1
|
Starodubtseva N, Chagovets V, Tokareva A, Dumanovskaya M, Kukaev E, Novoselova A, Frankevich V, Pavlovich SV, Sukhikh G. Diagnostic Value of Menstrual Blood Lipidomics in Endometriosis: A Pilot Study. Biomolecules 2024; 14:899. [PMID: 39199287 PMCID: PMC11351896 DOI: 10.3390/biom14080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Endometriosis is a prevalent chronic inflammatory disease characterized by a considerable delay between initial symptoms and diagnosis through surgery. The pressing need for a timely, non-invasive diagnostic solution underscores the focus of current research efforts. This study examines the diagnostic potential of the menstrual blood lipidome. The lipid profile of 39 samples (23 women with endometriosis and 16 patients in a control group) was acquired using reverse-phase high-performance liquid chromatography-mass spectrometry with LipidMatch processing and identification. Profiles were normalized based on total ion counts. Significant differences in lipids were determined using the Mann-Whitney test. Lipids for the diagnostic model, based on logistic regression, were selected using a combination of variance importance projection filters and Akaike information criteria. Levels of ceramides, sphingomyelins, cardiolipins, triacylglycerols, acyl- and alkenyl-phosphatidylethanolamines, and alkenyl-phosphatidylcholines increased, while acyl- and alkyl-phosphatidylcholines decreased in cases of endometriosis. Plasmenylphosphatidylethanolamine PE P-16:0/18:1 and cardiolipin CL 16:0_18:0_22:5_22:6 serve as marker lipids in the diagnostic model, exhibiting a sensitivity of 81% and specificity of 85%. The diagnostic approach based on dried spots of menstrual blood holds promise as an alternative to traditional non-invasive methods for endometriosis screening.
Collapse
Affiliation(s)
- Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Madina Dumanovskaya
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Eugenii Kukaev
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russia Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Stanislav V. Pavlovich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (N.S.); (A.T.); (M.D.); (E.K.); (A.N.); (V.F.); (S.V.P.); (G.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
2
|
Mondal S, Nandy A, Dande G, Prabhu K, Valmiki RR, Koner D, Banerjee S. Mass Spectrometric Imaging of Anionic Phospholipids Desorbed from Human Hippocampal Sections: Discrimination between Temporal and Nontemporal Lobe Epilepsies. ACS Chem Neurosci 2024; 15:983-993. [PMID: 38355427 DOI: 10.1021/acschemneuro.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common neurological disorders, often accompanied by hippocampal sclerosis. The molecular processes underlying this epileptogenesis are poorly understood. To examine the lipid profile, 39 fresh frozen sections of the human hippocampus obtained from epilepsy surgery for TLE (n = 14) and non-TLE (control group; n = 25) patients were subjected to desorption electrospray ionization mass spectrometry imaging in the negative ion mode. In contrast to our earlier report that showed striking downregulation of positively charged phospholipids (e.g., phosphatidylcholine and phosphatidylethanolamine, etc.) in the TLE hippocampus, this study finds complementary upregulation of negatively charged phospholipids, notably, phosphatidylserine and phosphatidylglycerol. This result may point to an active metabolic pool in the TLE hippocampus that produces these anionic phospholipids at the expense of the cationic phospholipids. This metabolic shift could be due to the dysregulation of the Kennedy and CDP-DG pathways responsible for biosynthesizing these lipids. Thus, this study further opens up opportunities to investigate the molecular hallmarks and potential therapeutic targets for TLE.
