1
|
Galmarini E, Vaccarelli I, Fiasca B, Di Cicco M, Parise M, Liso IS, Piccini L, Galassi DMP, Cerasoli F. Regional climate contributes more than geographic distance to beta diversity of copepods (Crustacea Copepoda) between caves of Italy. Sci Rep 2023; 13:21243. [PMID: 38040911 PMCID: PMC10692170 DOI: 10.1038/s41598-023-48440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Despite the study of subterranean biodiversity facing harsh sampling and mapping challenges, the huge diversity of taxa, ecological adaptations and evolutionary trajectories in subterranean environments is gaining increasing attention. Yet, the spatial and environmental factors driving the composition of groundwater communities are still poorly understood. To partially fill this knowledge gap, we collected copepod crustaceans from 12 caves along the Italian peninsula between 2019 and 2022, sampling each cave twice. The resulting presence-absence data were analysed to assess: (i) between-cave taxonomic beta diversity, also partitioning between turnover and nestedness-resultant dissimilarity; (ii) the relative weight of geographic distance and climatic differences in shaping observed beta diversity. Seventy-one species of copepods were collected overall. Pairwise beta diversity was high for most pairs of caves, with turnover being the major component. Geographic distance-decay models partially explained total beta diversity and turnover patterns. However, in Generalized Dissimilarity Models (GDM), including surface climatic conditions as predictors, the contribution of seasonal temperature averages was generally higher than that of geographic distance. Further, the explanatory and predictive performance of the GDMs notably increased, along with temperature contribution, when widening the spatial extent from which climate data were gathered. Our results confirmed a high spatial turnover in groundwater copepods' assemblages and strengthened the link between regional climate and subterranean biodiversity.
Collapse
Affiliation(s)
- Emma Galmarini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Vaccarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- University Institute of Higher Studies in Pavia, Pavia, Italy
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mario Parise
- Department of Earth and Environmental Sciences, University Aldo Moro, Bari, Italy
| | - Isabella Serena Liso
- Department of Earth and Environmental Sciences, University Aldo Moro, Bari, Italy
| | - Leonardo Piccini
- Department of Earth Science, University of Florence, Florence, Italy
| | | | - Francesco Cerasoli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
2
|
Borko Š, Trontelj P, Seehausen O, Moškrič A, Fišer C. A subterranean adaptive radiation of amphipods in Europe. Nat Commun 2021; 12:3688. [PMID: 34140494 PMCID: PMC8211712 DOI: 10.1038/s41467-021-24023-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Adaptive radiations are bursts of evolutionary species diversification that have contributed to much of the species diversity on Earth. An exception is modern Europe, where descendants of ancient adaptive radiations went extinct, and extant adaptive radiations are small, recent and narrowly confined. However, not all legacy of old radiations has been lost. Subterranean environments, which are dark and food-deprived, yet buffered from climate change, have preserved ancient lineages. Here we provide evidence of an entirely subterranean adaptive radiation of the amphipod genus Niphargus, counting hundreds of species. Our modelling of lineage diversification and evolution of morphological and ecological traits using a time-calibrated multilocus phylogeny suggests a major adaptive radiation, comprised of multiple subordinate adaptive radiations. Their spatio-temporal origin coincides with the uplift of carbonate massifs in South-Eastern Europe 15 million years ago. Emerging subterranean environments likely provided unoccupied, predator-free space, constituting ecological opportunity, a key trigger of adaptive radiation. This discovery sheds new light on the biodiversity of Europe.
Collapse
Affiliation(s)
- Špela Borko
- SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Peter Trontelj
- SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Ajda Moškrič
- SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Agricultural institute of Slovenia, Ljubljana, Slovenia
| | - Cene Fišer
- SubBio Lab, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Balogh A, Ngo L, Zigler KS, Dixon G. Population genomics in two cave-obligate invertebrates confirms extremely limited dispersal between caves. Sci Rep 2020; 10:17554. [PMID: 33067497 PMCID: PMC7568537 DOI: 10.1038/s41598-020-74508-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Caves offer selective pressures that are distinct from the surface. Organisms that have evolved to exist under these pressures typically exhibit a suite of convergent characteristics, including a loss or reduction of eyes and pigmentation. As a result, cave-obligate taxa, termed troglobionts, are no longer viable on the surface. This circumstance has led to an understanding of highly constrained dispersal capabilities, and the prediction that, in the absence of subterranean connections, extreme genetic divergence between cave populations. An effective test of this model would involve (1) common troglobionts from (2) nearby caves in a cave-dense region, (3) good sample sizes per cave, (4) multiple taxa, and (5) genome-wide characterization. With these criteria in mind, we used RAD-seq to genotype an average of ten individuals of the troglobiotic spider Nesticus barri and the troglobiotic beetle Ptomaphagus hatchi, each from four closely located caves (ranging from 3 to 13 km apart) in the cave-rich southern Cumberland Plateau of Tennessee, USA. Consistent with the hypothesis of highly restricted dispersal, we find that populations from separate caves are indeed highly genetically isolated. Our results support the idea of caves as natural laboratories for the study of parallel evolutionary processes.
