counts for nucleus-derived sequences of GAPDH and B4GALNT1 were significantly higher in the AH from patients with progressive disease, compared to the AH from progression-free patients and control non-cancer patients. The presence of mitochondrial DNA in the AH explained that both retinoblastoma groups had similar cfDNA concentration in AH. The optimal cut-off point for discriminating between progressive and progression-free retinoblastomas was 108 GAPDH copies per reaction. Among patients having serial AH samples analyzed during their intravitreal chemotherapy, GAPDH copies were high and decreased below the cut-off point in those patients responding to chemotherapy. In contrast, one non-responder patient remained with values above the cut-off during follow-up, until enucleation. We conclude that the measurement of conserved nuclear gene sequences in AH allows follow-up of intraocular retinoblastoma during intravitreal treatment. The method is applicable to all patients and could be relevant for those in which fundoscopy evaluation is inconclusive.
Collapse
Affiliation(s)
- Maria Cuadrado‐Vilanova
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Victor Burgueño
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Leire Balaguer‐Lluna
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Rosario Aschero
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Helena Castillo‐Ecija
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Jing Liu
- Institut CurieCNRS, UMR144, SIREDO Oncology CenterParisFrance,Institut CuriePSL Research UniversityParisFrance
| | - Sara Perez‐Jaume
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Guillem Pascual‐Pasto
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Nagore G Olaciregui
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Soledad Gomez‐Gonzalez
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | | | | | - Paula Schaiquevich
- Hospital de Pediatria JP GarrahanBuenos AiresArgentina,CONICETBuenos AiresArgentina
| | - François Radvanyi
- Institut CurieCNRS, UMR144, SIREDO Oncology CenterParisFrance,Institut CuriePSL Research UniversityParisFrance
| | - Cinzia Lavarino
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | - Jaume Mora
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| | | | - Guillermo L Chantada
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain,CONICETBuenos AiresArgentina
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de DeuBarcelonaSpain,SJD Pediatric Cancer Center BarcelonaHospital Sant Joan de DeuBarcelonaSpain
| |
Collapse
|
6
|
Stawski R, Nowak D, Perdas E. Cell-Free DNA: Potential Application in COVID-19 Diagnostics and Management. Viruses 2022; 14:321. [PMID: 35215914 PMCID: PMC8880801 DOI: 10.3390/v14020321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
WHO has declared COVID-19 as a worldwide, public health emergency. The elderly, pregnant women, and people with associated co-morbidities, including pulmonary disease, heart failure, diabetes, and cancer are the most predisposed population groups to infection. Cell-free DNA is a very commonly applied marker, which is elevated in various pathological conditions. However, it has a much higher sensitivity than standard biochemical markers. cfDNA appears to be an effective marker of COVID-19 complications, and also serves as a marker of certain underlying health conditions and risk factors of severe illness during COVID-19 infection. We aimed to present the possible mechanisms and sources of cfDNA released during moderate and severe infections. Moreover, we attempt to verify how efficiently cfDNA increase could be applied in COVID-19 risk assessment and how it corresponds with epidemiological data.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Mikhaleva LM, Orekhov AN. The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment. Int J Mol Sci 2021; 23:ijms23010460. [PMID: 35008887 PMCID: PMC8745127 DOI: 10.3390/ijms23010460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria-primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Street, 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
8
|
Stawski R, Stec-Martyna E, Chmielecki A, Nowak D, Perdas E. Current Trends in Cell-Free DNA Applications. Scoping Review of Clinical Trials. BIOLOGY 2021; 10:biology10090906. [PMID: 34571783 PMCID: PMC8468988 DOI: 10.3390/biology10090906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023]
Abstract
We aimed to summarize the current knowledge about the trends in cfDNA application based on the analysis of clinical trials registered until April 2021. International Clinical Trials Registry Platform (ICTRP) and Clinicaltrials.gov were searched with the keywords: "cf-DNA"; "Circulating DNA"; "Deoxyribonucleic Acid"; and "Cell-Free Deoxyribonucleic Acid". Of 605 clinical trials, we excluded 237 trials, and 368 remaining ones were subject to further analysis. The subject, number of participants, and study design were analyzed. Our scoping review revealed three main trends: oncology (n = 255), non-invasive prenatal diagnostic (n = 48), and organ transplantation (n = 41), and many (n = 22) less common such as sepsis, sport, or autoimmune diseases in 368 clinical trials. Clinical trials are translating theory into clinical care. However, the diagnostic value of cfDNA remains controversial, and diagnostic accuracy still needs to be evaluated. Thus, further studies are necessary until cfDNA turns into a standard in clinical practice.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (R.S.); (E.P.)