Collapse
Affiliation(s)
- Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Geetha Dande
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | | | - Debasish Koner
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
3
|
Giudice LC, Oskotsky TT, Falako S, Opoku‐Anane J, Sirota M. Endometriosis in the era of precision medicine and impact on sexual and reproductive health across the lifespan and in diverse populations. FASEB J 2023; 37:e23130. [PMID: 37641572 PMCID: PMC10503213 DOI: 10.1096/fj.202300907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Endometriosis is a common estrogen-dependent disorder wherein uterine lining tissue (endometrium) is found mainly in the pelvis where it causes inflammation, chronic pelvic pain, pain with intercourse and menses, and infertility. Recent evidence also supports a systemic inflammatory component that underlies associated co-morbidities, e.g., migraines and cardiovascular and autoimmune diseases. Genetics and environment contribute significantly to disease risk, and with the explosion of omics technologies, underlying mechanisms of symptoms are increasingly being elucidated, although novel and effective therapeutics for pain and infertility have lagged behind these advances. Moreover, there are stark disparities in diagnosis, access to care, and treatment among persons of color and transgender/nonbinary identity, socioeconomically disadvantaged populations, and adolescents, and a disturbing low awareness among health care providers, policymakers, and the lay public about endometriosis, which, if left undiagnosed and under-treated can lead to significant fibrosis, infertility, depression, and markedly diminished quality of life. This review summarizes endometriosis epidemiology, compelling evidence for its pathogenesis, mechanisms underlying its pathophysiology in the age of precision medicine, recent biomarker discovery, novel therapeutic approaches, and issues around reproductive justice for marginalized populations with this disorder spanning the past 100 years. As we enter the next revolution in health care and biomedical research, with rich molecular and clinical datasets, single-cell omics, and population-level data, endometriosis is well positioned to benefit from data-driven research leveraging computational and artificial intelligence approaches integrating data and predicting disease risk, diagnosis, response to medical and surgical therapies, and prognosis for recurrence.
Collapse
Affiliation(s)
- Linda C. Giudice
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Tomiko T. Oskotsky
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Bakar Computational Health Sciences InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Simileoluwa Falako
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Columbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Jessica Opoku‐Anane
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Gynecologic Specialty SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Marina Sirota
- UCSF Stanford Endometriosis Center for Innovation, Training, and Community Outreach (ENACT)University of California, San FranciscoSan FranciscoCaliforniaUSA
- Bakar Computational Health Sciences InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
King ME, Lin M, Spradlin M, Eberlin LS. Advances and Emerging Medical Applications of Direct Mass Spectrometry Technologies for Tissue Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:1-25. [PMID: 36944233 DOI: 10.1146/annurev-anchem-061020-015544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.
Collapse
Affiliation(s)
- Mary E King
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| | - Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
5
|
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. MASS SPECTROMETRY REVIEWS 2023; 42:751-778. [PMID: 34642958 DOI: 10.1002/mas.21736] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.
Collapse
Affiliation(s)
- Terese Soudah
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amani Zoabi
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katherine Margulis
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Kartsova LA, Bessonova EA, Deev VA, Kolobova EA. Current Role of Modern Chromatography with Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy in the Investigation of Biomarkers of Endometriosis. Crit Rev Anal Chem 2023; 54:2110-2133. [PMID: 36625278 DOI: 10.1080/10408347.2022.2156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis has a wide range of clinical manifestations, and the disease course is unpredictable, making the diagnosis a challenging task. Despite significant advances in the pathophysiology of endometriosis and various proposed theories, the exact etiology is not fully understood and is still unknown. The most commonly used biomarker of endometriosis is CA-125, however, it is nonspecific and is applied for cancers diagnosis. Therefore, the development of reliable noninvasive diagnostic tests for the early diagnosis of endometriosis remains one of the top priorities. Omics technologies are very promising approaches for constructing diagnostic models and biomarker discovery. Their use can greatly facilitate the study of such a complex disease as endometriosis. Nowadays, powerful analytical platforms commonly used in omics, such as gas and liquid chromatography with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, have proven to be a promising tools for biomarker discovery. The aim of this review is to summarize the various features of the analytical approaches, practical challenges and features of gas and liquid chromatography with MS and NMR spectroscopy (including sample processing protocols, technological advancements, and methodology) used for profiling of metabolites, lipids, peptides and proteins in physiological fluids and tissues from patients with endometriosis. In addition, this report devotes special attention to the issue of how comprehensive analyses of these profiles can effectively contribute to the study of endometriosis. The search query included reports published between 2012 and 2022 years in PubMed, Web-of-Science, SCOPUS, Science Direct.