1
|
Marshall S, Jeyarajan G, Hayhow N, Gabiazon R, Seleem T, Hammerstrom MR, Krigolson O, Nagamatsu LS. Cortical activation among young adults during mobility in an indoor real-world environment: A mobile EEG approach. Neuropsychologia 2024; 203:108971. [PMID: 39128610 DOI: 10.1016/j.neuropsychologia.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Human mobility requires neurocognitive inputs to safely navigate the environment. Previous research has examined neural processes that underly walking using mobile neuroimaging technologies, yet few studies have incorporated true real-world methods without a specific task imposed on participants (e.g., dual-task, motor demands). The present study included 40 young adults (M = 22.60, SD = 2.63, 24 female) and utilized mobile electroencephalography (EEG) to examine and compare theta, alpha, and beta frequency band power (μV2) during sitting and walking in laboratory and real-world environments. EEG data was recorded using the Muse S brain sensing headband, a portable system equipped with four electrodes (two frontal, two temporal) and one reference sensor. Qualitative data detailing the thoughts of each participant were collected after each condition. For the quantitative data, a 2 × 2 repeated measures ANOVA with within subject factors of environment and mobility was conducted with full participant datasets (n = 17, M = 22.59, SD = 2.97, 10 female). Thematic analysis was performed on the qualitative data (n = 40). Our findings support that mobility and environment may modulate neural activity, as we observed increased brain activation for walking compared to sitting, and for real-world walking compared to laboratory walking. We identified five qualitative themes across the four conditions 1) physical sensations and bodily awareness, 2) responsibilities and planning, 3) environmental awareness, 4) mobility, and 5) spotlight effect. Our study highlights the importance and potential for real-world methods to supplement standard research practices to increase the ecological validity of studies conducted in the fields of neuroscience and kinesiology.
Collapse
Affiliation(s)
- Samantha Marshall
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada.
| | - Gianna Jeyarajan
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Nicholas Hayhow
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Raphael Gabiazon
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - Tia Seleem
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| | - Mathew R Hammerstrom
- Department of Exercise Science, Physical and Health Education, University of Victoria, British Columbia, Canada
| | - Olav Krigolson
- Department of Exercise Science, Physical and Health Education, University of Victoria, British Columbia, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, Ontario, Canada
| |
Collapse
|
2
|
Chen X, Cao L, Haendel BF. Right visual field advantage in orientation discrimination is influenced by biased suppression. Sci Rep 2024; 14:22687. [PMID: 39349588 PMCID: PMC11442441 DOI: 10.1038/s41598-024-73967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Visual input is not equally processed over space. In recent years, a right visual field advantage during free walking and standing in orientation discrimination and contrast detection task was reported. The current study investigated the underlying mechanism of the previously reported right visual field advantage. It particularly tested if the advantage is driven by a stronger suppression of distracting input from the left visual field or improved processing of targets from the right visual field. Combing behavioural and electrophysiological measurements in a mobile EEG and augmented reality setup, human participants (n = 30) in a standing and a walking condition performed a line orientation discrimination task with stimulus eccentricity and distractor status being manipulated. The right visual field advantage, as demonstrated in accuracy and reaction time, was influenced by the distractor status. Specifically, the right visual field advantage was only observed when the target had an incongruent line orientation with the distractor. Neural data further showed that the right visual field advantage was paralleled by a strong modulation of neural activity in the right hemisphere (i.e. contralateral to the distractor). A significant positive correlation between this right hemispheric event related potential (ERP) and behavioural measures (accuracy and reaction time) was found exclusively for trials in which a target was presented on the right and an incongruent distractor was presented on the left. The right hemispheric ERP component further predicted the strength of the right visual field advantage. Notably, the lateralised brain activity and the right visual field advantage were both independent of stimulus eccentricity and the movement state of participants. Overall, our findings suggest an important role of spatially biased suppression of left distracting input in the right visual field advantage as found in orientation discrimination.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany.
| | - Liyu Cao
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Barbara F Haendel
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Neurology department, University Hospital Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
3
|
Klapprott M, Debener S. Mobile EEG for the study of cognitive-motor interference during swimming? Front Hum Neurosci 2024; 18:1466853. [PMID: 39268221 PMCID: PMC11390454 DOI: 10.3389/fnhum.2024.1466853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Research on brain function in natural environments has become a new interest in cognitive science. In this study, we aim to advance mobile electroencephalography (EEG) participant and device mobility. We investigated the feasibility of measuring human brain activity using mobile EEG during a full-body motion task as swimming, by the example of cognitive-motor interference (CMI). Eleven participants were given an auditory oddball task while sitting and swimming, with mobile EEG recording ongoing brain activity. Measures of interest were event-related potentials (ERPs) elicited by experimental stimuli. While the auditory N100 was measured to verify signal quality, the P300 to task-relevant stimuli served as a marker of CMI effects. Analyzes were first performed within subjects, while binomial tests assessed the proportion of significant effects. Event-related changes in the time-frequency domain around turns during swimming were analyzed in an exploratory fashion. The successful recording of the N100 in all conditions shows that the setup was functional throughout the experiment. Regarding CMI, we did not find reliable changes in P300 amplitude in different motor settings in all subjects. However, we found plausible modulations in the alpha/mu and beta bands before and after turns. This study shows that it is generally feasible to measure mobile EEG in the time and time-frequency domain in an aquatic environment while subjects are freely moving. We see promising potential in the use of mobile EEG in extreme settings, advancing toward the application of mobile EEG in more real-life situations.
Collapse
Affiliation(s)
- Melanie Klapprott
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All, University of Oldenburg, Oldenburg, Germany
- Fraunhofer Institute of Digital Media Technology, Oldenburg Branch for Hearing, Oldenburg, Germany
| |
Collapse
|
4
|
Grasso-Cladera A, Bremer M, Ladouce S, Parada F. A systematic review of mobile brain/body imaging studies using the P300 event-related potentials to investigate cognition beyond the laboratory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:631-659. [PMID: 38834886 DOI: 10.3758/s13415-024-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The P300 ERP component, related to the onset of task-relevant or infrequent stimuli, has been widely used in the Mobile Brain/Body Imaging (MoBI) literature. This systematic review evaluates the quality and breadth of P300 MoBI studies, revealing a maturing field with well-designed research yet grappling with standardization and global representation challenges. While affirming the reliability of measuring P300 ERP components in mobile settings, the review identifies significant hurdles in standardizing data cleaning and processing techniques, impacting comparability and reproducibility. Geographical disparities emerge, with studies predominantly in the Global North and a dearth of research from the Global South, emphasizing the need for broader inclusivity to counter the WEIRD bias in psychology. Collaborative projects and mobile EEG systems showcase the feasibility of reaching diverse populations, which is essential to advance precision psychiatry and to integrate varied data streams. Methodologically, a trend toward ecological validity is noted, shifting from lab-based to real-world settings with portable EEG system advancements. Future hardware developments are expected to balance signal quality and sensor intrusiveness, enriching data collection in everyday contexts. Innovative methodologies reflect a move toward more natural experimental settings, prompting critical questions about the applicability of traditional ERP markers, such as the P300 outside structured paradigms. The review concludes by highlighting the crucial role of integrating mobile technologies, physiological sensors, and machine learning to advance cognitive neuroscience. It advocates for an operational definition of ecological validity to bridge the gap between controlled experiments and the complexity of embodied cognitive experiences, enhancing both theoretical understanding and practical application in study design.
Collapse
Affiliation(s)
| | - Marko Bremer
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile
- Facultad de Psicología, Programa de Magíster en Neurociencia Social, Diego Portales University, Santiago, Chile
| | - Simon Ladouce
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Francisco Parada
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile.
| |
Collapse
|
5
|
Callan DE, Torre–Tresols JJ, Laguerta J, Ishii S. Shredding artifacts: extracting brain activity in EEG from extreme artifacts during skateboarding using ASR and ICA. FRONTIERS IN NEUROERGONOMICS 2024; 5:1358660. [PMID: 38989056 PMCID: PMC11233536 DOI: 10.3389/fnrgo.2024.1358660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Introduction To understand brain function in natural real-world settings, it is crucial to acquire brain activity data in noisy environments with diverse artifacts. Electroencephalography (EEG), while susceptible to environmental and physiological artifacts, can be cleaned using advanced signal processing techniques like Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA). This study aims to demonstrate that ASR and ICA can effectively extract brain activity from the substantial artifacts occurring while skateboarding on a half-pipe ramp. Methods A dual-task paradigm was used, where subjects were presented with auditory stimuli during skateboarding and rest conditions. The effectiveness of ASR and ICA in cleaning artifacts was evaluated using a support vector machine to classify the presence or absence of a sound stimulus in single-trial EEG data. The study evaluated the effectiveness of ASR and ICA in artifact cleaning using five different pipelines: (1) Minimal cleaning (bandpass filtering), (2) ASR only, (3) ICA only, (4) ICA followed by ASR (ICAASR), and (5) ASR preceding ICA (ASRICA). Three skateboarders participated in the experiment. Results Results showed that all ICA-containing pipelines, especially ASRICA (69%, 68%, 63%), outperformed minimal cleaning (55%, 52%, 50%) in single-trial classification during skateboarding. The ASRICA pipeline performed significantly better than other pipelines containing ICA for two of the three subjects, with no other pipeline performing better than ASRICA. The superior performance of ASRICA likely results from ASR removing non-stationary artifacts, enhancing ICA decomposition. Evidenced by ASRICA identifying more brain components via ICLabel than ICA alone or ICAASR for all subjects. For the rest condition, with fewer artifacts, the ASRICA pipeline (71%, 82%, 75%) showed slight improvement over minimal cleaning (73%, 70%, 72%), performing significantly better for two subjects. Discussion This study demonstrates that ASRICA can effectively clean artifacts to extract single-trial brain activity during skateboarding. These findings affirm the feasibility of recording brain activity during physically demanding tasks involving substantial body movement, laying the groundwork for future research into the neural processes governing complex and coordinated body movements.
