1
|
da Cruz-Filho J, Costa DM, Santos TO, da Silva RP, Anjos-Santos HC, Marciano NJDS, Rodríguez-Gúzman R, Henrique-Santos AB, Melo JEC, Badauê-Passos D, Murphy D, Mecawi AS, Lustrino D. Water deprivation induces a systemic procatabolic state that differentially affects oxidative and glycolytic skeletal muscles in male mice. Am J Physiol Regul Integr Comp Physiol 2025; 328:R21-R33. [PMID: 39466171 DOI: 10.1152/ajpregu.00187.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Dehydration, characterized by the loss of total body water and/or electrolytes due to diseases or inadequate fluid intake, is prevalent globally but often underestimated. Its contribution to long-term chronic diseases and sarcopenia is recognized, yet the mechanisms involved in systemic and muscle protein metabolism during dehydration remain unclear. This study investigated metabolic adaptations in a 36-h water deprivation (WD) model of mice. Male C57BL/6 mice underwent 36-h WD or pair-feeding at rest, with assessments of motor skills along with biochemical and metabolic parameters. Dehydration was confirmed by hypernatremia, body mass loss, hyporexia, and increased activity of vasopressinergic and oxytocinergic neurons compared with controls. These results were associated with liver mass loss, decreased glycemia, and increased cholesterolemia. In addition, increased V̇o2 and a decreased respiratory exchange ratio indicated reduced carbohydrate consumption and potentially increased protein use during dehydration. Thus, skeletal muscle protein metabolism was evaluated due to its high protein content. In the oxidative muscles of the WD group, total and proteasomal proteolysis increased, which was associated with decreased Akt-mediated intracellular signaling. Interestingly, there was an increase in fiber cross-sectional area, likely due to higher muscle water content caused by increased intracellular osmolality induced by protein catabolism products. Conversely, no changes were observed in protein turnover or water content in glycolytic muscles. These findings suggest that short-term WD imposes a procatabolic state, depleting protein content in skeletal muscle. However, skeletal muscle may respond differently to dehydration based on its phenotype and might adapt for a limited time.NEW & NOTEWORTHY This study investigated the effects of WD on mouse homeostasis, focusing on energy substrates and skeletal muscle protein metabolism. Our findings revealed a shift toward reduced dependence on carbohydrate degradation and increased reliance on lipid oxidation, or even protein oxidation, as energy sources, since we observed increased proteolysis in one muscle phenotype. Despite body mass loss, soleus and EDL muscle masses were differently affected. These results indicate the procatabolic potential of short-term WD in mice.
Collapse
Affiliation(s)
- João da Cruz-Filho
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Daniely Messias Costa
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Tatiane Oliveira Santos
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Raquel Prado da Silva
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Hevely Catharine Anjos-Santos
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Naima Jamile Dos Santos Marciano
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Roger Rodríguez-Gúzman
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ana Beatriz Henrique-Santos
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Eduardo Conceição Melo
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Daniel Badauê-Passos
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, São Paulo School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioural Neuroendocrinology (LANBAC), Department of Physiology, Centre for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Graduate Program in Physiological Sciences (PROCFIS), Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
2
|
de Almeida Prado DM, de Figueiredo AC, Lima AS, Gomes FR, Madelaire CB. Corticosterone treatment results in fat deposition and body mass maintenance without effects on feeding behaviour or immunity in female lizards (Tropidurus catalanensis). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111712. [PMID: 39084515 DOI: 10.1016/j.cbpa.2024.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Throughout life, animals must maintain homeostasis while coping with challenging events. The period after reproduction can be challenging for oviparous females to maintain homeostasis since they direct most of their energy stores to vitellogenesis, possibly increasing the vulnerability to stressors. Changes in glucocorticoids' (GC) secretion promote various behavioural and physiological adjustments daily and to restore balance after facing stressors. However, when GC are elevated for extended periods, which usually occurs in response to chronic exposure to stressors, they can affect feeding behaviour and suppress the immune function. We aim to elucidate the effects of chronic corticosterone (CORT) exposure on feeding behaviour, body condition and immune function in female lizards, Tropidurus catalanensis, in the post-reproductive period. Thirty animals were divided into three groups: 1. Control (no experimental procedure performed); 2. Empty Implant (animals implanted with empty silastic tube); and 3. CORT Implant (animals implanted with silastic tube filled with CORT, with a chronic continuous release for at least a week). CORT plasma levels feeding behaviour, body condition (body index [BI] and fat index [FI]), leukocyte count, and several immune function variables (bacterial killing ability [BKA], hemagglutination titer, phytohemagglutinin [PHA] immune challenge and leukocyte count) were evaluated. After implantation, CORT treated animals maintained stable body mass through the experiment, while Control and Empty Implant groups displayed weight loss. In the CORT treated animals, there was also a positive relation between BI and FI, and higher FI when compared to groups 1 and 2. No effects of CORT were observed on feeding behaviour nor on the immune function.
Collapse
Affiliation(s)
- Débora Meyer de Almeida Prado
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil.