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Alekseevna Kolobova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
- The Federal State Institute of Public Health 'The Nikiforov Russian Center of Emergency and Radiation Medicine', The Ministry of Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| |
Collapse
|
7
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
Tomkins NE, Girling JE, Boughton B, Holdsworth-Carson SJ. Is there a role for small molecule metabolite biomarkers in the development of a diagnostic test for endometriosis? Syst Biol Reprod Med 2022; 68:89-112. [PMID: 35361022 DOI: 10.1080/19396368.2022.2027045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endometriosis is a disease defined by the presence of benign lesions of endometrial-like glands and stroma outside the endometrial cavity. Affecting an estimated 11.4% of Australian women, symptoms include chronic pelvic pain, dysmenorrhea and infertility. The current gold standard of diagnosis requires an expensive and invasive laparoscopic surgery, resulting in delayed time to treatment. The identification of a non-invasive endometriosis biomarker - a measurable factor correlating with disease presence or activity - has therefore become a priority in endometriosis research, although no biomarker has yet been validated. As small molecule metabolites and lipids have emerged as a potential focus, this review with systematic approach, aims to summarize studies examining metabolomic biomarkers of endometriosis in order to guide future research. EMBASE, PubMed and Web of Science were searched using keywords: lipidomics OR metabolomics OR metabolome AND diagnostic tests OR biomarkers AND endometriosis, and only studies written in English from August 2000 to August 2020 were included. Twenty-nine studies met inclusion and exclusion criteria and were included. These studies identified potential biomarkers in serum, ectopic tissue, eutopic endometrium, peritoneal fluid, follicular fluid, urine, cervical swabs and endometrial fluid. Glycerophospholipids were identified as potential biomarkers in all specimens, except urine and cervical swab specimens. However, no individual molecule or metabolite combination has reached clinical diagnostic utility. Further research using large study populations with robust patient phenotype and specimen characterisation is required if we are to make progress in identifying and validating a non-invasive diagnostic test for endometriosis.
Collapse
Affiliation(s)
- Nicola E Tomkins
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Australia.,Department of Anatomy, The University of Otago, Dunedin, Aotearoa New Zealand
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Murdoch, Australia
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, The Royal Women's Hospital, Parkville, Australia.,Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, Australia
| |
Collapse
|
9
|
Guleken Z, Bulut H, Depciuch J, Tarhan N. Diagnosis of endometriosis using endometrioma volume and vibrational spectroscopy with multivariate methods as a noninvasive method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120246. [PMID: 34371315 DOI: 10.1016/j.saa.2021.120246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Endometriomas are typically an advanced form of endometriosis that leads to the formation of scar tissue, adhesions, and an inflammatory reaction. There is no certain serum marker for the diagnosis of endometriosis. This study aims to research the correlation between the amount of peaks corresponding to proteins and lipids with the volume of endometrioma and determine the chemical structure of blood serum collected from women suffering from endometriosis patients with endometrioma and healthy subjects using Fourier Transform Infrared (FTIR) spectroscopy. FTIR spectroscopy is used as a non-invasive diagnostic technique for the discrimination of endometriosis women with endometrioma and control blood sera. The FTIR spectra of 100 serum samples acquired from 50 patients and 50 healthy individuals were used for this study. For this purpose, multivariate analyses such as Principal Component Analysis (PCA), Partial Last Square analysis (PLS) with Variables Importance in Projection (VIP), and probability models, were performed. Our results showed that FTIR range 1500 cm-1 and 1700 cm-1 and around 2700 cm-1 - 3000 cm-1, regions may be used for the diagnosis of endometriosis. Also, we find that proteins and lipids fraction increase with the volume of endometrioma. Moreover, PLS and VIP analysis suggested that lipids could be helpful in the diagnosis of endometriosis women with endometrioma.