Collapse
Affiliation(s)
- Daniel E. Callan
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institut Supérieur de l'Aéronautique et de l'Espace, University of Toulouse, Toulouse, France
| | - Juan Jesus Torre–Tresols
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institut Supérieur de l'Aéronautique et de l'Espace, University of Toulouse, Toulouse, France
| | - Jamie Laguerta
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Integrated Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Shin Ishii
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Klug M, Berg T, Gramann K. Optimizing EEG ICA decomposition with data cleaning in stationary and mobile experiments. Sci Rep 2024; 14:14119. [PMID: 38898069 PMCID: PMC11187149 DOI: 10.1038/s41598-024-64919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Electroencephalography (EEG) studies increasingly utilize more mobile experimental protocols, leading to more and stronger artifacts in the recorded data. Independent Component Analysis (ICA) is commonly used to remove these artifacts. It is standard practice to remove artifactual samples before ICA to improve the decomposition, for example using automatic tools such as the sample rejection option of the AMICA algorithm. However, the effects of movement intensity and the strength of automatic sample rejection on ICA decomposition have not been systematically evaluated. We conducted AMICA decompositions on eight open-access datasets with varying degrees of motion intensity using varying sample rejection criteria. We evaluated decomposition quality using mutual information of the components, the proportion of brain, muscle, and 'other' components, residual variance, and an exemplary signal-to-noise ratio. Within individual studies, increased movement significantly decreased decomposition quality, though this effect was not found across different studies. Cleaning strength significantly improved the decomposition, but the effect was smaller than expected. Our results suggest that the AMICA algorithm is robust even with limited data cleaning. Moderate cleaning, such as 5 to 10 iterations of the AMICA sample rejection, is likely to improve the decomposition of most datasets, regardless of motion intensity.
Collapse
Affiliation(s)
- M Klug
- Young Investigator Group Intuitive XR, Neuroadaptive Human-Computer Interaction, Institute of Medical Technology, BTU Cottbus-Senftenberg, Cottbus, Germany.
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, TU Berlin, Berlin, Germany.
| | - T Berg
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, TU Berlin, Berlin, Germany
| | - K Gramann
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, TU Berlin, Berlin, Germany
| |
Collapse
|
7
|
Papin LJ, Esche M, Scanlon JEM, Jacobsen NSJ, Debener S. Investigating cognitive-motor effects during slacklining using mobile EEG. Front Hum Neurosci 2024; 18:1382959. [PMID: 38818032 PMCID: PMC11137308 DOI: 10.3389/fnhum.2024.1382959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Balancing is a very important skill, supporting many daily life activities. Cognitive-motor interference (CMI) dual-tasking paradigms have been established to identify the cognitive load of complex natural motor tasks, such as running and cycling. Here we used wireless, smartphone-recorded electroencephalography (EEG) and motion sensors while participants were either standing on firm ground or on a slackline, either performing an auditory oddball task (dual-task condition) or no task simultaneously (single-task condition). We expected a reduced amplitude and increased latency of the P3 event-related potential (ERP) component to target sounds for the complex balancing compared to the standing on ground condition, and a further decrease in the dual-task compared to the single-task balancing condition. Further, we expected greater postural sway during slacklining while performing the concurrent auditory attention task. Twenty young, experienced slackliners performed an auditory oddball task, silently counting rare target tones presented in a series of frequently occurring standard tones. Results revealed similar P3 topographies and morphologies during both movement conditions. Contrary to our predictions we observed neither significantly reduced P3 amplitudes, nor significantly increased latencies during slacklining. Unexpectedly, we found greater postural sway during slacklining with no additional task compared to dual-tasking. Further, we found a significant correlation between the participant's skill level and P3 latency, but not between skill level and P3 amplitude or postural sway. This pattern of results indicates an interference effect for less skilled individuals, whereas individuals with a high skill level may have shown a facilitation effect. Our study adds to the growing field of research demonstrating that ERPs obtained in uncontrolled, daily-life situations can provide meaningful results. We argue that the individual CMI effects on the P3 ERP reflects how demanding the balancing task is for untrained individuals, which draws on limited resources that are otherwise available for auditory attention processing. In future work, the analysis of concurrently recorded motion-sensor signals will help to identify the cognitive demands of motor tasks executed in natural, uncontrolled environments.
Collapse
Affiliation(s)
- Lara J. Papin
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Manik Esche
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Joanna E. M. Scanlon
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Oldenburg Branch for Hearing, Speech and Audio Technology (HSA), Fraunhofer Institute for Digital Media Technology (IDMT), Oldenburg, Germany
| | - Nadine S. J. Jacobsen
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Oldenburg Branch for Hearing, Speech and Audio Technology (HSA), Fraunhofer Institute for Digital Media Technology (IDMT), Oldenburg, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Neurosensory Science and Systems, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Ladouce S, Pietzker M, Manzey D, Dehais F. Evaluation of a headphones-fitted EEG system for the recording of auditory evoked potentials and mental workload assessment. Behav Brain Res 2024; 460:114827. [PMID: 38128886 DOI: 10.1016/j.bbr.2023.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Advancements in portable neuroimaging technologies open up new opportunities to gain insight into the neural dynamics and cognitive processes underlying day-to-day behaviors. In this study, we evaluated the relevance of a headphone- mounted electroencephalogram (EEG) system for monitoring mental workload. The participants (N = 12) were instructed to pay attention to auditory alarms presented sporadically while performing the Multi-Attribute Task Battery (MATB) whose difficulty was staged across three conditions to manipulate mental workload. The P300 Event-Related Potentials (ERP) elicited by the presentation of auditory alarms were used as probes of attentional resources available. The amplitude and latency of P300 ERPs were compared across experimental conditions. Our findings indicate that the P300 ERP component can be captured using a headphone-mounted EEG system. Moreover, neural responses to alarm could be used to classify mental workload with high accuracy (over 80%) at a single-trial level. Our analyses indicated that the signal-to-noise ratio acquired by the sponge-based sensors remained stable throughout the recordings. These results highlight the potential of portable neuroimaging technology for the development of neuroassistive applications while underscoring the current limitations and challenges associated with the integration of EEG sensors in everyday-life wearable technologies. Overall, our study contributes to the growing body of research exploring the feasibility and validity of wearable neuroimaging technologies for the study of human cognition and behavior in real-world settings.
Collapse
Affiliation(s)
- Simon Ladouce
- Human Factors and Neuroergonomics, ISAE-SUPAERO, 10 Av. Edouard Belin, Toulouse 31400, Haute-Garonne, France.
| | - Max Pietzker
- Department of Psychology and Ergonomics, Technical University Berlin, Strafte des 17.Juni 135, 10623 Berlin, Berlin, 10623 Berlin, Germany
| | - Dietrich Manzey
- Department of Psychology and Ergonomics, Technical University Berlin, Strafte des 17.Juni 135, 10623 Berlin, Berlin, 10623 Berlin, Germany
| | - Frederic Dehais
- Human Factors and Neuroergonomics, ISAE-SUPAERO, 10 Av. Edouard Belin, Toulouse 31400, Haute-Garonne, France; School of Biomedical Engineering, Science Health Systems, Drexel University, 3141 Chestnut St, Philadelphia 19104, PA, United States
| |
Collapse
|
9
|
Carius D, Kaminski E, Clauß M, Schewe Y, Ryk L, Ragert P. Quantifying motor adaptation in a sport-specific table tennis setting. Sci Rep 2024; 14:601. [PMID: 38182640 PMCID: PMC10770152 DOI: 10.1038/s41598-023-50927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Studies on motor adaptation aim to better understand the remarkable, largely implicit capacity of humans to adjust to changing environmental conditions. So far, this phenomenon has mainly been investigated in highly controlled laboratory setting, allowing only limited conclusions and consequences for everyday life scenarios. Natural movement tasks performed under externally valid conditions would provide important support on the transferability of recent laboratory findings. Therefore, one major goal of the current study was to create and assess a new table tennis paradigm mapping motor adaptation in a more natural and sport-specific setting. High-speed cinematographic measurements were used to determine target accuracy in a motor adaptation table tennis paradigm in 30 right-handed participants. In addition, we investigated if motor adaptation was affected by temporal order of perturbations (serial vs. random practice). In summary, we were able to confirm and reproduce typical motor adaptation effects in a sport-specific setting. We found, according to previous findings, an increase in target errors with perturbation onset that decreased during motor adaptation. Furthermore, we observed an increase in target errors with perturbation offset (after-effect) that decrease subsequently during washout phase. More importantly, this motor adaptation phenomenon did not differ when comparing serial vs. random perturbation conditions.
Collapse
Affiliation(s)
- Daniel Carius
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany.
| | - Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Yannick Schewe
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Lenja Ryk
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
10
|
Patelaki E, Foxe JJ, McFerren AL, Freedman EG. Maintaining Task Performance Levels Under Cognitive Load While Walking Requires Widespread Reallocation of Neural Resources. Neuroscience 2023; 532:113-132. [PMID: 37774910 PMCID: PMC10842245 DOI: 10.1016/j.neuroscience.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amber L McFerren
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Mimnaugh KJ, Center EG, Suomalainen M, Becerra I, Lozano E, Murrieta-Cid R, Ojala T, LaValle SM, Federmeier KD. Virtual Reality Sickness Reduces Attention During Immersive Experiences. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4394-4404. [PMID: 37788212 DOI: 10.1109/tvcg.2023.3320222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this paper, we show that Virtual Reality (VR) sickness is associated with a reduction in attention, which was detected with the P3b Event-Related Potential (ERP) component from electroencephalography (EEG) measurements collected in a dual-task paradigm. We hypothesized that sickness symptoms such as nausea, eyestrain, and fatigue would reduce the users' capacity to pay attention to tasks completed in a virtual environment, and that this reduction in attention would be dynamically reflected in a decrease of the P3b amplitude while VR sickness was experienced. In a user study, participants were taken on a tour through a museum in VR along paths with varying amounts of rotation, shown previously to cause different levels of VR sickness. While paying attention to the virtual museum (the primary task), participants were asked to silently count tones of a different frequency (the secondary task). Control measurements for comparison against the VR sickness conditions were taken when the users were not wearing the Head-Mounted Display (HMD) and while they were immersed in VR but not moving through the environment. This exploratory study shows, across multiple analyses, that the effect mean amplitude of the P3b collected during the task is associated with both sickness severity measured after the task with a questionnaire (SSQ) and with the number of counting errors on the secondary task. Thus, VR sickness may impair attention and task performance, and these changes in attention can be tracked with ERP measures as they happen, without asking participants to assess their sickness symptoms in the moment.