| | - Aymam Cobo de Figueiredo
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Alan Siqueira Lima
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Fernando Ribeiro Gomes
- USP - Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508090, Brazil
| | - Carla Bonetti Madelaire
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, United States. https://twitter.com/carlamadelaire
| |
Collapse
|
3
|
Park JK, DO Y. The difference and variation of gut bacterial community and host physiology can support adaptation during and after overwintering in frog population. Integr Zool 2024; 19:631-645. [PMID: 38185804 DOI: 10.1111/1749-4877.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The hibernation of amphibians can offer a unique window into overwintering adaptation processes and host-gut microbiota interactions through changes in metabolic availability and homeostasis. We attempted to identify differences in the physiology and gut microbiome during and after hibernation in Japanese wrinkled frogs (Glandirana rugosa), an aquatic overwintering amphibian. After hibernation, the high alpha and beta diversity of the gut bacterial community appears to reflect the more diverse and complex environmental conditions. During winter, Proteobacteria dominated the majority of the gut bacterial community, likely due to high oxygen saturation. After hibernation, Firmicutes and Bacteroidetes increased, which are supportive of host metabolism by gut microbiota. Corticosterone also showed high values and variances after hibernation, presumably allowing the population to remain adaptable across a broad range of environmental gradients. Innate immunity was high after hibernation but exhibited low variation among populations, which supports the idea of a prioritized investment in immunity after hibernation. Blood biochemistry suggests that aquatic overwintering frogs have a mechanism to adapt through overhydration and regulate homeostasis through water excretion associated with the kidney and urine after hibernation. Frog populations exhibit variations and adaptability in gut microbiota and physiology during and after hibernation: Through this, they may demonstrate an adaptive response that regulates metabolic availability in preparation for unpredictable environmental changes. We also propose that the maintenance of Proteobacteria during hibernation can support the colonization of Firmicutes and Bacteroidetes after hibernation, underscoring the need to study the complex effects of gut microbiota across multiple life stages.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, Gongju, Chungcheongnam-do, South Korea
| | - Yuno DO
- Department of Biological Sciences, Kongju National University, Gongju, Chungcheongnam-do, South Korea
| |
Collapse
|
4
|
Yuan C, Jiang Y, Wang Z, Chen G, Chang G, Bai H. Effects of Sex on Growth Performance, Carcass Traits, Blood Biochemical Parameters, and Meat Quality of XueShan Chickens. Animals (Basel) 2024; 14:1556. [PMID: 38891603 PMCID: PMC11171365 DOI: 10.3390/ani14111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The demand for high-quality chilled chicken has continued to increase in China. Chickens are sexually dimorphic, and to better understand the specific differences in chicken production based on sex, we examined how sex affects growth performance, carcass traits, and meat quality of yellow-feathered chickens. Male and female Xueshan chickens were used as the experimental model. Although males exhibited better growth performance, including body weight (BW), body slope, keel, shank length, and shank girth (p < 0.05), as well as carcass traits, such as dressed weight, leg muscle, and lean meat, females had higher carcass and breast muscle yields (p < 0.05). Males had higher follicle density and yellowness (b*) of the skin and better skin than females (p < 0.05). Among blood biochemical parameters, the serum content of corticosterone (CORT) was higher in males, while those of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), and catalase (CAT) were lower in males than in females (p < 0.05). The pH levels, shear force, and moisture content quality were better in male breast meat, while the intramuscular fat content (IMF) was lower in males than in females (p < 0.05). The redness (a*) and moisture content were higher in male leg meat, while the pH, water-loss rate (WLR), lightness (L*), and IMF were lower (p < 0.05). The muscle fiber diameter and cross-sectional area were also higher in males (p < 0.05). Consumers felt that soup of male chicken was better than female (p < 0.05), while mouthfeel and tenderness acceptance of breast meat were different between the sexes. These results indicate that female chickens can be marketed as a whole carcass, while males are more suitable for processed carcass products. This study provides significant insights into the production and processing methodologies of yellow-feathered chickens.
Collapse
Affiliation(s)
- Chunyou Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.J.); (Z.W.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.Y.); (G.C.); (G.C.)
| |
Collapse
|
5
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2024:10.1007/s12011-024-04199-0. [PMID: 38703309 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Chathuranga NC, Yu M, Hong JS, Oketch EO, Nawarathne SR, Vohobjonov Y, Jayasena DD, Yi YJ, Heo JM. Effect of different bedding depths of rice hulls on growth performance and carcass traits of White Pekin ducks. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:504-513. [PMID: 38975579 PMCID: PMC11222111 DOI: 10.5187/jast.2023.e58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2024]
Abstract
Duck meat is recognized as a healthier poultry product that contains higher amounts of unsaturated and essential fatty acids, iron, and excellent amounts of protein. It has been found to possess the ability to reduce low-density lipoprotein cholesterol and subsequently, blood pressure in the human body; and improve the immunity system. The current study investigated the appropriate bedding depths of rice hulls as a preferred bedding material by evaluating the growth performance and carcass traits of White Pekin ducks raised for 42 days. A total of 288 one-day-old White Pekin ducklings were randomly allotted to floor cages with one of four bedding depths at 4 cm, 8 cm, 12 cm, and 16 cm. Ducklings were fed standard duck starter (days 1-21) and finisher (days 22-42) diets. The birds were stocked at a rate of 6 birds/m2 with 6 replicates per treatment. Growth performance evaluation for the body weight, average daily gain, and average daily feed intake were measured to calculate the weekly feed conversion ratio. Breast, leg, and carcass yield were assessed as carcass traits. The muscle color and proximate composition were also analyzed for meat quality. Footpad dermatitis was also evaluated on day 42. Ducks reared on 16 cm bedding depth over the 42 days recorded higher (p < 0.05) body weight, average daily, average daily feed intake, and improved feed conversion ratios compared to other groups. The crude fat in breast meat also lowered (p < 0.05) in ducks reared at 16 cm (1.02%) when compared to ducks raised at 4 cm bedding depth (2.11%). Our results showed improved redness (p < 0.05) when the depth of bedding materials was elevated. Except for the breast meat fat, the dissimilar bedding depths did not affect (p < 0.05) the breast and leg meat composition, footpad dermatitis, and mortality for the current study. In conclusion, this study indicated that the bedding depths would directly or indirectly affect the growth performance and meat color of White Pekin ducks; and the bedding depth of rice hulls at 16 cm improved the growth performance of White Pekin ducks for 42 days.