Collapse
Affiliation(s)
- Andras Balogh
- Department of Integrative Biology, University of Texas, PAT Building Room 427, 2401 Speedway, Austin, TX, USA
| | - Lam Ngo
- Department of Biology, University of the South, Sewanee, TN, USA
| | - Kirk S Zigler
- Department of Biology, University of the South, Sewanee, TN, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas, PAT Building Room 427, 2401 Speedway, Austin, TX, USA.
| |
Collapse
|
4
|
Pallarés S, Colado R, Botella‐Cruz M, Montes A, Balart‐García P, Bilton DT, Millán A, Ribera I, Sánchez‐Fernández D. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim Conserv 2020. [DOI: 10.1111/acv.12654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- S. Pallarés
- Marine Biology and Ecology Research Centre School of Biological and Marine Sciences University of Plymouth Plymouth UK
- Instituto de Ciencias Ambientales Universidad de Castilla‐La Mancha Toledo Spain
| | - R. Colado
- Instituto de Ciencias Ambientales Universidad de Castilla‐La Mancha Toledo Spain
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| | - M. Botella‐Cruz
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| | - A. Montes
- Basque Society for Biology Conservation Guipúzcoa Spain
- Cuevas de Oñati‐Arrikrutz Guipúzcoa Spain
| | - P. Balart‐García
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - D. T. Bilton
- Marine Biology and Ecology Research Centre School of Biological and Marine Sciences University of Plymouth Plymouth UK
- Department of Zoology University of Johannesburg Johannesburg South Africa
| | - A. Millán
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| | - I. Ribera
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - D. Sánchez‐Fernández
- Instituto de Ciencias Ambientales Universidad de Castilla‐La Mancha Toledo Spain
- Departamento de Ecología e Hidrología Universidad de Murcia Murcia Spain
| |
Collapse
|
5
|
|
6
|
Mammola S, Amorim IR, Bichuette ME, Borges PAV, Cheeptham N, Cooper SJB, Culver DC, Deharveng L, Eme D, Ferreira RL, Fišer C, Fišer Ž, Fong DW, Griebler C, Jeffery WR, Jugovic J, Kowalko JE, Lilley TM, Malard F, Manenti R, Martínez A, Meierhofer MB, Niemiller ML, Northup DE, Pellegrini TG, Pipan T, Protas M, Reboleira ASPS, Venarsky MP, Wynne JJ, Zagmajster M, Cardoso P. Fundamental research questions in subterranean biology. Biol Rev Camb Philos Soc 2020; 95:1855-1872. [DOI: 10.1111/brv.12642] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS) University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
- Molecular Ecology Group (MEG) Water Research Institute (IRSA), National Research Council (CNR) Corso Tonolli, 50 Pallanza 28922 Italy
| | - Isabel R. Amorim
- cE3c – Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Faculty of Agrarian and Environmental Sciences, Rua Capitão João d'Àvila Pico da Urze Angra do Heroísmo Azores 9700‐042 Portugal
| | - Maria E. Bichuette
- Laboratory of Subterranean Studies Federal University of São Carlos Rodovia Washington Luís km 235 São Carlos São Paulo 13565‐905 Brazil
| | - Paulo A. V. Borges
- cE3c – Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Faculty of Agrarian and Environmental Sciences, Rua Capitão João d'Àvila Pico da Urze Angra do Heroísmo Azores 9700‐042 Portugal
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science Thompson Rivers University 805 TRU Way Kamloops British Columbia Canada
| | - Steven J. B. Cooper
- Evolutionary Biology Unit South Australian Museum North Terrace Adelaide South Australia 5000 Australia
- Australian Centre for Evolutionary Biology and Biodiversity, and Environment Institute, School of Biological Sciences University of Adelaide Adelaide South Australia 5005 Australia
| | - David C. Culver
- Department of Environmental Science American University 4400 Massachusetts Avenue, N.W. Washington DC 20016 U.S.A