Collapse
|
12
|
Hölle D, Bleichner MG. Smartphone-based ear-electroencephalography to study sound processing in everyday life. Eur J Neurosci 2023; 58:3671-3685. [PMID: 37612776 DOI: 10.1111/ejn.16124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023]
Abstract
In everyday life, people differ in their sound perception and thus sound processing. Some people may be distracted by construction noise, while others do not even notice. With smartphone-based mobile ear-electroencephalography (ear-EEG), we can measure and quantify sound processing in everyday life by analysing presented sounds and also naturally occurring ones. Twenty-four participants completed four controlled conditions in the lab (1 h) and one condition in the office (3 h). All conditions used the same paired-click stimuli. In the lab, participants listened to click tones under four different instructions: no task towards the sounds, reading a newspaper article, listening to an audio article or counting a rare deviant sound. In the office recording, participants followed daily activities while they were sporadically presented with clicks, without any further instruction. In the beyond-the-lab condition, in addition to the presented sounds, environmental sounds were recorded as acoustic features (i.e., loudness, power spectral density and sounds onsets). We found task-dependent differences in the auditory event-related potentials (ERPs) to the presented click sounds in all lab conditions, which underline that neural processes related to auditory attention can be differentiated with ear-EEG. In the beyond-the-lab condition, we found ERPs comparable to some of the lab conditions. The N1 amplitude to the click sounds beyond the lab was dependent on the background noise, probably due to energetic masking. Contrary to our expectation, we did not find a clear ERP in response to the environmental sounds. Overall, we showed that smartphone-based ear-EEG can be used to study sound processing of well defined-stimuli in everyday life.
Collapse
Affiliation(s)
- Daniel Hölle
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Martin G Bleichner
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Nicholls VI, Alsbury-Nealy B, Krugliak A, Clarke A. Context effects on object recognition in real-world environments: A study protocol. Wellcome Open Res 2023; 7:165. [PMID: 37274451 PMCID: PMC10238820 DOI: 10.12688/wellcomeopenres.17856.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Background: The environments that we live in impact on our ability to recognise objects, with recognition being facilitated when objects appear in expected locations (congruent) compared to unexpected locations (incongruent). However, these findings are based on experiments where the object is isolated from its environment. Moreover, it is not clear which components of the recognition process are impacted by the environment. In this experiment, we seek to examine the impact real world environments have on object recognition. Specifically, we will use mobile electroencephalography (mEEG) and augmented reality (AR) to investigate how the visual and semantic processing aspects of object recognition are changed by the environment. Methods: We will use AR to place congruent and incongruent virtual objects around indoor and outdoor environments. During the experiment a total of 34 participants will walk around the environments and find these objects while we record their eye movements and neural signals. We will perform two primary analyses. First, we will analyse the event-related potential (ERP) data using paired samples t-tests in the N300/400 time windows in an attempt to replicate congruency effects on the N300/400. Second, we will use representational similarity analysis (RSA) and computational models of vision and semantics to determine how visual and semantic processes are changed by congruency. Conclusions: Based on previous literature, we hypothesise that scene-object congruence would facilitate object recognition. For ERPs, we predict a congruency effect in the N300/N400, and for RSA we predict that higher level visual and semantic information will be represented earlier for congruent scenes than incongruent scenes. By collecting mEEG data while participants are exploring a real-world environment, we will be able to determine the impact of a natural context on object recognition, and the different processing stages of object recognition.
Collapse
Affiliation(s)
| | | | - Alexandra Krugliak
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
14
|
Schmidt-Kassow M, Kaiser J. The brain in motion-cognitive effects of simultaneous motor activity. Front Integr Neurosci 2023; 17:1127310. [PMID: 37304529 PMCID: PMC10248180 DOI: 10.3389/fnint.2023.1127310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
During the last 30 years, a large number of behavioral studies have investigated the effect of simultaneous exercise on cognitive functions. The heterogeneity of the results has been attributed to different parameters, such as intensity or modality of physical activity, and the investigated cognitive processes. More recent methodological improvements have enabled to record electroencephalography (EEG) during physical exercise. EEG studies combining cognitive tasks with exercise have described predominantly detrimental effects on cognitive processes and EEG parameters. However, differences in the underlying rationale and the design of EEG versus behavioral studies make direct comparisons between both types of studies difficult. In this narrative review of dual-task experiments we evaluated behavioral and EEG studies and discuss possible explanations for the heterogeneity of results and for the discrepancy between behavioral and EEG studies. Furthermore, we provide a proposal for future EEG studies on simultaneous motion to be a useful complement to behavioral studies. A crucial factor might be to find for each cognitive function the motor activity that matches this function in terms of attentional focus. This hypothesis should be investigated systematically in future studies.
Collapse
Affiliation(s)
- Maren Schmidt-Kassow
- Institute of Medical Psychology, Goethe University, Frankfurt, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jochen Kaiser
- Institute of Medical Psychology, Goethe University, Frankfurt, Germany
| |
Collapse
|
15
|
Wireless EEG: A survey of systems and studies. Neuroimage 2023; 269:119774. [PMID: 36566924 DOI: 10.1016/j.neuroimage.2022.119774] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
The popular brain monitoring method of electroencephalography (EEG) has seen a surge in commercial attention in recent years, focusing mostly on hardware miniaturization. This has led to a varied landscape of portable EEG devices with wireless capability, allowing them to be used by relatively unconstrained users in real-life conditions outside of the laboratory. The wide availability and relative affordability of these devices provide a low entry threshold for newcomers to the field of EEG research. The large device variety and the at times opaque communication from their manufacturers, however, can make it difficult to obtain an overview of this hardware landscape. Similarly, given the breadth of existing (wireless) EEG knowledge and research, it can be challenging to get started with novel ideas. Therefore, this paper first provides a list of 48 wireless EEG devices along with a number of important-sometimes difficult-to-obtain-features and characteristics to enable their side-by-side comparison, along with a brief introduction to each of these aspects and how they may influence one's decision. Secondly, we have surveyed previous literature and focused on 110 high-impact journal publications making use of wireless EEG, which we categorized by application and analyzed for device used, number of channels, sample size, and participant mobility. Together, these provide a basis for informed decision making with respect to hardware and experimental precedents when considering new, wireless EEG devices and research. At the same time, this paper provides background material and commentary about pitfalls and caveats regarding this increasingly accessible line of research.
Collapse
|
16
|
Vidal-Rosas EE, von Lühmann A, Pinti P, Cooper RJ. Wearable, high-density fNIRS and diffuse optical tomography technologies: a perspective. NEUROPHOTONICS 2023; 10:023513. [PMID: 37207252 PMCID: PMC10190166 DOI: 10.1117/1.nph.10.2.023513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Recent progress in optoelectronics has made wearable and high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies possible for the first time. These technologies have the potential to open new fields of real-world neuroscience by enabling functional neuroimaging of the human cortex at a resolution comparable to fMRI in almost any environment and population. In this perspective article, we provide a brief overview of the history and the current status of wearable high-density fNIRS and DOT approaches, discuss the greatest ongoing challenges, and provide our thoughts on the future of this remarkable technology.
Collapse
Affiliation(s)
- Ernesto E. Vidal-Rosas
- University College London, DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Gowerlabs Ltd., London, United Kingdom
| | - Alexander von Lühmann
- Technische Universität Berlin – BIFOLD, Intelligent Biomedical Sensing Lab, Machine Learning Department, Berlin, Germany
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Paola Pinti
- University of London, Birkbeck College, Centre for Brain and Cognitive Development, London, United Kingdom
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Robert J. Cooper
- University College London, DOT-HUB, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
17
|
Patelaki E, Foxe JJ, Mazurek KA, Freedman EG. Young adults who improve performance during dual-task walking show more flexible reallocation of cognitive resources: a mobile brain-body imaging (MoBI) study. Cereb Cortex 2023; 33:2573-2592. [PMID: 35661873 PMCID: PMC10016048 DOI: 10.1093/cercor/bhac227] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION In young adults, pairing a cognitive task with walking can have different effects on gait and cognitive task performance. In some cases, performance clearly declines whereas in others compensatory mechanisms maintain performance. This study investigates the preliminary finding of behavioral improvement in Go/NoGo response inhibition task performance during walking compared with sitting, which was observed at the piloting stage. MATERIALS AND METHODS Mobile brain/body imaging (MoBI) was used to record electroencephalographic (EEG) activity, 3-dimensional (3D) gait kinematics and behavioral responses in the cognitive task, during sitting or walking on a treadmill. RESULTS In a cohort of 26 young adults, 14 participants improved in measures of cognitive task performance while walking compared with sitting. These participants exhibited walking-related EEG amplitude reductions over frontal scalp regions during key stages of inhibitory control (conflict monitoring, control implementation, and pre-motor stages), accompanied by reduced stride-to-stride variability and faster responses to stimuli compared with those who did not improve. In contrast, 12 participants who did not improve exhibited no EEG amplitude differences across physical condition. DISCUSSION The neural activity changes associated with performance improvement during dual tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive decline in aging and neurodegeneration.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, NY 14627, United States
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Kevin A Mazurek
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Joseph Building 4-184W, 200 First Street SW, Rochester, MN 55905, United States
- Well Living Lab, Well Living Lab, Inc., 221 First Avenue SW, Rochester, MN 55902, United States
| | | |
Collapse
|
18
|
Makov S, Pinto D, Har-Shai Yahav P, Miller LM, Zion Golumbic E. "Unattended, distracting or irrelevant": Theoretical implications of terminological choices in auditory selective attention research. Cognition 2023; 231:105313. [PMID: 36344304 DOI: 10.1016/j.cognition.2022.105313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
For seventy years, auditory selective attention research has focused on studying the cognitive mechanisms of prioritizing the processing a 'main' task-relevant stimulus, in the presence of 'other' stimuli. However, a closer look at this body of literature reveals deep empirical inconsistencies and theoretical confusion regarding the extent to which this 'other' stimulus is processed. We argue that many key debates regarding attention arise, at least in part, from inappropriate terminological choices for experimental variables that may not accurately map onto the cognitive constructs they are meant to describe. Here we critically review the more common or disruptive terminological ambiguities, differentiate between methodology-based and theory-derived terms, and unpack the theoretical assumptions underlying different terminological choices. Particularly, we offer an in-depth analysis of the terms 'unattended' and 'distractor' and demonstrate how their use can lead to conflicting theoretical inferences. We also offer a framework for thinking about terminology in a more productive and precise way, in hope of fostering more productive debates and promoting more nuanced and accurate cognitive models of selective attention.