Collapse
Affiliation(s)
| | - Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Shan Randima Nawarathne
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Yuldashboy Vohobjonov
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Dinesh D. Jayasena
- Department of Animal Science, Uva Wellassa University of Sri Lanka, Badulla 90000, Sri Lanka
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Suncheon National University, Suncheon 57922, Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Madej JP, Graczyk S, Bobrek K, Bajzert J, Gaweł A. Impact of early posthatch feeding on the immune system and selected hematological, biochemical, and hormonal parameters in broiler chickens. Poult Sci 2024; 103:103366. [PMID: 38183879 PMCID: PMC10809208 DOI: 10.1016/j.psj.2023.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024] Open
Abstract
Under commercial conditions, chicks hatch within a 24 to 48 h window, a period known as the hatching window. Subsequently, they undergo various treatments before finally being transported to the broiler farm. These procedures may delay the chicks' access to food and water, sometimes receiving them as late as 72 h after hatching. Previous studies have indicated that fasting during this initial period is detrimental, leading to impaired body growth, compromised immune system response, and hindered muscle development. The objective of this study was to assess the impact of early posthatch feeding on immune system organs and selected hematological, biochemical, and hormonal parameters. The experiment utilized Ross 308 broiler eggs incubated under typical commercial hatchery conditions. The experimental group's eggs were hatched in HatchCare hatchers (HC) with immediate access to feed and water, while the control group's eggs were hatched under standard conditions (ST). Thirty chickens from each group were assessed on the 1st (D1), 7th (D7), 21st (D21), and 35th (D35) day after hatching. On D1, the HC group exhibited lower hemoglobin, hematocrit, and total serum protein values, suggesting that early access to water prevents initial dehydration in newborn chicks. Conversely, the ST group showed a stress reaction on D1 due to feed deprivation, leading to an almost 2-fold higher serum corticosterone concentration compared to the HC group. However, this increase did not result in a significant change in the heterophil/lymphocyte ratio. Furthermore, the HC group displayed an increase in triglyceride concentration and a decrease in HDL concentration on D1. On D7, the HC group exhibited an increased relative weight of the bursa and a higher CD4+ cell number in the cecal tonsil (CT), indicating a more rapid development of these organs resulting from early stimulation of the gastrointestinal tract. However, early feeding did not influence the numbers of Bu-1+, CD4+, and CD8+ cells or the germinal center (GC) areas in the spleen. In conclusion, early feeding contributes to the welfare of newborn chicks by reducing dehydration and stress levels and stimulating the development of gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Stanisław Graczyk
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Kamila Bobrek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland
| | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Andrzej Gaweł
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland.
| |
Collapse
|
8
|
Shin HS, Lee SH, Moon HJ, So YH, Jang HJ, Lee KH, Ahn C, Jung EM. Prolonged stress response induced by chronic stress and corticosterone exposure causes adult neurogenesis inhibition and astrocyte loss in mouse hippocampus. Brain Res Bull 2024; 208:110903. [PMID: 38367676 DOI: 10.1016/j.brainresbull.2024.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Chronic stress is a pervasive and complex issue that contributes significantly to various mental and physical health disorders. Using the previously established chronic unpredictable stress (CUS) model, which simulates human stress situations, it has been shown that chronic stress induces major depressive disorder (MDD) and memory deficiency. However, this established model is associated with several drawbacks, such as limited research reproducibility and the inability to sustain stress response. To resolve these issues, we developed a new CUS model (CUS+C) that included exogenous corticosterone exposure to induce continuous stress response. Thereafter, we evaluated the effect of this new model on brain health. Thus, we observed that the use of the CUS+C model decreased body and brain weight gain and induced an uncontrolled coat state as well as depressive-like behavior in adult mice. It also impaired learning memory function and cognitive abilities, reduced adult hippocampal neurogenesis as well as the number of hippocampal astrocytes, and downregulated glial fibrillary acidic protein expression in the brains of adult mice. These findings can promote the utilization and validity of the animal stress model and provide new information for the treatment of chronic stress-induced depressive and memory disorders.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hyeon Jung Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
9
|
Liu J, Zhang K, Zhao M, Chen L, Chen H, Zhao Y, Zhao R. Dietary bile acids alleviate corticosterone-induced fatty liver and hepatic glucocorticoid receptor suppression in broiler chickens. J Anim Sci 2024; 102:skae338. [PMID: 39492782 PMCID: PMC11604113 DOI: 10.1093/jas/skae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024] Open
Abstract
The aim of this study was to investigate the alleviating effects and mechanisms of bile acids (BA) on corticosterone-induced fatty liver in broiler chickens. Male Arbor Acres chickens were randomly divided into 3 groups: control group (CON), stress model group (CORT), and BA-treated group (CORT-BA). The CORT-BA group received a diet with 250 mg/kg BA from 21 d of age. From days 36 to 43, both the CORT and CORT-BA groups received subcutaneous injections of corticosterone to simulate chronic stress. The results indicated that BA significantly mitigated the body weight loss, liver enlargement, and hepatic lipid deposition caused by corticosterone (P < 0.05). Liver RNA-seq analysis showed that BA alleviated corticosterone-induced fatty liver by inhibiting lipid metabolism pathways, including fatty acid biosynthesis, triglyceride biosynthesis, and fatty acid transport. Additionally, BA improved corticosterone-induced downregulation of glucocorticoid receptor (GR) expression (P < 0.05). Molecular docking and cellular thermal shift assays revealed that hyodeoxycholic acid (HDCA), a major component of compound BA, could bind to GR and enhance its stability. In conclusion, BA alleviated corticosterone-induced fatty liver in broilers by inhibiting lipid synthesis pathways and mitigating the suppression of hepatic GR expression.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mindie Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Chen
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Chen
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing, 210095, China
| |
Collapse
|
10
|