| | - Louis Deharveng
- UMR7205 – ISYEB Museum national d'Histoire naturelle 45 rue Buffon (CP50) Paris 75005 France
| | - David Eme
- IFREMER Centre Atlantique Unité Ecologie et Modèles pour l'Halieutique Rue de l'Île d'Yeu Nantes 44980 France
| | - Rodrigo Lopes Ferreira
- Center of Studies in Subterranean Biology, Biology Department Federal University of Lavras Campus Universitário Lavras Minas Gerais CEP 37202‐553 Brazil
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical Faculty University of Ljubljana Jamnikarjeva 101, PO BOX 2995 Ljubljana SI‐1000 Slovenia
| | - Žiga Fišer
- SubBio Lab, Department of Biology, Biotechnical Faculty University of Ljubljana Jamnikarjeva 101, PO BOX 2995 Ljubljana SI‐1000 Slovenia
| | - Daniel W. Fong
- Department of Biology American University 4400 Massachusetts Avenue, N.W. Washington DC 20016 U.S.A
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of Limnology University of Vienna Althanstrasse 14 Vienna 1090 Austria
| | - William R. Jeffery
- Department of Biology University of Maryland College Park MD 20742 U.S.A
| | - Jure Jugovic
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies University of Primorska Glagoljaška 8 Koper SI‐6000 Slovenia
| | - Johanna E. Kowalko
- Harriet L. Wilkes Honors College Florida Atlantic University 5353 Parkside Dr Jupiter FL 33458 U.S.A
| | - Thomas M. Lilley
- BatLab Finland, Finnish Museum of Natural History University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
| | - Florian Malard
- UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés Univ. Lyon 1, ENTPE, CNRS, Université de Lyon, Bat. Forel 6 rue Raphaël Dubois Villeurbanne cedex 69622 France
| | - Raoul Manenti
- Department of Environmental Science and Policy Università degli Studi di Milano Via Celoria 26 Milan 20113 Italy
| | - Alejandro Martínez
- Molecular Ecology Group (MEG) Water Research Institute (IRSA), National Research Council (CNR) Corso Tonolli, 50 Pallanza 28922 Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
- Department of Rangeland, Wildlife and Fisheries Management Texas A&M University 534 John Kimbrough Blvd. College Station TX 77843 U.S.A
| | - Matthew L. Niemiller
- Department of Biological Sciences The University of Alabama in Huntsville 301 Sparkman Drive NW Huntsville AL 35899 U.S.A
| | - Diana E. Northup
- Department of Biology University of New Mexico Albuquerque NM 87131‐0001 U.S.A
| | - Thais G. Pellegrini
- Center of Studies in Subterranean Biology, Biology Department Federal University of Lavras Campus Universitário Lavras Minas Gerais CEP 37202‐553 Brazil
| | - Tanja Pipan
- ZRC SAZU Karst Research Institute Novi trg 2 Ljubljana SI‐1000 Slovenia
- UNESCO Chair on Karst Education University of Nova Gorica Vipavska cesta Nova Gorica 5000 Slovenia
| | - Meredith Protas
- Department of Natural Sciences and Mathematics Domenicas University of California 50 Acacia Avenue San Rafael CA 94901 U.S.A
| | - Ana Sofia P. S. Reboleira
- Natural History Museum of Denmark University of Copenhagen Universitetsparken 15 Copenhagen 2100 Denmark
| | - Michael P. Venarsky
- Australian Rivers Institute Griffith University 170 Kessels Road Nathan Queensland 4111 Australia
| | - J. Judson Wynne
- Department of Biological Sciences, Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical Faculty University of Ljubljana Jamnikarjeva 101, PO BOX 2995 Ljubljana SI‐1000 Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS) University of Helsinki Pohjoinen Rautatiekatu 13 Helsinki 00100 Finland
| |
Collapse
|
7
|
Mammola S. On Deepest Caves, Extreme Habitats, and Ecological Superlatives. Trends Ecol Evol 2020; 35:469-472. [DOI: 10.1016/j.tree.2020.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
|