Collapse
Affiliation(s)
- Shiri Makov
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Israel
| | - Danna Pinto
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Israel
| | - Paz Har-Shai Yahav
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Israel
| | - Lee M Miller
- The Center for Mind and Brain, University of California, Davis, CA, United States of America; Department of Neurobiology, Physiology, & Behavior, University of California, Davis, CA, United States of America; Department of Otolaryngology / Head and Neck Surgery, University of California, Davis, CA, United States of America
| | - Elana Zion Golumbic
- The Gonda Multidisciplinary Center for Brain Research, Bar Ilan University, Israel.
| |
Collapse
|
19
|
Wascher E, Reiser J, Rinkenauer G, Larrá M, Dreger FA, Schneider D, Karthaus M, Getzmann S, Gutberlet M, Arnau S. Neuroergonomics on the Go: An Evaluation of the Potential of Mobile EEG for Workplace Assessment and Design. HUMAN FACTORS 2023; 65:86-106. [PMID: 33861182 PMCID: PMC9846382 DOI: 10.1177/00187208211007707] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We demonstrate and discuss the use of mobile electroencephalogram (EEG) for neuroergonomics. Both technical state of the art as well as measures and cognitive concepts are systematically addressed. BACKGROUND Modern work is increasingly characterized by information processing. Therefore, the examination of mental states, mental load, or cognitive processing during work is becoming increasingly important for ergonomics. RESULTS Mobile EEG allows to measure mental states and processes under real live conditions. It can be used for various research questions in cognitive neuroergonomics. Besides measures in the frequency domain that have a long tradition in the investigation of mental fatigue, task load, and task engagement, new approaches-like blink-evoked potentials-render event-related analyses of the EEG possible also during unrestricted behavior. CONCLUSION Mobile EEG has become a valuable tool for evaluating mental states and mental processes on a highly objective level during work. The main advantage of this technique is that working environments don't have to be changed while systematically measuring brain functions at work. Moreover, the workflow is unaffected by such neuroergonomic approaches.
Collapse
Affiliation(s)
- Edmund Wascher
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Julian Reiser
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Gerhard Rinkenauer
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Mauro Larrá
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Felix A. Dreger
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Daniel Schneider
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Melanie Karthaus
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | - Stephan Getzmann
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| | | | - Stefan Arnau
- IfADo – Leibniz Research Centre for Working Environment and
Human Factors, Dortmund, Germany
| |
Collapse
|
20
|
Horrocks EAB, Mareschal I, Saleem AB. Walking humans and running mice: perception and neural encoding of optic flow during self-motion. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210450. [PMID: 36511417 PMCID: PMC9745880 DOI: 10.1098/rstb.2021.0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Locomotion produces full-field optic flow that often dominates the visual motion inputs to an observer. The perception of optic flow is in turn important for animals to guide their heading and interact with moving objects. Understanding how locomotion influences optic flow processing and perception is therefore essential to understand how animals successfully interact with their environment. Here, we review research investigating how perception and neural encoding of optic flow are altered during self-motion, focusing on locomotion. Self-motion has been found to influence estimation and sensitivity for optic flow speed and direction. Nonvisual self-motion signals also increase compensation for self-driven optic flow when parsing the visual motion of moving objects. The integration of visual and nonvisual self-motion signals largely follows principles of Bayesian inference and can improve the precision and accuracy of self-motion perception. The calibration of visual and nonvisual self-motion signals is dynamic, reflecting the changing visuomotor contingencies across different environmental contexts. Throughout this review, we consider experimental research using humans, non-human primates and mice. We highlight experimental challenges and opportunities afforded by each of these species and draw parallels between experimental findings. These findings reveal a profound influence of locomotion on optic flow processing and perception across species. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Edward A. B. Horrocks
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Isabelle Mareschal
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Aman B. Saleem
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
21
|
Korivand S, Jalili N, Gong J. Experiment protocols for brain-body imaging of locomotion: A systematic review. Front Neurosci 2023; 17:1051500. [PMID: 36937690 PMCID: PMC10014824 DOI: 10.3389/fnins.2023.1051500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Human locomotion is affected by several factors, such as growth and aging, health conditions, and physical activity levels for maintaining overall health and well-being. Notably, impaired locomotion is a prevalent cause of disability, significantly impacting the quality of life of individuals. The uniqueness and high prevalence of human locomotion have led to a surge of research to develop experimental protocols for studying the brain substrates, muscle responses, and motion signatures associated with locomotion. However, from a technical perspective, reproducing locomotion experiments has been challenging due to the lack of standardized protocols and benchmarking tools, which impairs the evaluation of research quality and the validation of previous findings. Methods This paper addresses the challenges by conducting a systematic review of existing neuroimaging studies on human locomotion, focusing on the settings of experimental protocols, such as locomotion intensity, duration, distance, adopted brain imaging technologies, and corresponding brain activation patterns. Also, this study provides practical recommendations for future experiment protocols. Results The findings indicate that EEG is the preferred neuroimaging sensor for detecting brain activity patterns, compared to fMRI, fNIRS, and PET. Walking is the most studied human locomotion task, likely due to its fundamental nature and status as a reference task. In contrast, running has received little attention in research. Additionally, cycling on an ergometer at a speed of 60 rpm using fNIRS has provided some research basis. Dual-task walking tasks are typically used to observe changes in cognitive function. Moreover, research on locomotion has primarily focused on healthy individuals, as this is the scenario most closely resembling free-living activity in real-world environments. Discussion Finally, the paper outlines the standards and recommendations for setting up future experiment protocols based on the review findings. It discusses the impact of neurological and musculoskeletal factors, as well as the cognitive and locomotive demands, on the experiment design. It also considers the limitations imposed by the sensing techniques used, including the acceptable level of motion artifacts in brain-body imaging experiments and the effects of spatial and temporal resolutions on brain sensor performance. Additionally, various experiment protocol constraints that need to be addressed and analyzed are explained.
Collapse
Affiliation(s)
- Soroush Korivand
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
| | - Nader Jalili
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL, United States
| | - Jiaqi Gong
- Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jiaqi Gong
| |
Collapse
|
22
|
Hybart RL, Ferris DP. Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review. IEEE Trans Neural Syst Rehabil Eng 2022; PP:10.1109/TNSRE.2022.3229563. [PMID: 37015690 PMCID: PMC10267288 DOI: 10.1109/tnsre.2022.3229563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research on embodiment of objects external to the human body has revealed important information about how the human nervous system interacts with robotic lower limb exoskeletons. Typical robotic exoskeleton control approaches view the controllers as an external agent intending to move in coordination with the human. However, principles of embodiment suggest that the exoskeleton controller should ideally coordinate with the human such that the nervous system can adequately model the input-output dynamics of the exoskeleton controller. Measuring embodiment of exoskeletons should be a necessary step in the exoskeleton development and prototyping process. Researchers need to establish high fidelity quantitative measures of embodiment, rather than relying on current qualitative survey measures. Mobile brain imaging techniques, such as high-density electroencephalography, is likely to provide a deeper understanding of embodiment during human-machine interactions and advance exoskeleton research and development. In this review we show why future exoskeleton research should include quantitative measures of embodiment as a metric of success.
Collapse
|
23
|
Wu L, Chen Y, Liu X, Fang P, Feng T, Sun K, Ren L, Liang W, Lu H, Lin X, Li Y, Wang L, Li C, Zhang T, Ni C, Wu S. The influence of job burnout on the attention ability of army soldiers and officers: Evidence from ERP. Front Neurosci 2022; 16:992537. [PMID: 36419460 PMCID: PMC9676458 DOI: 10.3389/fnins.2022.992537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 10/19/2023] Open
Abstract
Job burnout is one of the most widespread mental problems in today's society and seriously affects the mental health and combat effectiveness of soldiers and officers. Herein, the effect of burnout on individual attention is studied from the perspective of neuroelectrophysiology. A total of 1,155 army soldiers and officers were included in this investigation and completed the Job Burnout Scale for Military Personnel. A total of 42 soldiers and officers were randomly selected from those with and without burnout to participate in an event-related potential (ERP) study using a visual oddball task. The characteristics of visual P3a and P3b at Fz, FCz, Cz, CPz, and Pz were recorded and analyzed by repeated-measures analysis of variance (ANOVA). P < 0.05 was the criterion for a significant difference. The total average score on the Job Burnout Scale for Military Personnel among the participants was 0.74 ± 0.46, and the detection rate of job burnout was 29.85%. In the Oddball task, the average number of target stimuli counted in the burnout group was lower than that in the control group, but no significant difference was found. For P3a, the Fz, FCz, Cz, CPz, and Pz amplitudes in the burnout group were significantly lower than those in the control group. The average amplitude of P3a evoked in the central parietal area was larger than that in the prefrontal area. For P3b, the amplitudes of the five electrodes in the burnout group were significantly lower than those in the control group. The average amplitude of P3b evoked in the parietal region was larger than those in the prefrontal and central parietal regions. A certain degree of job burnout is evident in army soldiers and officers. The voluntary attention and involuntary attention of individuals with burnout are both affected to some extent, as reflected by the lower amplitudes of P3a and P3b. The results suggest that P3a and P3b can be used as indicators to monitor cognitive neural function in soldiers and officers with burnout and can also be used as references for evaluating the effects of cognitive training and screening methods. In this study, ERP was used to research the attention ability of soldiers and officers with job burnout, and related issues were discussed from the aspects of the burnout results, behavioral results, ERP results, compensation effect of cognitive resources, application in the military field, limitations, and prospects.
Collapse
Affiliation(s)
- Lin Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yanfeng Chen
- Nursing School, Air Force Medical University, Xi’an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Tingwei Feng
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Kewei Sun
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Lei Ren
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Wei Liang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Huijie Lu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xinxin Lin
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yijun Li
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Lingling Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Tian Zhang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Chunping Ni
- Nursing School, Air Force Medical University, Xi’an, China
| | - Shengjun Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
24
|
Mavros P, J Wälti M, Nazemi M, Ong CH, Hölscher C. A mobile EEG study on the psychophysiological effects of walking and crowding in indoor and outdoor urban environments. Sci Rep 2022; 12:18476. [PMID: 36323718 PMCID: PMC9628500 DOI: 10.1038/s41598-022-20649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Environmental psychologists have established multiple psychological benefits of interaction with natural, compared to urban, environments on emotion, cognition, and attention. Yet, given the increasing urbanisation worldwide, it is equally important to understand how differences within different urban environments influence human psychological experience. We developed a laboratory experiment to examine the psychophysiological effects of the physical (outdoor or indoor) and social (crowded versus uncrowded) environment in healthy young adults, and to validate the use of mobile electroencephalography (EEG) and electrodermal activity (EDA) measurements during active walking. Participants (N = 42) were randomly assigned into a walking or a standing group, and watched six 1-min walk-through videos of green, urban indoor and urban outdoor environments, depicting high or low levels of social density. Self-reported emotional states show that green spaces is perceived as more calm and positive, and reduce attentional demands. Further, the outdoor urban space is perceived more positively than the indoor environment. These findings are consistent with earlier studies on the psychological benefits of nature and confirm the effectiveness of our paradigm and stimuli. In addition, we hypothesised that even short-term exposure to crowded scenes would have negative psychological effects. We found that crowded scenes evoked higher self-reported arousal, more negative self-reported valence, and recruited more cognitive and attentional resources. However, in walking participants, they evoked higher frontal alpha asymmetry, suggesting more positive affective responses. Furthermore, we found that using recent signal-processing methods, the EEG data produced a comparable signal-to-noise ratio between walking and standing, and that despite differences between walking and standing, skin-conductance also captured effectively psychophysiological responses to stimuli. These results suggest that emotional responses to visually presented stimuli can be measured effectively using mobile EEG and EDA in ambulatory settings, and that there is complex interaction between active walking, the social density of urban spaces, and direct and indirect affective responses to such environments.