Casagrande S, Dzialo M, Trost L, Malkoc K, Sadowska ET, Hau M, Pierce B, McWilliams S, Bauchinger U. Mitochondrial metabolism in blood more reliably predicts whole-animal energy needs compared to other tissues. iScience 2023; 26:108321. [PMID: 38025793 PMCID: PMC10679813 DOI: 10.1016/j.isci.2023.108321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding energy metabolism in free-ranging animals is crucial for ecological studies. In birds, red blood cells (RBCs) offer a minimally invasive method to estimate metabolic rate (MR). In this study with European starlings Sturnus vulgaris, we examined how RBC oxygen consumption relates to oxygen use in key tissues (brain, liver, heart, and pectoral muscle) and versus the whole organism measured at basal levels. The pectoral muscle accounted for 34%-42% of organismal MR, while the heart and liver, despite their high mass-specific metabolic rate, each contributed 2.5%-3.0% to organismal MR. Despite its low contribution to organismal MR (0.03%-0.04%), RBC MR best predicted organismal MR (r = 0.70). Oxygen consumption of the brain and pectoralis was also associated with whole-organism MR, unlike that of heart and liver. Overall, our findings demonstrate that the metabolism of a systemic tissue like blood is a superior proxy for organismal energy metabolism than that of other tissues.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Maciej Dzialo
- Jagiellonian University, Institute of Environmental Sciences, 30-387 Kraków, Poland
| | - Lisa Trost
- Max Planck Institute for Biological Intelligence, Department for Behavioral Neurobiology, 82319 Seewiesen, Germany
| | - Kasja Malkoc
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | | | - Michaela Hau
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- University of Konstanz, Department of Biology, 78464 Konstanz, Germany
| | - Barbara Pierce
- Sacred Heart University, Department of Biology, Fairfield, CT 06825, USA
| | - Scott McWilliams
- University of Rhode Island, Department of Natural Resources Science, Kingston, RI 02881, USA
| | - Ulf Bauchinger
- Jagiellonian University, Institute of Environmental Sciences, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
12
|
Lange ME, Clarke ST, Boras VF, Brown CLJ, Zhang G, Laing CR, Uwiera RRE, Montina T, Kalmokoff ML, Taboada EN, Gannon VPJ, Metz GAS, Church JS, Inglis GD. Commensal Escherichia coli Strains of Bovine Origin Competitively Mitigated Escherichia coli O157:H7 in a Gnotobiotic Murine Intestinal Colonization Model with or without Physiological Stress. Animals (Basel) 2023; 13:2577. [PMID: 37627368 PMCID: PMC10451813 DOI: 10.3390/ani13162577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7. Currently, there are no effective methods of eliminating this important zoonotic pathogen from cattle, and colonization resistance in relation to EHEC O157:H7 in cattle is poorly understood. We developed a gnotobiotic EHEC O157:H7 murine model to examine aspects of the cattle pathogen-microbiota interaction, and to investigate competitive suppression of EHEC O157:H7 by 18 phylogenetically distinct commensal E. coli strains of bovine origin. As stress has been suggested to influence enteric colonization by EHEC O157:H7 in cattle, corticosterone administration (±) to incite a physiological stress response was included as an experimental variable. Colonization of the intestinal tract (IT) of mice by the bovine EHEC O157:H7 strain, FRIK-2001, mimicked characteristics of bovine IT colonization. In this regard, FRIK-2001 successfully colonized the IT and temporally incited minimal impacts on the host relative to other EHEC O157:H7 strains, including on the renal metabolome. The presence of the commensal E. coli strains decreased EHEC O157:H7 densities in the cecum, proximal colon, and distal colon. Moreover, histopathologic changes and inflammation markers were reduced in the distal colon of mice inoculated with commensal E. coli strains (both propagated separately and communally). Although stress induction affected the behavior of mice, it did not influence EHEC O157:H7 densities or disease. These findings support the use of a gnotobiotic murine model of enteric bovine EHEC O157:H7 colonization to better understand pathogen-host-microbiota interactions toward the development of effective on-farm mitigations for EHEC O157:H7 in cattle, including the identification of bacteria capable of competitively colonizing the IT.
Collapse
Affiliation(s)
- Maximo E. Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra T. Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada;
| | - Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Guangzhi Zhang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Chad R. Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Martin L. Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| | - Eduardo N. Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Victor P. J. Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4, Canada;
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - John S. Church
- Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| |
Collapse
|
13
|
Brown CLJ, Zaytsoff SJM, Iwaniuk AN, Metz GAS, Montina T, Inglis GD. Comparative Analysis of the Temporal Impacts of Corticosterone and Simulated Production Stressors on the Metabolome of Broiler Chickens. Metabolites 2023; 13:metabo13020144. [PMID: 36837763 PMCID: PMC9961940 DOI: 10.3390/metabo13020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The impact of physiological stress on the metabolome of breast muscle, liver, kidney, and hippocampus was investigated in Ross 308 broiler chicks. Simulated on-farm stressors were compared to a corticosterone model of physiological stress. The three different stressors investigated were: (i) corticosterone at a dose of 15 mg/kg of feed; (ii) heat treatment of 36 °C and 40% RH for 8 h per day; and (iii) isolation for 1 h per day. Liver, kidney, breast muscle, and hippocampus samples were taken after 2, 4, 6, and 8 days of stress treatment, and subjected to untargeted 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis to provide insights on how stress can modulate metabolite profiles and biomarker discovery. Many of the metabolites that were significantly altered in tissues were amino acids, with glycine and alanine showing promise as candidate biomarkers of stress. Corticosterone was shown to significantly alter alanine, aspartate, and glutamate metabolism in the liver, breast, and hippocampus, while isolation altered the same pathways, but only in the kidneys and hippocampus. Isolation also significantly altered the glycine, serine, and threonine metabolism pathway in the liver and breast, while the same pathway was significantly altered by heat in the liver, kidneys, and hippocampus. The study's findings support corticosterone as a model of stress. Moreover, a number of potential metabolite biomarkers were identified in chicken tissues, which may allow producers to effectively monitor stress and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Andrew N. Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A. S. Metz
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (T.M.); (G.D.I.); Tel.: +1-403-394-3927 (T.M.); +1-403-360-7975 (G.D.I.)