| | - Emilia Stec-Martyna
- Central Scientific Laboratory, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland;
| | - Adam Chmielecki
- Sport Centre of the Medical University of Lodz, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
- Correspondence: (R.S.); (E.P.)
| |
Collapse
|
9
|
Romano C, Martorana F, Pennisi MS, Stella S, Massimino M, Tirrò E, Vitale SR, Di Gregorio S, Puma A, Tomarchio C, Manzella L. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int J Mol Sci 2021; 22:7707. [PMID: 34299334 PMCID: PMC8303548 DOI: 10.3390/ijms22147707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, encompassing different entities with distinct histological features and clinical behavior. The diagnostic definition, therapeutic approach, and follow-up of thyroid cancers display some controversial aspects that represent unmet medical needs. Liquid biopsy is a non-invasive approach that detects and analyzes biological samples released from the tumor into the bloodstream. With the use of different technologies, tumor cells, free nucleic acids, and extracellular vesicles can be retrieved in the serum of cancer patients and valuable molecular information can be obtained. Recently, a growing body of evidence is accumulating concerning the use of liquid biopsy in thyroid cancer, as it can be exploited to define a patient's diagnosis, estimate their prognosis, and monitor tumor recurrence or treatment response. Indeed, liquid biopsy can be a valuable tool to overcome the limits of conventional management of thyroid malignancies. In this review, we summarize currently available data about liquid biopsy in differentiated, poorly differentiated/anaplastic, and medullary thyroid cancer, focusing on circulating tumor cells, circulating free nucleic acids, and extracellular vesicles.
Collapse
Affiliation(s)
- Chiara Romano
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Stefania Stella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Rita Vitale
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Adriana Puma
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Cristina Tomarchio
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico—San Marco”, 95123 Catania, Italy; (C.R.); (F.M.); (M.S.P.); (S.S.); (M.M.); (E.T.); (S.R.V.); (S.D.G.); (A.P.); (C.T.)
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
Stawski R, Walczak K, Perdas E, Prymont-Przymińska A, Zwolińska A, Kosielski P, Budlewski T, Padula G, Jerczynska H, Nowak D. Increased Circulating H3 Histone in Response to Repeated Bouts of Exercise Does Not Associate with Parallel Alterations of Cell-Free DNA. BIOLOGY 2021; 10:181. [PMID: 33801313 PMCID: PMC7999358 DOI: 10.3390/biology10030181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022]
Abstract
Numerous studies have shown that cf nDNA significantly rises in stress caused by exercise. However, during nuclear decondensation, released DNA is followed by histones. Histones are also a common disease marker. After PAD4 mediated hypercitrullination extracellular H3Cit exhibits high toxicity contributing to tissue damage which, in cases of systemic inflammation, may lead to multiorgan failure and finally to death. We tested whether circulating histones rise in response to strenuous exercise. Eleven average-trained men performed three treadmill exercise tests to exhaustion at speed corresponding to 70% VO2max separated by 72 h of resting. Blood was collected before and just after each bout of exercise and plasma proteins were measured using enzyme-linked immunosorbent assay, whereas platelet activity was estimated with Light Transmission Aggregometry. Both, circulating histones and PAD4 raised in response to exercise. Plasma citrullinated histones increased from 3.1 ng/mL to 5.96 ng/mL (p = 0.0059), from 3.65 ng/mL to 6.37 ng/mL (p = 0.02), and from 3.86 ng/mL to 4.75 ng/mL (p = 0.033) after the first, second, and third treadmill run, respectively. However despite the parallel increase, no significant correlation between citrullinated histone and aggregation or cell-free nDNA was found. Furthermore, positive correlations of cf nDNA with aggregation and PAD4, lactate with aggregation, and lactate with citrullinated histone have been observed.
Collapse
Affiliation(s)
- Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.); (A.P.-P.)