Collapse
Affiliation(s)
- Panagiotis Mavros
- Singapore-ETH Centre, Future Cities Laboratory, CREATE campus, 1 CREATE Way, #06-01 CREATE Tower, Singapore, 138602, Singapore.
| | - Michel J Wälti
- Singapore-ETH Centre, Future Cities Laboratory, CREATE campus, 1 CREATE Way, #06-01 CREATE Tower, Singapore, 138602, Singapore
| | - Mohsen Nazemi
- Singapore-ETH Centre, Future Cities Laboratory, CREATE campus, 1 CREATE Way, #06-01 CREATE Tower, Singapore, 138602, Singapore
| | - Crystal Huiyi Ong
- Singapore-ETH Centre, Future Cities Laboratory, CREATE campus, 1 CREATE Way, #06-01 CREATE Tower, Singapore, 138602, Singapore
- National University of Singapore, Singapore, Singapore
| | - Christoph Hölscher
- Singapore-ETH Centre, Future Cities Laboratory, CREATE campus, 1 CREATE Way, #06-01 CREATE Tower, Singapore, 138602, Singapore
- Chair of Cognitive Science, Department of Humanities, Social and Political Sciences, ETH Zürich, Zürich, 8092, Switzerland
| |
Collapse
|
25
|
Albuquerque I, Monteiro J, Rosanne O, Falk TH. Estimating distribution shifts for predicting cross-subject generalization in electroencephalography-based mental workload assessment. Front Artif Intell 2022; 5:992732. [PMID: 36267659 PMCID: PMC9576998 DOI: 10.3389/frai.2022.992732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Assessment of mental workload in real-world conditions is key to ensuring the performance of workers executing tasks that demand sustained attention. Previous literature has employed electroencephalography (EEG) to this end despite having observed that EEG correlates of mental workload vary across subjects and physical strain, thus making it difficult to devise models capable of simultaneously presenting reliable performance across users. Domain adaptation consists of a set of strategies that aim at allowing for improving machine learning systems performance on unseen data at training time. Such methods, however, might rely on assumptions over the considered data distributions, which typically do not hold for applications of EEG data. Motivated by this observation, in this work we propose a strategy to estimate two types of discrepancies between multiple data distributions, namely marginal and conditional shifts, observed on data collected from different subjects. Besides shedding light on the assumptions that hold for a particular dataset, the estimates of statistical shifts obtained with the proposed approach can be used for investigating other aspects of a machine learning pipeline, such as quantitatively assessing the effectiveness of domain adaptation strategies. In particular, we consider EEG data collected from individuals performing mental tasks while running on a treadmill and pedaling on a stationary bike and explore the effects of different normalization strategies commonly used to mitigate cross-subject variability. We show the effects that different normalization schemes have on statistical shifts and their relationship with the accuracy of mental workload prediction as assessed on unseen participants at training time.
Collapse
|
26
|
Visual Demands of Walking Are Reflected in Eye-Blink-Evoked EEG-Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Blinking is a natural user-induced response which paces visual information processing. This study investigates whether blinks are viable for segmenting continuous electroencephalography (EEG) activity, for inferring cognitive demands in ecologically valid work environments. We report the blink-related EEG measures of participants who performed auditory tasks either standing, walking on grass, or whilst completing an obstacle course. Blink-related EEG activity discriminated between different levels of cognitive demand during walking. Both behavioral parameters (e.g., blink duration or head motion) and blink-related EEG activity varied with walking conditions. Larger occipital N1 was observed during walking, relative to standing and traversing an obstacle course, which reflects differences in bottom-up visual perception. In contrast, the amplitudes of top-down components (N2, P3) significantly decreased with increasing walking demands, which reflected narrowing attention. This is consistent with blink-related EEG, specifically in Theta and Alpha power that, respectively, increased and decreased with increasing demands of the walking task. This work presents a novel and robust analytical approach to evaluate the cognitive demands experienced in natural work settings, which precludes the use of artificial task manipulations for data segmentation.
Collapse
|
27
|
Nicholls VI, Alsbury-Nealy B, Krugliak A, Clarke A. Context effects on object recognition in real-world environments: A study protocol. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17856.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The environments that we live in impact on our ability to recognise objects, with recognition being facilitated when objects appear in expected locations (congruent) compared to unexpected locations (incongruent). However, these findings are based on experiments where the object is isolated from its environment. Moreover, it is not clear which components of the recognition process are impacted by the environment. In this experiment, we seek to examine the impact real world environments have on object recognition. Specifically, we will use mobile electroencephalography (mEEG) and augmented reality (AR) to investigate how the visual and semantic processing aspects of object recognition are changed by the environment. Methods: We will use AR to place congruent and incongruent virtual objects around indoor and outdoor environments. During the experiment a total of 34 participants will walk around the environments and find these objects while we record their eye movements and neural signals. We will perform two primary analyses. First, we will analyse the event-related potential (ERP) data using paired samples t-tests in the N300/400 time windows in an attempt to replicate congruency effects on the N300/400. Second, we will use representational similarity analysis (RSA) and computational models of vision and semantics to determine how visual and semantic processes are changed by congruency. Conclusions: Based on previous literature, we hypothesise that scene-object congruence would facilitate object recognition. For ERPs, we predict a congruency effect in the N300/N400, and for RSA we predict that higher level visual and semantic information will be represented earlier for congruent scenes than incongruent scenes. By collecting mEEG data while participants are exploring a real-world environment, we will be able to determine the impact of a natural context on object recognition, and the different processing stages of object recognition.
Collapse
|
28
|
Reiser JE, Arnau S, Rinkenauer G, Wascher E. Did you even see that? visual sensory processing of single stimuli under different locomotor loads. PLoS One 2022; 17:e0267896. [PMID: 35617315 PMCID: PMC9135297 DOI: 10.1371/journal.pone.0267896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Modern living and working environments are more and more interspersed with the concurrent execution of locomotion and sensory processing, most often in the visual domain. Many job profiles involve the presentation of visual information while walking, for example in warehouse logistics work, where a worker has to manage walking to the correct aisle to pick up a package while being presented with visual information over data-glasses concerning the next order. Similar use-cases can be found in manufacturing jobs, for example in car montage assembly lines where next steps are presented via augmented reality headsets while walking at a slow pace. Considering the overall scarcity of cognitive resources available to be deployed to either the cognitive or motor processes, task performance decrements were found when increasing load in either domain. Interestingly, the walking motion also had beneficial effects on peripheral contrast detection and the inhibition of visual stream information. Taking these findings into account, we conducted a study that comprised the detection of single visual targets (Landolt Cs) within a broad range of the visual field (-40° to +40° visual angle) while either standing, walking, or walking with concurrent perturbations. We used questionnaire (NASA-TLX), behavioral (response times and accuracy), and neurophysiological data (ERPs and ERSPs) to quantify the effects of cognitive-motor interference. The study was conducted in a Gait Real-time Analysis Interactive Laboratory (GRAIL), using a 180° projection screen and a swayable and tiltable dual-belt treadmill. Questionnaire and behavioral measures showed common patterns. We found increasing subjective physical workload and behavioral decrements with increasing stimulus eccentricity and motor complexity. Electrophysiological results also indicated decrements in stimulus processing with higher stimulus eccentricity and movement complexity (P3, Theta), but highlighted a beneficial role when walking without perturbations and processing more peripheral stimuli regarding earlier sensory components (N1pc/N2pc, N2). These findings suggest that walking without impediments can enhance the visual processing of peripheral information and therefore help with perceiving non-foveal sensory content. Also, our results could help with re-evaluating previous findings in the context of cognitive-motor interference, as increased motor complexity might not always impede cognitive processing and performance.
Collapse
Affiliation(s)
- Julian Elias Reiser
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- * E-mail:
| | - Stefan Arnau
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Gerhard Rinkenauer
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
29
|
Hussein A, Ghignone L, Nguyen T, Salimi N, Nguyen H, Wang M, Abbass HA. Characterization of Indicators for Adaptive Human-Swarm Teaming. Front Robot AI 2022; 9:745958. [PMID: 35252363 PMCID: PMC8891141 DOI: 10.3389/frobt.2022.745958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Swarm systems consist of large numbers of agents that collaborate autonomously. With an appropriate level of human control, swarm systems could be applied in a variety of contexts ranging from urban search and rescue situations to cyber defence. However, the successful deployment of the swarm in such applications is conditioned by the effective coupling between human and swarm. While adaptive autonomy promises to provide enhanced performance in human-machine interaction, distinct factors must be considered for its implementation within human-swarm interaction. This paper reviews the multidisciplinary literature on different aspects contributing to the facilitation of adaptive autonomy in human-swarm interaction. Specifically, five aspects that are necessary for an adaptive agent to operate properly are considered and discussed, including mission objectives, interaction, mission complexity, automation levels, and human states. We distill the corresponding indicators in each of the five aspects, and propose a framework, named MICAH (i.e., Mission-Interaction-Complexity-Automation-Human), which maps the primitive state indicators needed for adaptive human-swarm teaming.
Collapse
|
30
|
Towards real-world neuroscience using mobile EEG and augmented reality. Sci Rep 2022; 12:2291. [PMID: 35145166 PMCID: PMC8831466 DOI: 10.1038/s41598-022-06296-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Our visual environment impacts multiple aspects of cognition including perception, attention and memory, yet most studies traditionally remove or control the external environment. As a result, we have a limited understanding of neurocognitive processes beyond the controlled lab environment. Here, we aim to study neural processes in real-world environments, while also maintaining a degree of control over perception. To achieve this, we combined mobile EEG (mEEG) and augmented reality (AR), which allows us to place virtual objects into the real world. We validated this AR and mEEG approach using a well-characterised cognitive response-the face inversion effect. Participants viewed upright and inverted faces in three EEG tasks (1) a lab-based computer task, (2) walking through an indoor environment while seeing face photographs, and (3) walking through an indoor environment while seeing virtual faces. We find greater low frequency EEG activity for inverted compared to upright faces in all experimental tasks, demonstrating that cognitively relevant signals can be extracted from mEEG and AR paradigms. This was established in both an epoch-based analysis aligned to face events, and a GLM-based approach that incorporates continuous EEG signals and face perception states. Together, this research helps pave the way to exploring neurocognitive processes in real-world environments while maintaining experimental control using AR.