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence: (T.M.); (G.D.I.); Tel.: +1-403-394-3927 (T.M.); +1-403-360-7975 (G.D.I.)
| |
Collapse
|
14
|
Tseng CY, Custer CM, Custer TW, Dummer PM, Karouna-Renier N, Matson CW. Multi-omics responses in tree swallow (Tachycineta bicolor) nestlings from the Maumee Area of Concern, Maumee River, Ohio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159130. [PMID: 36183771 DOI: 10.1016/j.scitotenv.2022.159130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A multi-omics approach was utilized to identify altered biological responses and functions, and to prioritize contaminants to assess the risks of chemical mixtures in the Maumee Area of Concern (AOC), Maumee River, OH, USA. The Maumee AOC is designated by the United States Environmental Protection Agency as having significant beneficial use impairments, including degradation of fish and wildlife populations, bird or animal deformities or reproduction problems, and loss of fish and wildlife habitat. Tree swallow (Tachycineta bicolor) nestlings were collected at five sites along the Maumee River, which included wastewater treatment plants (WWTPs) and industrial land-use sites. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo p dioxins and furans (PCDD/Fs), and chlorinated pesticide concentrations were elevated in Maumee tree swallows, relative to a remote reference site, Star Lake, WI, USA. Liver tissue was utilized for non-targeted transcriptome and targeted metabolome evaluation. A significantly differentially expressed gene cluster related to a downregulation in cell growth and cell cycle regulation was identified when comparing all Maumee River sites with the reference site. There was an upregulation of lipogenesis genes, such as PPAR signaling (HMGCS2, SLC22A5), biosynthesis of unsaturated fatty acids (FASN, SCD, ELOVL2, and FADS2), and higher lipogenesis related metabolites, such as docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) at two industrial land-use sites, Ironhead and Maumee, relative to WWTP sites (Perrysburg and SideCut), and the reference site. Toledo Water, in the vicinity of the other two industrial sites and also adjacent to a WWTP, showed a mix of signals between industrial land-use and WWTP land-use. PAHs, oxychlordane, and PBDEs were determined to be the most likely causes of the differentiation in biological responses, including de novo lipogenesis and biosynthesis of unsaturated fatty acids.
Collapse
Affiliation(s)
- Chi Yen Tseng
- Department of Environmental Science, The Institute of Ecological, Earth, and Environmental Sciences (TIE3S), the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States
| | - Christine M Custer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI 54603, United States
| | - Thomas W Custer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI 54603, United States
| | - Paul M Dummer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI 54603, United States
| | - Natalie Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center (EESC) at Patuxent, Beltsville, MD 20705, United States
| | - Cole W Matson
- Department of Environmental Science, The Institute of Ecological, Earth, and Environmental Sciences (TIE3S), the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
15
|
Bi S, Shao J, Qu Y, Hu W, Ma Y, Cao L. Hepatic transcriptomics and metabolomics indicated pathways associated with immune stress of broilers induced by lipopolysaccharide. Poult Sci 2022; 101:102199. [PMID: 36257073 PMCID: PMC9579410 DOI: 10.1016/j.psj.2022.102199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 10/29/2022] Open
|
16
|
Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals (Basel) 2022; 12:ani12141834. [PMID: 35883381 PMCID: PMC9311685 DOI: 10.3390/ani12141834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Chronic heat stress remains the most detrimental factor for broiler productivity in hot and desert regions. The manipulation of the lighting program is a useful and inexpensive tool to alleviate the negative effects of heat stress on broiler performance. The present study aimed to investigate the beneficial effects of an intermittent lighting (I.L.) program consisting of repeated periods of 1 h light to 3 h dark during a day on broiler performance under chronic heat-stress conditions. The results indicate that applying the I.L. program to heat-stressed broilers relieved the stress indicators and improved the immune response, physiological status, and growth performance of broilers. Therefore, the application of the I.L. program could be used as a beneficial strategy to recover broiler performance during heat-stress conditions. Abstract The effects of heat stress on broiler performance and immunological response were explored using lighting-program manipulation as a potential tool. The study included 200 Cobb500 broiler chicks that were one day old at the time of recruitment. The birds were divided into four-compartment groups with similar environments (five cages per compartment, ten chicks per cage). Starting from the fourth day of age, birds of two compartments received a continuous lighting program (23L:1D a day; C.L. groups) while birds of the other two compartments received an intermittent lighting program (1L:3D 6 times per day; I.L. groups). Within each lighting program during 22–42 d of age, one group was subjected either to a thermoneutral temperature at 24 °C or heat stress at 35 °C. The results reveal that stress biomarkers, especially the plasma concentrations of corticosterone (CORT), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) were relieved by 46%, 27%, and 51%, respectively, in the I.L. treatment groups compared to the C.L. program in broiler chicks subjected to heat stress. The liver function was also improved by 24% and 32% in AST and ALT levels, respectively, in the I.L. program compared to the C.L. program in stressed birds. Furthermore, the I.L. program positively influenced the immune response of the heat-stressed broilers. Eventually, the I.L. program increased the heat-stressed broilers’ body weight gain and feed conversion ratio. It can be concluded that applying the I.L. program to broiler chickens can effectively improve their physiological balance and growth performance under heat-stress conditions.