Collapse
Affiliation(s)
- Zozan Guleken
- Uskudar University Faculty of Medicine, Department of Physiology Istanbul, Turkey.
| | - Huri Bulut
- Istinye University of Faculty of Medicine, Department Medical Biochemistry, Istanbul, Turkey
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, Krakow 31-342, Poland.
| | - Nevzat Tarhan
- Uskudar University, NPIstanbul Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Marchandot B, Curtiaud A, Matsushita K, Trimaille A, Host A, Faller E, Garbin O, Akladios C, Jesel L, Morel O. Endometriosis and cardiovascular disease. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac001. [PMID: 35919664 PMCID: PMC9242051 DOI: 10.1093/ehjopen/oeac001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Indexed: 11/21/2022]
Abstract
Endometriosis is a chronic gynaecological disease affecting 1 in 10 reproductive-age women. It is defined as the presence of endometrium-like tissue outside the uterus. Beyond this placid anatomical definition, endometriosis is a complex, hormonal, inflammatory, and systemic condition that poses significant familial, psychological, and economic burden. The interaction between the cardiovascular system and endometriosis has become a field of interest as the underlying mutual mechanisms become better understood. On the basis of accumulating fundamental and clinical evidence, it is likely that there exists a close relationship between endometriosis and the cardiovascular system. Therefore, investigating the endometriosis-cardiovascular interaction is highly clinically significant. In this review, we highlight our current understanding of the pathophysiology of endometriosis with systemic hormonal, pro-inflammatory, pro-angiogenic, immunologic, and genetic processes beyond the peritoneal microenvironment. Additionally, we provide current clinical evidence about how endometriosis interacts with cardiovascular risk factors and cardiovascular disease (CVD). To date, only small associations between endometriosis and CVD have been reported in observational studies, inherently limited by the potential influence of unmeasured confounding. Cardiovascular disease in women with endometriosis remains understudied, under-recognized, and underdiagnosed. More detailed study of the cardiovascular-endometriosis interaction is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention.
Collapse
Affiliation(s)
- Benjamin Marchandot
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Anais Curtiaud
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Kensuke Matsushita
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Antonin Trimaille
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Aline Host
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Emilie Faller
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Olivier Garbin
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Chérif Akladios
- Department of Obstetrics and Gynecology, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Laurence Jesel
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Olivier Morel
- Division of Cardiovascular Medicine, Nouvel Hopital Civil, Strasbourg University Hospital, 1 place de l’Hôpital, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| |
Collapse
|
11
|
Zhang J, Sans M, DeHoog RJ, Garza KY, King ME, Feider CL, Bensussan A, Keating MF, Lin JQ, Povilaitis SC, Katta N, Milner TE, Yu W, Nagi C, Dhingra S, Pirko C, Brahmbhatt KA, Van Buren G, Carter S, Thompson A, Grogan RH, Suliburk J, Eberlin LS. Clinical Translation and Evaluation of a Handheld and Biocompatible Mass Spectrometry Probe for Surgical Use. Clin Chem 2021; 67:1271-1280. [PMID: 34263289 DOI: 10.1093/clinchem/hvab098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Intraoperative tissue analysis and identification are critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and evaluation of the MasSpec Pen technology for molecular analysis of in vivo and freshly excised tissues in the operating room (OR). METHODS An Orbitrap mass spectrometer equipped with a MasSpec Pen interface was installed in an OR. A "dual-path" MasSpec Pen interface was designed and programmed for the clinical studies with 2 parallel systems that facilitated the operation of the MasSpec Pen. The MasSpec Pen devices were autoclaved before each surgical procedure and were used by surgeons and surgical staff during 100 surgeries over a 12-month period. RESULTS Detection of mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries was achieved. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. CONCLUSIONS This study shows that the MasSpec Pen system can be successfully incorporated into the OR, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be used to inform surgical and clinical decisions without disrupting tissue analysis workflows.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Mary E King
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Alena Bensussan
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Michael F Keating
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - John Q Lin
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | | | - Nitesh Katta
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Thomas E Milner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Wendong Yu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Sadhna Dhingra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | | | | | | | - Stacey Carter