Collapse
|
31
|
Arake M, Ohta H, Tsuruhara A, Kobayashi Y, Shinomiya N, Masaki H, Morimoto Y. Measuring Task-Related Brain Activity With Event-Related Potentials in Dynamic Task Scenario With Immersive Virtual Reality Environment. Front Behav Neurosci 2022; 16:779926. [PMID: 35185487 PMCID: PMC8847391 DOI: 10.3389/fnbeh.2022.779926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022] Open
Abstract
Measurement of event-related potentials (ERPs) in simulated and real environments is advantageous for understanding cognition and behavior during practice of goal-directed activities. Recently, instead of using task-irrelevant “probe stimuli” to elicit ERPs, extraction of ERPs directly from events that occur in simulated and real environments has drawn increased attention. Among the previous ERP studies using immersive virtual reality, only a few cases elicited ERPs from task-related events in dynamic task settings. Furthermore, as far as we surveyed, there were no studies that examined the source of ERPs or correlation between ERPs and behavioral performance in 360-degree immersive virtual reality using head-mounted display. In this study, EEG signals were recorded from 16 participants while they were playing the first-person shooter game with immersive virtual reality environment. Error related negativity (ERN) and correct-(response)-related negativity (CRN) elicited by shooting-related events were successfully extracted. We found the ERN amplitudes to be correlated with the individual shooting performance. Interestingly, the main source of the ERN was the rostral anterior cingulate cortex (ACC), which is different from previous studies where the signal source was often estimated to be the more caudal part of ACC. The obtained results are expected to contribute to the evaluation of cognitive functions and behavioral performance by ERPs in a simulated environment.
Collapse
Affiliation(s)
- Masashi Arake
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
- Aeromedical Laboratory, Japan Air Self-Defense Force, Sayama, Japan
| | - Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Japan
| | - Aki Tsuruhara
- Aeromedical Laboratory, Japan Air Self-Defense Force, Sayama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Hiroaki Masaki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
- *Correspondence: Yuji Morimoto,
| |
Collapse
|
32
|
Vila-Chã C, Vaz C, Oliveira AS. Electrocortical Activity in Older Adults Is More Influenced by Cognitive Task Complexity Than Concurrent Walking. Front Aging Neurosci 2022; 13:718648. [PMID: 35140598 PMCID: PMC8819066 DOI: 10.3389/fnagi.2021.718648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Human cognitive-motor performance largely depends on how brain resources are allocated during simultaneous tasks. Nonetheless, little is known regarding the age-related changes in electrocortical activity when dual-task during walking presents higher complexity levels. Thus, the aim of this study was to investigate whether there are distinct changes in walking performance and electrocortical activation between young and older adults performing simple and complex upper limb response time tasks. Physically active young (23 ± 3 years, n = 21) and older adults (69 ± 5 years, n = 19) were asked to respond as fast as possible to a single stimuli or a double stimuli appearing on a touch screen during standing and walking. Response time, step frequency, step frequency variability and electroencephalographic (EEG) N200 and P300 amplitudes and latencies from frontal central and parietal brain regions were recorded. The results demonstrated that older adults were 23% slower to respond to double stimuli, whereas younger adults were only 12% slower (p < 0.01). The longer response time for older adults was accompanied by greater step frequency variability following double-stimuli presentations (p < 0.01). Older adults presented reduced N200 and P300 amplitudes compared to younger participants across all conditions (p < 0.001), with no effects of posture (standing vs walking) on both groups (p > 0.05). More importantly, the P300 amplitude was significantly reduced for older adults when responding to double stimuli regardless of standing or walking tasks (p < 0.05), with no changes in younger participants. Therefore, physically active older adults can attenuate potential walking deficits experienced during dual-task walking in simple cognitive tasks. However, cognitive tasks involving decision making influence electrocortical activation due to reduced cognitive resources to cope with the task demands.
Collapse
Affiliation(s)
- Carolina Vila-Chã
- Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, Vila Real, Portugal
| | | | - Anderson Souza Oliveira
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
- *Correspondence: Anderson Souza Oliveira,
| |
Collapse
|
33
|
Mangalam M, Fragaszy DM, Wagman JB, Day BM, Kelty-Stephen DG, Bongers RM, Stout DW, Osiurak F. On the psychological origins of tool use. Neurosci Biobehav Rev 2022; 134:104521. [PMID: 34998834 DOI: 10.1016/j.neubiorev.2022.104521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023]
Abstract
The ubiquity of tool use in human life has generated multiple lines of scientific and philosophical investigation to understand the development and expression of humans' engagement with tools and its relation to other dimensions of human experience. However, existing literature on tool use faces several epistemological challenges in which the same set of questions generate many different answers. At least four critical questions can be identified, which are intimately intertwined-(1) What constitutes tool use? (2) What psychological processes underlie tool use in humans and nonhuman animals? (3) Which of these psychological processes are exclusive to tool use? (4) Which psychological processes involved in tool use are exclusive to Homo sapiens? To help advance a multidisciplinary scientific understanding of tool use, six author groups representing different academic disciplines (e.g., anthropology, psychology, neuroscience) and different theoretical perspectives respond to each of these questions, and then point to the direction of future work on tool use. We find that while there are marked differences among the responses of the respective author groups to each question, there is a surprising degree of agreement about many essential concepts and questions. We believe that this interdisciplinary and intertheoretical discussion will foster a more comprehensive understanding of tool use than any one of these perspectives (or any one of these author groups) would (or could) on their own.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | - Jeffrey B Wagman
- Department of Psychology, Illinois State University, Normal, IL 61761, USA
| | - Brian M Day
- Department of Psychology, Butler University, Indianapolis, IN 46208, USA
| | | | - Raoul M Bongers
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Dietrich W Stout
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, Lyon 69361, France; Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
34
|
Ramanoël S, Durteste M, Delaux A, de Saint Aubert JB, Arleo A. Future trends in brain aging research: Visuo-cognitive functions at stake during mobility and spatial navigation. AGING BRAIN 2022; 2:100034. [PMID: 36908887 PMCID: PMC9997160 DOI: 10.1016/j.nbas.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Aging leads to a complex pattern of structural and functional changes, gradually affecting sensorimotor, perceptual, and cognitive processes. These multiscale changes can hinder older adults' interaction with their environment, progressively reducing their autonomy in performing tasks relevant to everyday life. Autonomy loss can further be aggravated by the onset and progression of neurodegenerative disorders (e.g., age-related macular degeneration at the sensory input level; and Alzheimer's disease at the cognitive level). In this context, spatial cognition offers a representative case of high-level brain function that involves multimodal sensory processing, postural control, locomotion, spatial orientation, and wayfinding capabilities. Hence, studying spatial behavior and its neural bases can help identify early markers of pathogenic age-related processes. Until now, the neural correlates of spatial cognition have mostly been studied in static conditions thereby disregarding perceptual (other than visual) and motor aspects of natural navigation. In this review, we first demonstrate how visuo-motor integration and the allocation of cognitive resources during locomotion lie at the heart of real-world spatial navigation. Second, we present how technological advances such as immersive virtual reality and mobile neuroimaging solutions can enable researchers to explore the interplay between perception and action. Finally, we argue that the future of brain aging research in spatial navigation demands a widespread shift toward the use of naturalistic, ecologically valid experimental paradigms to address the challenges of mobility and autonomy decline across the lifespan.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.,Université Côte d'Azur, LAMHESS, Nice, France
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| |
Collapse
|
35
|
Differential effects of walking across visual cortical processing stages. Cortex 2022; 149:16-28. [DOI: 10.1016/j.cortex.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
|
36
|
Straetmans L, Holtze B, Debener S, Jaeger M, Mirkovic B. Neural tracking to go: auditory attention decoding and saliency detection with mobile EEG. J Neural Eng 2021; 18. [PMID: 34902846 DOI: 10.1088/1741-2552/ac42b5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Neuro-steered assistive technologies have been suggested to offer a major advancement in future devices like neuro-steered hearing aids. Auditory attention decoding methods would in that case allow for identification of an attended speaker within complex auditory environments, exclusively from neural data. Decoding the attended speaker using neural information has so far only been done in controlled laboratory settings. Yet, it is known that ever-present factors like distraction and movement are reflected in the neural signal parameters related to attention. APPROACH Thus, in the current study we applied a two-competing speaker paradigm to investigate performance of a commonly applied EEG-based auditory attention decoding (AAD) model outside of the laboratory during leisure walking and distraction. Unique environmental sounds were added to the auditory scene and served as distractor events. MAIN RESULTS The current study shows, for the first time, that the attended speaker can be accurately decoded during natural movement. At a temporal resolution of as short as 5-seconds and without artifact attenuation, decoding was found to be significantly above chance level. Further, as hypothesized, we found a decrease in attention to the to-be-attended and the to-be-ignored speech stream after the occurrence of a salient event. Additionally, we demonstrate that it is possible to predict neural correlates of distraction with a computational model of auditory saliency based on acoustic features. CONCLUSION Taken together, our study shows that auditory attention tracking outside of the laboratory in ecologically valid conditions is feasible and a step towards the development of future neural-steered hearing aids.