Collapse
|
17
|
Lee D, Lee HJ, Jung DY, Kim HJ, Jang A, Jo C. Effect of an animal-friendly raising environment on the quality, storage stability, and metabolomic profiles of chicken thigh meat. Food Res Int 2022; 155:111046. [DOI: 10.1016/j.foodres.2022.111046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
|
18
|
Identification of Metabolomic Biomarkers of Long-Term Stress Using NMR Spectroscopy in a Diving Duck. Metabolites 2022; 12:metabo12040353. [PMID: 35448540 PMCID: PMC9030486 DOI: 10.3390/metabo12040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Human-induced environmental changes that act as long-term stressors pose significant impacts on wildlife health. Energy required for maintenance or other functions may be re-routed towards coping with stressors, ultimately resulting in fluctuations in metabolite levels associated with energy metabolism. While metabolomics approaches are used increasingly to study environmental stressors, its use in studying stress in birds is in its infancy. We implanted captive lesser scaup (Aythya affinis) with either a biodegradable corticosterone (CORT) pellet to mimic the effects of a prolonged stressor or a placebo pellet. 1D 1H nuclear magnetic resonance (NMR) spectroscopy was performed on serum samples collected over 20 days after implant surgery. We hypothesized that CORT pellet-induced physiological stress would alter energy metabolism and result in distinct metabolite profiles in ducks compared with placebo (control). Quantitative targeted metabolite analysis revealed that metabolites related to energy metabolism: glucose, formate, lactate, glutamine, 3-hydroxybutyrate, ethanolamine, indole-3- acetate, and threonine differentiated ducks with higher circulatory CORT from controls on day 2. These metabolites function as substrates or intermediates in metabolic pathways related to energy production affected by elevated serum CORT. The use of metabolomics shows promise as a novel tool to identify and characterize physiological responses to stressors in wild birds.
Collapse
|
19
|
Brown CL, Montina T, Inglis GD. Feather pulp: a novel substrate useful for proton nuclear magnetic resonance spectroscopy metabolomics and biomarker discovery. Poult Sci 2022; 101:101866. [PMID: 35679673 PMCID: PMC9189206 DOI: 10.1016/j.psj.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022] Open
Abstract
Noninvasive biomarkers of stress that are predictive of poultry health are needed. Feather pulp is highly vascularized and represents a potential source of biomarkers that has not been extensively explored. We investigated the feasibility and use of feather pulp for novel biomarker discovery using 1H-Nuclear Magnetic Resonance Spectroscopy (NMR)-based metabolomics. To this end, high quality NMR metabolomic spectra were obtained from chicken feather pulp extracted using either ultrafiltration (UF) or Bligh-Dyer methanol-chloroform (BD) methods. In total, 121 and 160 metabolites were identified using the UF and BD extraction methods, respectively, with 71 of these common to both methods. The metabolome of feather pulp differed in broiler breeders that were 1-, 23-, and 45-wk-of-age. Moreover, feather pulp was more difficult to obtain from older birds, indicating that age must be considered when targeting feather pulp as a source of biomarkers. The metabolomic profile of feather pulp obtained from 12-day-old broilers administered corticosterone differed from control birds, indicating that the metabolome of feather pulp was sensitive to induced physiological stress. A comparative examination of feather pulp and serum in broilers revealed that the feather pulp metabolome differed from that of serum but provided more information. The study findings show that metabolite biomarkers in chicken feather pulp may allow producers to effectively monitor stress, and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
|
20
|
Vaccaro LA, Porter TE, Ellestad LE. Effects of genetic selection on activity of corticotropic and thyrotropic axes in modern broiler chickens. Domest Anim Endocrinol 2022; 78:106649. [PMID: 34418578 DOI: 10.1016/j.domaniend.2021.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Commercial selection for meat-type (broiler) chickens has produced economically valuable birds with fast growth rates, enhanced muscle mass, and highly efficient feed utilization. The physiological changes that account for this improvement and unintended consequences associated with them remain largely unexplored, despite their potential to guide further advancements in broiler production efficiency. To identify effects of genetic selection on hormonal signaling in the adrenocorticotropic and thyrotropic axes, gene expression in muscle and liver and post-hatch circulating hormone concentrations were measured in legacy [Athens Canadian Random Bred (ACRB)] and modern (Ross 308) male broilers between embryonic days (e) 10 and e18 and post-hatch days (d) 10 and d40. No interactive effects or main effects of line were observed for adrenocorticotropic gene expression during either developmental period, although age effects appeared for corticosteroid-binding globulin in liver during embryogenesis and post-hatch and glucocorticoid receptor in both tissues post-hatch. There was a main line effect for circulating corticosterone, with levels in ACRB greater than those in Ross. Several thyrotropic genes exhibited line-by-age interactions during embryonic or post-hatch development. In liver, embryonic expression of thyroid hormone receptor beta was greater in ACRB on e12, and deiodinase 3 (DIO3) levels were greater in Ross on e14 and e16. In juvenile liver, deiodinase 2 (DIO2) expression was greater in ACRB on d10 but greater in Ross on d20, while DIO3 was higher in ACRB on d30 and d40. Levels of thyroid hormone receptor alpha mRNA exhibited a main line effect, with levels greater in ACRB juvenile breast muscle. Several thyrotropic genes exhibited main age effects, including DIO2 and DIO3 in embryonic breast muscle, thyroid hormone receptor alpha and thyroid hormone receptor beta in post-hatch liver, and DIO2 in post-hatch breast muscle. Circulating triiodothyronine displayed a main line effect, with levels in Ross significantly reduced as compared to ACRB. These findings suggest that in modern broilers, a decrease in levels of hormones that control basal metabolism triiodothyronine and the stress response circulating corticosterone, as well as altered expression of genes regulating thyroid hormone activity, could contribute to lower heat production, reduced stress response, and altered nutrient partitioning, leading to more efficient feed utilization and faster, more productive growth.