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | | | - Raymon H Grogan
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | - James Suliburk
- Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| |
Collapse
|
12
|
Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the MasSpec Pen technology. Proc Natl Acad Sci U S A 2021; 118:2104411118. [PMID: 34260388 DOI: 10.1073/pnas.2104411118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intraoperative delineation of tumor margins is critical for effective pancreatic cancer surgery. Yet, intraoperative frozen section analysis of tumor margins is a time-consuming and often challenging procedure that can yield confounding results due to histologic heterogeneity and tissue-processing artifacts. We have previously described the development of the MasSpec Pen technology as a handheld mass spectrometry-based device for nondestructive tissue analysis. Here, we evaluated the usefulness of the MasSpec Pen for intraoperative diagnosis of pancreatic ductal adenocarcinoma based on alterations in the metabolite and lipid profiles in in vivo and ex vivo tissues. We used the MasSpec Pen to analyze 157 banked human tissues, including pancreatic ductal adenocarcinoma, pancreatic, and bile duct tissues. Classification models generated from the molecular data yielded an overall agreement with pathology of 91.5%, sensitivity of 95.5%, and specificity of 89.7% for discriminating normal pancreas from cancer. We built a second classifier to distinguish bile duct from pancreatic cancer, achieving an overall accuracy of 95%, sensitivity of 92%, and specificity of 100%. We then translated the MasSpec Pen to the operative room and predicted on in vivo and ex vivo data acquired during 18 pancreatic surgeries, achieving 93.8% overall agreement with final postoperative pathology reports. Notably, when integrating banked tissue data with intraoperative data, an improved agreement of 100% was achieved. The result obtained demonstrate that the MasSpec Pen provides high predictive performance for tissue diagnosis and compatibility for intraoperative use, suggesting that the technology may be useful to guide surgical decision-making during pancreatic cancer surgeries.
Collapse
|
13
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
15
|
Lillja J, Duncan KD, Lanekoff I. Determination of Monounsaturated Fatty Acid Isomers in Biological Systems by Modeling MS 3 Product Ion Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2479-2487. [PMID: 32677833 DOI: 10.1021/jasms.0c00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unsaturated free fatty acids are natively present in biological samples as isomers, where double bonds can be situated on different carbons in the acyl chain. While these isomers can have different actions and impacts on biological systems, they are inherently difficult to identify and differentiate by mass spectrometry alone. To address this challenge, several techniques for derivatization of the double bond or metal cationization at the carboxylic group have yielded diagnostic product ions for the respective isomer in tandem mass spectrometry. However, diagnostic product ions do not necessarily reflect quantitative isomeric ratios since fatty acid isomers have different ionization and fragmentation efficiencies. Here, we introduce a simple and rapid approach to predict the quantitative ratio of isomeric monounsaturated fatty acids. Specifically, empirically derived MS3 product ion patterns from fatty acid silver adducts are modeled using a stepwise linear model. This model is then applied to predict the proportion oleic and vaccenic acid in chemically complex samples at individual concentrations between 0.45 and 5.25 μM, with an average accuracy and precision below 2 and 5 mol %, respectively. We show that by simply including silver ions in the electrospray solvent, isomeric ratios are rapidly predicted in neat standards, rodent plasma, and tissue extract. Furthermore, we use the method to directly map isomeric ratios in tissue sections using nanospray desorption electrospray ionization MS3 imaging without any sample preparation or modification to the instrumental setup. Ultimately, this approach provides a simple and rapid solution to differentiate monounsaturated fatty acids using commonly available commercial mass spectrometers without any instrumental modifications.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Kyle D Duncan
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Mendes TPP, Pereira I, de Lima LAS, Morais CLM, Neves ACON, Martin FL, Lima KMG, Vaz BG. Paper Spray Ionization Mass Spectrometry as a Potential Tool for Early Diagnosis of Cervical Cancer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1665-1672. [PMID: 32614181 DOI: 10.1021/jasms.0c00111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Squamous intraepithelial lesion is an abnormal growth of epithelial cells on the surface of the cervix that may lead to cervical cancer. Analytical protocols for the determination of squamous intraepithelial lesions are in high demand, since cervical cancer is the fourth most diagnosed cancer among women in the world. Here, paper spray ionization mass spectrometry (PSI-MS) is used to distinguish between healthy (negative for intraepithelial lesion or malignancy) and diseased (high-grade squamous intraepithelial lesion) blood plasmas. A total of 86 blood samples of different women (49 healthy samples, 37 diseased samples) were collected, and the plasmas were prepared. Then, 10 μL of each plasma sample was deposited onto triangular papers for PSI-MS analysis. No additional step of sample preparation was necessary. The interval-successive projection algorithm linear discriminant analysis (iSPA-LDA) was applied to the PSI mass spectra, showing six ions (mostly phospholipids) that were predictive of healthy and diseased plasmas. Values of 77% accuracy, 86% sensitivity, 80% positive predictive value (PPV), and 75% negative predictive value (NPV) were achieved. This study provides evidence that PSI-MS may potentially be used as a fast and simple analytical technique for the early diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Thais P P Mendes