Collapse
Affiliation(s)
- Lisa Straetmans
- Department of Psychology, Carl von Ossietzky Universität Oldenburg Fakultät für Medizin und Gesundheitswissenschaften, Ammerländer Heerstraße 114-118, Oldenburg, Niedersachsen, 26129, GERMANY
| | - B Holtze
- Department of Psychology, Carl von Ossietzky Universität Oldenburg Fakultät für Medizin und Gesundheitswissenschaften, Ammerländer Heerstr. 114-118, Oldenburg, Niedersachsen, 26129, GERMANY
| | - Stefan Debener
- Department of Psychology, Carl von Ossietzky Universität Oldenburg Fakultät für Medizin und Gesundheitswissenschaften, Ammerländer Heerstr. 114-118, Oldenburg, Niedersachsen, 26129, GERMANY
| | - Manuela Jaeger
- Department of Psychology, Carl von Ossietzky Universität Oldenburg Fakultät für Medizin und Gesundheitswissenschaften, Ammerländer Heerstr. 114-118, Oldenburg, Niedersachsen, 26129, GERMANY
| | - Bojana Mirkovic
- Department of Psychology , Carl von Ossietzky Universität Oldenburg Fakultät für Medizin und Gesundheitswissenschaften, Ammerländer Heerstr. 114-118, Oldenburg, Niedersachsen, 26129, GERMANY
| |
Collapse
|
37
|
King JL, Parada FJ. Using mobile brain/body imaging to advance research in arts, health, and related therapeutics. Eur J Neurosci 2021; 54:8364-8380. [PMID: 33999462 PMCID: PMC9291922 DOI: 10.1111/ejn.15313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
The uses of mobile brain/body imaging (MoBI) are expanding and allow for more direct study of the neurophysiological signals associated with behavior in psychotherapeutic encounters. Neuroaesthetics is concerned with the cognitive and neural basis of art appreciation, and scientific correlations are being made in the field that might help to clarify theories claimed in the creative arts therapies. Yet, most neuroaesthetics studies are confined to the laboratory and do not propose a translation for research methods and clinical applications. The creative arts therapies have a long history of clinical success with various patient populations and will benefit from increased scientific explanation to support intervention strategies. Examining the brain dynamics and motor behaviors that are associated with the higher complex processes involved in artistic expression offers MoBI as a promising instrumentation to move forward in linking ideas from neuroaesthetics to the creative arts therapies. Tracking brain dynamics in association with behavioral change allows for more objective and quantitative physiological monitors to evaluate, and together with subjective patient reports provides insight into the psychological mechanisms of change in treatment. We outline a framework that shows how MoBI can be used to study the effectiveness of creative arts therapy interventions motivated by the 4E approach to cognition with a focus on visual art therapy. The article illuminates how a new partnership among the fields of art therapy, neuroscience, and neuroaesthetics might work together within the 4E/MoBI framework in efforts to advance transdisciplinary research for clinical health populations.
Collapse
Affiliation(s)
- Juliet L. King
- Department of Art TherapyThe George Washington UniversityWashingtonDCUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Francisco J. Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de PsicologíaUniversidad Diego PortalesSantiagoChile
| |
Collapse
|
38
|
Liebherr M, Corcoran AW, Alday PM, Coussens S, Bellan V, Howlett CA, Immink MA, Kohler M, Schlesewsky M, Bornkessel-Schlesewsky I. EEG and behavioral correlates of attentional processing while walking and navigating naturalistic environments. Sci Rep 2021; 11:22325. [PMID: 34785702 PMCID: PMC8595363 DOI: 10.1038/s41598-021-01772-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
The capacity to regulate one's attention in accordance with fluctuating task demands and environmental contexts is an essential feature of adaptive behavior. Although the electrophysiological correlates of attentional processing have been extensively studied in the laboratory, relatively little is known about the way they unfold under more variable, ecologically-valid conditions. Accordingly, this study employed a 'real-world' EEG design to investigate how attentional processing varies under increasing cognitive, motor, and environmental demands. Forty-four participants were exposed to an auditory oddball task while (1) sitting in a quiet room inside the lab, (2) walking around a sports field, and (3) wayfinding across a university campus. In each condition, participants were instructed to either count or ignore oddball stimuli. While behavioral performance was similar across the lab and field conditions, oddball count accuracy was significantly reduced in the campus condition. Moreover, event-related potential components (mismatch negativity and P3) elicited in both 'real-world' settings differed significantly from those obtained under laboratory conditions. These findings demonstrate the impact of environmental factors on attentional processing during simultaneously-performed motor and cognitive tasks, highlighting the value of incorporating dynamic and unpredictable contexts within naturalistic designs.
Collapse
Affiliation(s)
- Magnus Liebherr
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Department of General Psychology: Cognition, University Duisburg-Essen, Duisburg, Germany.
| | - Andrew W. Corcoran
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia ,grid.1002.30000 0004 1936 7857Cognition and Philosophy Laboratory, Monash University, Melbourne, Australia
| | - Phillip M. Alday
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia
| | - Scott Coussens
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia
| | - Valeria Bellan
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia ,grid.1026.50000 0000 8994 5086Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Caitlin A. Howlett
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia ,grid.1026.50000 0000 8994 5086Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Maarten A. Immink
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia ,grid.1014.40000 0004 0367 2697Sport, Health, Activity, Performance and Exercise Research Centre, Flinders University, Adelaide, Australia
| | - Mark Kohler
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia ,grid.1010.00000 0004 1936 7304School of Psychology, University of Adelaide, Adelaide, Australia
| | - Matthias Schlesewsky
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia
| | - Ina Bornkessel-Schlesewsky
- grid.1026.50000 0000 8994 5086Cognitive and Systems Neuroscience Research Hub, University of South Australia, Adelaide, Australia
| |
Collapse
|
39
|
Janssen TW, Grammer JK, Bleichner MG, Bulgarelli C, Davidesco I, Dikker S, Jasińska KK, Siugzdaite R, Vassena E, Vatakis A, Zion‐Golumbic E, van Atteveldt N. Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2021; 15:354-370. [PMID: 35875415 PMCID: PMC9292610 DOI: 10.1111/mbe.12302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 05/20/2023]
Abstract
As the field of educational neuroscience continues to grow, questions have emerged regarding the ecological validity and applicability of this research to educational practice. Recent advances in mobile neuroimaging technologies have made it possible to conduct neuroscientific studies directly in naturalistic learning environments. We propose that embedding mobile neuroimaging research in a cycle (Matusz, Dikker, Huth, & Perrodin, 2019), involving lab-based, seminaturalistic, and fully naturalistic experiments, is well suited for addressing educational questions. With this review, we take a cautious approach, by discussing the valuable insights that can be gained from mobile neuroimaging technology, including electroencephalography and functional near-infrared spectroscopy, as well as the challenges posed by bringing neuroscientific methods into the classroom. Research paradigms used alongside mobile neuroimaging technology vary considerably. To illustrate this point, studies are discussed with increasingly naturalistic designs. We conclude with several ethical considerations that should be taken into account in this unique area of research.
Collapse
Affiliation(s)
- Tieme W.P. Janssen
- Department of Clinical, Neuro‐ & Developmental Psychology, Vrije Universiteit
| | - Jennie K. Grammer
- Graduate School of Education and Information Studies, University of California Los Angeles
| | | | - Chiara Bulgarelli
- Centre for Brain and Cognitive Development, Birkbeck University of London
| | - Ido Davidesco
- Department of Educational Psychology, University of Connecticut
| | | | - Kaja K. Jasińska
- Department of Applied Psychology and Human Development, University of Toronto
| | | | - Eliana Vassena
- Donders Institute for Brain, Cognition and Behaviour, Radboud University
| | | | | | | |
Collapse
|
40
|
Beach C, Li M, Balaban E, Casson AJ. Motion artefact removal in electroencephalography and electrocardiography by using multichannel inertial measurement units and adaptive filtering. Healthc Technol Lett 2021; 8:128-138. [PMID: 34584747 PMCID: PMC8450177 DOI: 10.1049/htl2.12016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
This paper presents a new active electrode design for electroencephalogram (EEG) and electrocardiogram (ECG) sensors based on inertial measurement units to remove motion artefacts during signal acquisition. Rather than measuring motion data from a single source for the entire recording unit, inertial measurement units are attached to each individual EEG or ECG electrode to collect local movement data. This data is then used to remove the motion artefact by using normalised least mean square adaptive filtering. Results show that the proposed active electrode design can reduce motion contamination from EEG and ECG signals in chest movement and head swinging motion scenarios. However, it is found that the performance varies, necessitating the need for the algorithm to be paired with more sophisticated signal processing to identify scenarios where it is beneficial in terms of improving signal quality. The new instrumentation hardware allows data driven artefact removal to be performed, providing a new data driven approach compared to widely used blind-source separation methods, and helps enable in the wild EEG recordings to be performed.
Collapse
Affiliation(s)
- Christopher Beach
- Department of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK
| | | | - Ertan Balaban
- Department of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK
| | - Alexander J. Casson
- Department of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK
| |
Collapse
|
41
|
Li H, Li N, Xing Y, Zhang S, Liu C, Cai W, Hong W, Zhang Q. P300 as a Potential Indicator in the Evaluation of Neurocognitive Disorders After Traumatic Brain Injury. Front Neurol 2021; 12:690792. [PMID: 34566838 PMCID: PMC8458648 DOI: 10.3389/fneur.2021.690792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Few objective indices can be used when evaluating neurocognitive disorders after a traumatic brain injury (TBI). P300 has been widely studied in mental disorders, cognitive dysfunction, and brain injury. Daily life ability and social function are key indices in the assessment of neurocognitive disorders after a TBI. The present study focused on the correlation between P300 and impairment of daily living activity and social function. We enrolled 234 patients with neurocognitive disorders after a TBI according to ICD-10 and 277 age- and gender-matched healthy volunteers. The daily living activity and social function were assessed by the social disability screening schedule (SDSS) scale, activity of daily living (ADL) scale, and scale of personality change following a TBI. P300 was evoked by a visual oddball paradigm. The results showed that the scores of the ADL scale, SDSS scale, and scale of personality change in the patient group were significantly higher than those in the control group. The amplitudes of Fz, Cz, and Pz in the patient group were significantly lower than those in the control group and were negatively correlated with the scores of the ADL and SDSS scales. In conclusion, a lower P300 amplitude means a greater impairment of daily life ability and social function, which suggested more severity of neurocognitive disorders after a TBI. P300 could be a potential indicator in evaluating the severity of neurocognitive disorders after a TBI.
Collapse
Affiliation(s)
- Haozhe Li
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Ningning Li
- Hongkou District Mental Health Center, Shanghai, China
| | - Yan Xing
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Shengyu Zhang
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chao Liu
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Weixiong Cai
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinting Zhang
- Shanghai Key Laboratory of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
42
|
Stout D. The Cognitive Science of Technology. Trends Cogn Sci 2021; 25:964-977. [PMID: 34362661 DOI: 10.1016/j.tics.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023]
Abstract
Technology is central to human life but hard to define and study. This review synthesizes advances in fields from anthropology to evolutionary biology and neuroscience to propose an interdisciplinary cognitive science of technology. The foundation of this effort is an evolutionarily motivated definition of technology that highlights three key features: material production, social collaboration, and cultural reproduction. This broad scope respects the complexity of the subject but poses a challenge for theoretical unification. Addressing this challenge requires a comparative approach to reduce the diversity of real-world technological cognition to a smaller number of recurring processes and relationships. To this end, a synthetic perceptual-motor hypothesis (PMH) for the evolutionary-developmental-cultural construction of technological cognition is advanced as an initial target for investigation.