Collapse
Affiliation(s)
- L A Vaccaro
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - L E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
21
|
Hernandez-Baixauli J, Puigbò P, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Bas JMD, Mulero M. Alterations in Metabolome and Microbiome Associated with an Early Stress Stage in Male Wistar Rats: A Multi-Omics Approach. Int J Mol Sci 2021; 22:12931. [PMID: 34884735 PMCID: PMC8657954 DOI: 10.3390/ijms222312931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Pere Puigbò
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
22
|
Brown CLJ, Zaytsoff SJM, Montina T, Inglis GD. Corticosterone-Mediated Physiological Stress Alters Liver, Kidney, and Breast Muscle Metabolomic Profiles in Chickens. Animals (Basel) 2021; 11:3056. [PMID: 34827788 PMCID: PMC8614290 DOI: 10.3390/ani11113056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
The impact of physiological stress on the metabolomes of liver, kidney, and breast muscle was investigated in chickens. To incite a stress response, birds were continuously administered corticosterone (CORT) in their drinking water at three doses (0, 10, and 30 mg L-1), and they were sampled 1, 5, and 12 days after the start of the CORT administration. To solubilize CORT, it was first dissolved in ethanol and then added to water. The administration of ethanol alone significantly altered branched chain amino acid metabolism in both the liver and the kidney, and amino acid and nitrogen metabolism in breast muscle. CORT significantly altered sugar and amino acid metabolism in all three tissues, but to a much greater degree than ethanol alone. In this regard, CORT administration significantly altered 11, 46, and 14 unique metabolites in liver, kidney, and breast muscle, respectively. Many of the metabolites that were affected by CORT administration, such as mannose and glucose, were previously linked to increases in glycosylation and gluconeogenesis in chickens under conditions of production stress. Moreover, several of these metabolites, such as dimethylglycine, galactose, and carnosine were also previously linked to reduced quality meat. In summary, the administration of CORT in chickens significantly modulated host metabolism. Moreover, results indicated that energy potentials are diverted from muscle anabolism to muscle catabolism and gluconeogenesis during periods of stress.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Science Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
| |
Collapse
|
23
|
Park JK, Kim JB, Do Y. Examination of Physiological and Morphological Differences between Farm-Bred and Wild Black-Spotted Pond Frogs ( Pelophylax nigromaculatus). Life (Basel) 2021; 11:1089. [PMID: 34685460 PMCID: PMC8540089 DOI: 10.3390/life11101089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Due to the decline in the population and the difficulty of in situ conservation, several anuran species are being reared in captivity. In this study, we identified physiological and morphological differences between farm-bred and wild frogs. Nine different serum components were used as indicators of osmotic pressure, homeostatic state, organ function, and nutritional status of farm-bred frogs and wild frogs, while radiographic techniques were used to visualize differences in bone mineral density and body composition ratio. Additionally, X-ray skeletal images were used for morphological analysis to estimate differences in locomotory performance between the two groups. Wild frogs harbor traits that aid in better locomotory performance than farm-bred frogs. They also have a relatively lower fat content ratio and higher calcium and phosphorus serum levels than farm-bred frogs, suggesting a difference in nutritional status. However, hepatic stress was higher in wild frogs than in farm-bred frogs. Veterinary clinical examinations allow for the identification of differences in nutritional and morphological conditions between farm-bred and wild frogs. Determining the health of animals can help improve their living conditions, eliminate conditions that can negatively affect them, and effectively manage them on farms, in zoos, and at ex situ conservation institutes.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| | - Jeong Bae Kim
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Seoul 12453, Korea;
| | - Yuno Do
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| |
Collapse
|
24
|
Fouad AM, El-Senousey HK, Ruan D, Wang S, Xia W, Zheng C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2021; 105:1146-1153. [PMID: 33655568 DOI: 10.1111/jpn.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
Many studies have shown that productivity, immune system, antioxidant status, and meat and egg quality can be optimized by dietary supplementation with amino acids that are not usually added to poultry diets. Understanding the effects of these amino acids may encourage feed manufacturers and poultry producers to include them as additives. One of these amino acids is tryptophan (Trp). The importance of Trp is directly related to its role in protein anabolism and indirectly related to its metabolites such as serotonin and melatonin. Thus, Trp could affect the secretion of hormones, development of immune organs, meat and egg production, and meat and egg quality in poultry raised under controlled or stressed conditions. Therefore, this review discusses the main roles of Trp in poultry production and its mode (s) of action in order to help poultry producers decide whether they need to add Trp to poultry diets. Further areas of research are also identified to address information gaps.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuang Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Xia
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
25
|
Inglis GD, Wright BD, Sheppard SA, Abbott DW, Oryschak MA, Montina T. Expeller-Pressed Canola ( Brassica napus) Meal Modulates the Structure and Function of the Cecal Microbiota, and Alters the Metabolome of the Pancreas, Liver, and Breast Muscle of Broiler Chickens. Animals (Basel) 2021; 11:ani11020577. [PMID: 33672178 PMCID: PMC7926547 DOI: 10.3390/ani11020577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
The inoculation of one-day-old broiler chicks with the cecal contents from a mature broiler breeder resulted in a highly diverse and uniform cecal bacterial community. CM did not affect feed consumption, weight gain, nor the richness, evenness, or diversity of the cecal bacterial community. However, the structure of the bacterial community was altered in birds fed the CM diet. Although the CM diet was formulated to contain equivalent metabolizable energy to the control diet, it contained more dietary fiber. The abundance of bacterial families, including those that are known to contain species able to metabolize fiber was altered (e.g., bacteria within the families, Methanobacteriaceae, Atopobiaceae, Prevotellaceae, Clostridiales Family XIII, Peptostreptococcaceae, and Succinivibrionaceae), and concentrations of SCFAs were higher in the ceca of birds fed the CM diet. Moreover, concentrations of isoleucine, isobutyrate, glutamate, and 2-oxoglutarate were higher, whereas concentrations of phenyllactic acid, indole, glucose, 3-phenylpropionate, and 2-oxobutyrate were lower in the digesta of chickens that were fed CM. The metabolic profiles of pancreas, liver, and breast muscle tissues of birds fed the CM diet differed from control birds. Metabolites that were associated with energy production, protection against oxidative stress, and pathways of amino acid and glycerophospholipid metabolism had altered concentrations in these tissues. Some of the observed changes in metabolite levels may indicate an increased disease risk in birds fed the CM diet (e.g., pancreatitis), and others suggested that birds mounted metabolic response to offset the adverse impacts of CM (e.g., oxidative stress in the liver).
Collapse
Affiliation(s)
- G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.D.W.); (S.A.S.)