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewelina Perdas
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.); (A.P.-P.)
| | - Anna Prymont-Przymińska
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.); (A.P.-P.)
| | - Anna Zwolińska
- Cell-to-Cell Communication Department, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Kosielski
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 92-215 Lodz, Poland; (P.K.); (G.P.)
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, University Hospital Name of the Military Medical Academy-Central Hospital Veterans of Lodz, ul. Pieniny 30, 92-115 Lodz, Poland;
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, 92-215 Lodz, Poland; (P.K.); (G.P.)
| | - Hanna Jerczynska
- Central Scientific Laboratory, Medical University, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.); (A.P.-P.)
| |
Collapse
|
11
|
Walczak K, Stawski R, Perdas E, Brzezinska O, Kosielski P, Galczynski S, Budlewski T, Padula G, Nowak D. Circulating cell free DNA response to exhaustive exercise in average trained men with type I diabetes mellitus. Sci Rep 2021; 11:4639. [PMID: 33633280 PMCID: PMC7907132 DOI: 10.1038/s41598-021-84201-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
It is believed that neutrophils extracellular traps (NETs) formation is responsible for the increase in cf DNA after exercise. Since T1DM is accompanied by enhanced NETs generation, we compared exercise-induced increase in cf DNA in 14 men with T1DM and 11 healthy controls and analyzed its association with exercise load. Subjects performed a treadmill run to exhaustion at speed corresponding to 70% of their personal VO2max. Blood was collected before and just after exercise for determination of plasma cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, blood cell count and metabolic markers. Exercise resulted in the increase in median cf n-DNA from 3.9 ng/mL to 21.0 ng/mL in T1DM group and from 3.3 ng/mL to 28.9 ng/mL in controls. Median exercise-induced increment (∆) in cf n-DNA did not differ significantly in both groups (17.8 ng/mL vs. 22.1 ng/mL, p = 0.23), but this variable correlated with run distance (r = 0.66), Δ neutrophils (r = 0.86), Δ creatinine (r = 0.65) and Δ creatine kinase (r = 0.77) only in controls. Pre- and post-exercise cf mt-DNA were not significantly different within and between groups. These suggest low usefulness of Δ cf n-DNA as a marker of exercise intensity in T1DM men.
Collapse
Affiliation(s)
- Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, Lodz, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Perdas
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Olga Brzezinska
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Piotr Kosielski
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Szymon Galczynski
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Lodz, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
12
|
Pogliaghi G. Liquid biopsy in thyroid cancer: from circulating biomarkers to a new prospective of tumor monitoring and therapy. Minerva Endocrinol (Torino) 2020; 46:45-61. [PMID: 33213118 DOI: 10.23736/s2724-6507.20.03339-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, liquid biopsy has attracted much interest as a tool for early cancer screening, prognosis, monitoring and response to treatment in many different cancer types. Indeed, liquid biopsies can be repeatedly performed in a noninvasive way, at lower cost and without the risks associated to the classic tissue biopsy. The objective of this monography was to describe the main components studied in liquid biopsy (circulating tumor nucleic acids, circulating tumor cells and extracellular vesicles) and how they have been explored in thyroid cancer, through an in-depth scientific literature review. While circulating tumor cells are the most represented component in the literature of liquid biopsy in thyroid cancer, circulating tumor nucleic acids and extracellular vesicles have also been recently explored. One important challenge in this field of research, especially for differentiated thyroid cancer, has been the low quantity of circulating components with respect to other cancer types, requiring more advanced techniques for both isolation and analysis. Despite these limitations, liquid biopsy showed promise as an additional noninvasive tool for diagnosis, prognosis, to predict outcome and therapeutic response in differentiated, medullary and anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Gabriele Pogliaghi
- Division of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy -
| |
Collapse
|
13
|
Ware SA, Desai N, Lopez M, Leach D, Zhang Y, Giordano L, Nouraie M, Picard M, Kaufman BA. An automated, high-throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma. J Biol Chem 2020; 295:15677-15691. [PMID: 32900851 DOI: 10.1074/jbc.ra120.015237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Progress in the study of circulating, cell-free nuclear DNA (ccf-nDNA) in cancer detection has led to the development of noninvasive clinical diagnostic tests and has accelerated the evaluation of ccf-nDNA abundance as a disease biomarker. Likewise, circulating, cell-free mitochondrial DNA (ccf-mtDNA) is under similar investigation. However, optimal ccf-mtDNA isolation parameters have not been established, and inconsistent protocols for ccf-nDNA collection, storage, and analysis have hindered its clinical utility. Until now, no studies have established a method for high-throughput isolation that considers both ccf-nDNA and ccf-mtDNA. We initially optimized human plasma digestion and extraction conditions for maximal recovery of these DNAs using a magnetic bead-based isolation method. However, when we incorporated this method onto a high-throughput platform, initial experiments found that DNA isolated from identical human plasma samples displayed plate edge effects resulting in low ccf-mtDNA reproducibility, whereas ccf-nDNA was less affected. Therefore, we developed a detailed protocol optimized for both ccf-mtDNA and ccf-nDNA recovery that uses a magnetic bead-based isolation process on an automated 96-well platform. Overall, we calculate an improved efficiency of recovery of ∼95-fold for ccf-mtDNA and 20-fold for ccf-nDNA when compared with the initial procedure. Digestion conditions, liquid-handling characteristics, and magnetic particle processor programming all contributed to increased recovery without detectable positional effects. To our knowledge, this is the first high-throughput approach optimized for ccf-mtDNA and ccf-nDNA recovery and serves as an important starting point for clinical studies.