Collapse
Affiliation(s)
- Dietrich Stout
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
von Lühmann A, Zheng Y, Ortega-Martinez A, Kiran S, Somers DC, Cronin-Golomb A, Awad LN, Ellis TD, Boas DA, Yücel MA. Towards Neuroscience of the Everyday World (NEW) using functional Near-Infrared Spectroscopy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18:100272. [PMID: 33709044 PMCID: PMC7943029 DOI: 10.1016/j.cobme.2021.100272] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) assesses human brain activity by noninvasively measuring changes of cerebral hemoglobin concentrations caused by modulation of neuronal activity. Recent progress in signal processing and advances in system design, such as miniaturization, wearability and system sensitivity, have strengthened fNIRS as a viable and cost-effective complement to functional Magnetic Resonance Imaging (fMRI), expanding the repertoire of experimental studies that can be performed by the neuroscience community. The availability of fNIRS and Electroencephalography (EEG) for routine, increasingly unconstrained, and mobile brain imaging is leading towards a new domain that we term "Neuroscience of the Everyday World" (NEW). In this light, we review recent advances in hardware, study design and signal processing, and discuss challenges and future directions towards achieving NEW.
Collapse
Affiliation(s)
- Alexander von Lühmann
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA 02215, USA
- NIRx Medical Technologies, Berlin 13355, Germany
| | - Yilei Zheng
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA 02215, USA
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
| | | | - Swathi Kiran
- Department of Speech, Language, and Hearing, Boston University, Boston, MA 02215, USA
| | - David C. Somers
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Louis N. Awad
- College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA 02215, USA
| | - Terry D. Ellis
- College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA 02215, USA
| | - David A. Boas
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Meryem A. Yücel
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
44
|
Trambaiolli LR, Tiwari A, Falk TH. Affective Neurofeedback Under Naturalistic Conditions: A Mini-Review of Current Achievements and Open Challenges. FRONTIERS IN NEUROERGONOMICS 2021; 2:678981. [PMID: 38235228 PMCID: PMC10790905 DOI: 10.3389/fnrgo.2021.678981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 01/19/2024]
Abstract
Affective neurofeedback training allows for the self-regulation of the putative circuits of emotion regulation. This approach has recently been studied as a possible additional treatment for psychiatric disorders, presenting positive effects in symptoms and behaviors. After neurofeedback training, a critical aspect is the transference of the learned self-regulation strategies to outside the laboratory and how to continue reinforcing these strategies in non-controlled environments. In this mini-review, we discuss the current achievements of affective neurofeedback under naturalistic setups. For this, we first provide a brief overview of the state-of-the-art for affective neurofeedback protocols. We then discuss virtual reality as a transitional step toward the final goal of "in-the-wild" protocols and current advances using mobile neurotechnology. Finally, we provide a discussion of open challenges for affective neurofeedback protocols in-the-wild, including topics such as convenience and reliability, environmental effects in attention and workload, among others.
Collapse
Affiliation(s)
- Lucas R. Trambaiolli
- Basic Neuroscience Division, McLean Hospital–Harvard Medical School, Belmont, MA, United States
| | - Abhishek Tiwari
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC, Canada
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC, Canada
| |
Collapse
|
45
|
Heo D, Kim M, Kim J, Choi YJ, Kim SP. Effect of Static Posture on Online Performance of P300-Based BCIs for TV Control. SENSORS 2021; 21:s21072278. [PMID: 33805181 PMCID: PMC8036388 DOI: 10.3390/s21072278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022]
Abstract
To implement a practical brain–computer interface (BCI) for daily use, continuing changes in postures while performing daily tasks must be considered in the design of BCIs. To examine whether the performance of a BCI could depend on postures, we compared the online performance of P300-based BCIs built to select TV channels when subjects took sitting, recline, supine, and right lateral recumbent postures during BCI use. Subjects self-reported the degrees of interference, comfort, and familiarity after BCI control in each posture. We found no significant difference in the BCI performance as well as the amplitude and latency of P300 and N200 among the four postures. However, when we compared BCI accuracy outcomes normalized within individuals between two cases where subjects reported relatively more positively or more negatively about using the BCI in a particular posture, we found higher BCI accuracy in those postures for which individual subjects reported more positively. As a result, although the change of postures did not affect the overall performance of P300-based BCIs, the BCI performance varied depending on the degree of postural comfort felt by individual subjects. Our results suggest considering the postural comfort felt by individual BCI users when using a P300-based BCI at home.
Collapse
|
46
|
Delaux A, de Saint Aubert JB, Ramanoël S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A. Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci 2021; 54:8256-8282. [PMID: 33738880 PMCID: PMC9291975 DOI: 10.1111/ejn.15190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023]
Abstract
Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation.
Collapse
Affiliation(s)
- Alexandre Delaux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Lukas Gehrke
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Marius Klug
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Zurich University of Applied Sciences, ZHAW Datalab, Winterthur, Switzerland
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Klaus Gramann
- Institute of Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
47
|
Abstract
Most research investigating auditory perception is conducted in controlled laboratory settings, potentially restricting its generalizability to the complex acoustic environment outside the lab. The present study, in contrast, investigated auditory attention with long-term recordings (> 6 h) beyond the lab using a fully mobile, smartphone-based ear-centered electroencephalography (EEG) setup with minimal restrictions for participants. Twelve participants completed iterations of two variants of an oddball task where they had to react to target tones and to ignore standard tones. A rapid variant of the task (tones every 2 s, 5 min total time) was performed seated and with full focus in the morning, around noon and in the afternoon under controlled conditions. A sporadic variant (tones every minute, 160 min total time) was performed once in the morning and once in the afternoon while participants followed their normal office day routine. EEG data, behavioral data, and movement data (with a gyroscope) were recorded and analyzed. The expected increased amplitude of the P3 component in response to the target tone was observed for both the rapid and the sporadic oddball. Miss rates were lower and reaction times were faster in the rapid oddball compared to the sporadic one. The movement data indicated that participants spent most of their office day at relative rest. Overall, this study demonstrated that it is feasible to study auditory perception in everyday life with long-term ear-EEG.
Collapse
|
48
|
Edwards DJ, Trujillo LT. An Analysis of the External Validity of EEG Spectral Power in an Uncontrolled Outdoor Environment during Default and Complex Neurocognitive States. Brain Sci 2021; 11:330. [PMID: 33808022 PMCID: PMC7998369 DOI: 10.3390/brainsci11030330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Traditionally, quantitative electroencephalography (QEEG) studies collect data within controlled laboratory environments that limit the external validity of scientific conclusions. To probe these validity limits, we used a mobile EEG system to record electrophysiological signals from human participants while they were located within a controlled laboratory environment and an uncontrolled outdoor environment exhibiting several moderate background influences. Participants performed two tasks during these recordings, one engaging brain activity related to several complex cognitive functions (number sense, attention, memory, executive function) and the other engaging two default brain states. We computed EEG spectral power over three frequency bands (theta: 4-7 Hz, alpha: 8-13 Hz, low beta: 14-20 Hz) where EEG oscillatory activity is known to correlate with the neurocognitive states engaged by these tasks. Null hypothesis significance testing yielded significant EEG power effects typical of the neurocognitive states engaged by each task, but only a beta-band power difference between the two background recording environments during the default brain state. Bayesian analysis showed that the remaining environment null effects were unlikely to reflect measurement insensitivities. This overall pattern of results supports the external validity of laboratory EEG power findings for complex and default neurocognitive states engaged within moderately uncontrolled environments.
Collapse
Affiliation(s)
- Dalton J. Edwards
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75080-3021, USA;
- Department of Psychology, Texas State University, San Marcos, TX 78666, USA
| | - Logan T. Trujillo
- Department of Psychology, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
49
|
Robles D, Kuziek JWP, Wlasitz NA, Bartlett NT, Hurd PL, Mathewson KE. EEG in motion: Using an oddball task to explore motor interference in active skateboarding. Eur J Neurosci 2021; 54:8196-8213. [PMID: 33644960 DOI: 10.1111/ejn.15163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/18/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
Recent advancements in portable computer devices have opened new avenues in the study of human cognition outside research laboratories. This flexibility in methodology has led to the publication of several electroencephalography studies recording brain responses in real-world scenarios such as cycling and walking outside. In the present study, we tested the classic auditory oddball task while participants moved around an indoor running track using an electric skateboard. This novel approach allows for the study of attention in motion while virtually removing body movement. Using the skateboard auditory oddball paradigm, we found reliable and expected standard-target differences in the P3 and MMN/N2b event-related potentials. We also recorded baseline electroencephalography activity and found that, compared to this baseline, alpha power is attenuated in frontal and parietal regions during skateboarding. In order to explore the influence of motor interference in cognitive resources during skateboarding, we compared participants' preferred riding stance (baseline level of riding difficulty) versus their non-preferred stance (increased level of riding difficulty). We found that an increase in riding difficulty did not modulate the P3 and tonic alpha amplitude during skateboard motion. These results suggest that increases in motor demands might not lead to reductions in cognitive resources as shown in previous literature.
Collapse
Affiliation(s)
- Daniel Robles
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Jonathan W P Kuziek
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Nicole A Wlasitz
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan T Bartlett
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Pete L Hurd
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
50
|
Sarter M, Avila C, Kucinski A, Donovan E. Make a Left Turn: Cortico-Striatal Circuitry Mediating the Attentional Control of Complex Movements. Mov Disord 2021; 36:535-546. [PMID: 33615556 DOI: 10.1002/mds.28532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In movement disorders such as Parkinson's disease (PD), cholinergic signaling is disrupted by the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic interneurons (ChIs). Several lines of evidence suggest that gait imbalance, a key disabling symptom of PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more typically associated with cognitive dysfunction. METHODS Here we describe the corticostriatal circuitry that mediates the cognitive-motor interactions underlying such complex movement control. The ability to navigate dynamic, obstacle-rich environments requires the continuous integration of information about the environment with movement selection and sequencing. The cortical-attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity to guide striatal movement control. Cue-derived information is "transferred" to striatal circuitry primarily via fronto-striatal glutamatergic projections. RESULT Evidence from parkinsonian fallers and from a rodent model reproducing the dual cholinergic-dopaminergic losses observed in these patients supports the main hypotheses derived from this neuronal circuitry-guided conceptualization of parkinsonian falls. Furthermore, in the striatum, ChIs constitute a particularly critical node for the integration of cortical with midbrain dopaminergic afferents and thus for cues to control movements. CONCLUSION Procholinergic treatments that enhance or rescue cortical and striatal mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in older persons suffering from gait disorders and a propensity for falls. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cassandra Avila
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron Kucinski
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Eryn Donovan
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|