- Chemistry Institute, Federal University of Goiás, Goiánia, Brazil
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiánia, Brazil
| | | | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Ana C O N Neves
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Kássio M G Lima
- Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
17
|
Konrad L, Dietze R, Riaz MA, Scheiner-Bobis G, Behnke J, Horné F, Hoerscher A, Reising C, Meinhold-Heerlein I. Epithelial-Mesenchymal Transition in Endometriosis-When Does It Happen? J Clin Med 2020; 9:E1915. [PMID: 32570986 PMCID: PMC7357060 DOI: 10.3390/jcm9061915] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important process of cell remodeling characterized by the gradual loss of the epithelial phenotype and progressive gain of a mesenchymal phenotype. EMT is not an all-or-nothing process, but instead a transition of epithelial to mesenchymal cells with intermediate cell states. Recently, EMT was described in endometriosis, and many EMT-specific pathways like Twist, Snail, Slug, Zinc finger E-box-binding homeobox 1/2 (ZEB1/2), E/N-cadherin, keratins, and claudins are involved. However, as pointed out in this review, a comparison of the eutopic endometrium of women with and without endometriosis yielded only subtle changes of these EMT markers. Furthermore, only very few alterations in cell-cell contacts could be found but without changes in the epithelial phenotype. This suggests only a partial EMT which is not a prerequisite for the detachment of endometrial cells and, thus, not critical for the first step(s) in the pathogenesis of endometriosis. In contrast, the majority of changes in the EMT-related marker expression were found in the ectopic endometrium, especially in the three endometriotic entities, ovarian, peritoneal, and deep infiltrating endometriosis (DIE), compared with the eutopic endometrium. In this review, we examine the most important EMT pathways described in endometriosis and propose that partial EMT might result from the interaction of endometrial implants with their surrounding microenvironment.
Collapse
Affiliation(s)
- Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Raimund Dietze
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35037 Marburg, Germany;
| | - Muhammad A. Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, 35390 Gießen, Germany;
| | - Judith Behnke
- Department of General Pediatrics and Neonatalogy, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany;
| | - Fabian Horné
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Alena Hoerscher
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Christoph Reising
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| |
Collapse
|
18
|
Jones MA, Cho SH, Patterson NH, Van de Plas R, Spraggins JM, Boothby MR, Caprioli RM. Discovering New Lipidomic Features Using Cell Type Specific Fluorophore Expression to Provide Spatial and Biological Specificity in a Multimodal Workflow with MALDI Imaging Mass Spectrometry. Anal Chem 2020; 92:7079-7086. [PMID: 32298091 PMCID: PMC7456589 DOI: 10.1021/acs.analchem.0c00446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Identifying the spatial distributions of biomolecules in tissue is crucial for understanding integrated function. Imaging mass spectrometry (IMS) allows simultaneous mapping of thousands of biosynthetic products such as lipids but has needed a means of identifying specific cell-types or functional states to correlate with molecular localization. We report, here, advances starting from identity marking with a genetically encoded fluorophore. The fluorescence emission data were integrated with IMS data through multimodal image processing with advanced registration techniques and data-driven image fusion. In an unbiased analysis of spleens, this integrated technology enabled identification of ether lipid species preferentially enriched in germinal centers. We propose that this use of genetic marking for microanatomical regions of interest can be paired with molecular information from IMS for any tissue, cell-type, or activity state for which fluorescence is driven by a gene-tracking allele and ultimately with outputs of other means of spatial mapping.
Collapse
Affiliation(s)
- Marissa A Jones
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
| | - Sung Hoon Cho
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN AA-4214B, MCN A-5301, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control (DCSC), Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mark R Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN AA-4214B, MCN A-5301, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
- Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|