Collapse
Affiliation(s)
- Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nikita Desai
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mabel Lopez
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel Leach
- Optimize Laboratory Consultants, LLC, Lansdale, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin Picard
- Division of Behavioral Medicine, Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Wang W, Chang J, Jia B, Liu J. The Blood Biomarkers of Thyroid Cancer. Cancer Manag Res 2020; 12:5431-5438. [PMID: 32753960 PMCID: PMC7351621 DOI: 10.2147/cmar.s261170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction With the gradual increase in the incidence of thyroid cancer, people’s attention to thyroid cancer has also gradually increased. Although the prognosis of thyroid cancer is rather mild compared to other cancers, it will still bring a heavy psychological burden on people who have been diagnosed. At present, the diagnosis of thyroid cancer mainly depends on ultrasound and percutaneous fine needle aspiration (pFNA). Due to the unsatisfactory accuracy of the diagnosis methods we use now, there are still some thyroid nodules that cannot be clearly diagnosed before surgery. Methods In this article, we have searched for relevant research on blood markers of thyroid cancer in the past five years and categoried them into four groups. Discussion Though we have not found a biomarker which can diagnose thyroid cancer both sensitively and specifically, we do found many substances that are related to it, and have the potential to recognize it and help the diagnosis. And perhaps combined models can do it better.
Collapse
Affiliation(s)
- Weiran Wang
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| | - Jingtao Chang
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| | - Baosong Jia
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| | - Jing Liu
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
15
|
Perdas E, Stawski R, Kaczka K, Zubrzycka M. Analysis of Let-7 Family miRNA in Plasma as Potential Predictive Biomarkers of Diagnosis for Papillary Thyroid Cancer. Diagnostics (Basel) 2020; 10:diagnostics10030130. [PMID: 32121086 PMCID: PMC7151036 DOI: 10.3390/diagnostics10030130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The most common histological type of thyroid cancer is papillary thyroid carcinoma (PTC). Radical resection of the thyroid gland is currently the recommended method of treatment. Almost 75% of thyroidectomies performed just for diagnostic purposes are benign. Thus, the confirmation of innovative and more precise noninvasive biomarkers holds promise for the detection of PTC, which may decrease the number of unnecessary thyroid lobectomies. In this work, using the droplet digital PCR (ddPCR) method, we have analyzed the level of five miRNAs (let-7a, let-7c, let-7d, let-7f, and let-7i) in the plasma of patients with PTC and compared them with those of a healthy control group to investigate whether miRNAs also have value in the management of PTC. Levels of four miRNAs, namely let-7a, let-7c, let-7d, and let-7f, were significantly higher in PTC patients than healthy controls. Thus, the analysis of circulating let-7 can be a useful tool and support the currently used methods for PTC diagnosis. However, our observation requires further research on a larger patient group.
Collapse
Affiliation(s)
- Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.)
| | - Robert Stawski
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
- Correspondence: ; Tel.: +48-422-725-956
| | - Krzysztof Kaczka
- Department of General and Oncological Surgery, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (E.P.)
| |
Collapse
|