- Correspondence: (G.D.I.); (T.M.); Tel.: +1-403-317-3355 (G.D.I.); +1-403-394-3927 (T.M.)
| | - Benjamin D. Wright
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.D.W.); (S.A.S.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie A. Sheppard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.D.W.); (S.A.S.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | | | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.D.I.); (T.M.); Tel.: +1-403-317-3355 (G.D.I.); +1-403-394-3927 (T.M.)
| |
Collapse
|
26
|
Physiological Stress Mediated by Corticosterone Administration Alters Intestinal Bacterial Communities and Increases the Relative Abundance of Clostridium perfringens in the Small Intestine of Chickens. Microorganisms 2020; 8:microorganisms8101518. [PMID: 33019786 PMCID: PMC7650536 DOI: 10.3390/microorganisms8101518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
A model of physiological stress mediated by the administration of corticosterone (CORT) was used to investigate the impact of stress on the intestinal microbiota of chickens. Birds were administered CORT in their drinking water at 0, 10 (low dose CORT; LDC), and 30 (high dose CORT; HDC) mg/L. Digesta from the small intestine and ceca were examined after 1, 5, and 12 days post-initiation of CORT administration by 16S rRNA gene sequencing. A decrease in phylogenetic diversity and altered composition of bacteria were observed for HDC in the small intestine. Analysis by ANOVA-Like Differential Expression 2 (ALDEx2) showed that densities of Clostridium sensu stricto 1 bacteria were increased in the small intestine for LDC and HDC. Quantitative PCR confirmed that CORT administration increased densities of Clostridium perfringens in the small intestine, but only HDC was associated with increased densities of the bacterium in ceca. Predictive functional analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) showed pathways of carbohydrate metabolism to be enriched with CORT, and amino acid synthesis to be enriched in control birds in the small intestine. In conclusion, physiological stress mediated by CORT modulated bacterial communities in the small intestine and increased densities of C. perfringens. This implicates stress as an important mediator of this important enteric pathogen in poultry.
Collapse
|
27
|
Casagrande S, DeMoranville KJ, Trost L, Pierce B, Bryła A, Dzialo M, Sadowska ET, Bauchinger U, McWilliams SR. Dietary antioxidants attenuate the endocrine stress response during long-duration flight of a migratory bird. Proc Biol Sci 2020; 287:20200744. [PMID: 32546088 PMCID: PMC7329026 DOI: 10.1098/rspb.2020.0744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are metabolic hormones that promote catabolic processes, which release stored energy and support high metabolic demands such as during prolonged flights of migrating birds. Dietary antioxidants (e.g. anthocyanins) support metabolism by quenching excess reactive oxygen species produced during aerobic metabolism and also by activating specific metabolic pathways. For example, similar to GCs' function, anthocyanins promote the release of stored energy, although the extent of complementarity between GCs and dietary antioxidants is not well known. If anthocyanins complement GCs functions, birds consuming anthocyanin-rich food can be expected to limit the secretion of GCs when coping with a metabolically challenging activity, avoiding the exposure to potential hormonal detrimental effects. We tested this hypothesis in European starlings (Sturnus vulgaris) flying in a wind tunnel. We compared levels of corticosterone, the main avian GC, immediately after a sustained flight and at rest for birds that were fed diets with or without an anthocyanin supplement. As predicted, we found (i) higher corticosterone after flight than at rest in both diet groups and (ii) anthocyanin-supplemented birds had less elevated corticosterone after flight than unsupplemented control birds. This provides novel evidence that dietary antioxidants attenuate the activation of the HPA axis (i.e. increased secretion of corticosterone) during long-duration flight.
Collapse
Affiliation(s)
- Stefania Casagrande
- Evolutionary Physiology Research Group, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Kristen J DeMoranville
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Lisa Trost
- Department for Behavioral Neurobiology, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Barbara Pierce
- Department of Biology, Sacred Heart University, Fairfield, CT 06825, USA
| | - Amadeusz Bryła
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Maciej Dzialo
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Kraków, Poland
- Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
28
|
Zaytsoff SJM, Lyons SM, Garner AM, Uwiera RRE, Zandberg WF, Abbott DW, Inglis GD. Host responses to Clostridium perfringens challenge in a chicken model of chronic stress. Gut Pathog 2020; 12:24. [PMID: 32391086 PMCID: PMC7203818 DOI: 10.1186/s13099-020-00362-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background This study utilized a chicken model of chronic physiological stress mediated by corticosterone (CORT) administration to ascertain how various host metrics are altered upon challenge with Clostridium perfringens. Necrotic enteritis (NE) is a disease of the small intestine of chickens incited by C. perfringens, which can result in elevated morbidity and mortality. The objective of the current study was to investigate how physiological stress alters host responses and predisposes birds to subclinical NE. Results Birds administered CORT exhibited higher densities of C. perfringens in their intestine, and this corresponded to altered production of intestinal mucus. Characterization of mucus showed that C. perfringens treatment altered the relative abundance of five glycans. Birds inoculated with C. perfringens did not exhibit evidence of acute morbidity. However, histopathologic changes were observed in the small intestine of infected birds. Birds administered CORT showed altered gene expression of tight junction proteins (i.e. CLDN3 and CLDN5) and toll-like receptors (i.e. TLR2 and TLR15) in the small intestine. Moreover, birds administered CORT exhibited increased expression of IL2 and G-CSF in the spleen, and IL1β, IL2, IL18, IFNγ, and IL6 in the thymus. Body weight gain was impaired only in birds that were administered CORT and challenged with C. perfringens. Conclusion CORT administration modulated a number of host functions, which corresponded to increased densities of C. perfringens in the small intestine and weight gain impairment in chickens. Importantly, results implicate physiological stress as an important predisposing factor to NE, which emphasizes the importance of managing stress to optimize chicken health.
Collapse
Affiliation(s)
- Sarah J M Zaytsoff
- 1Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB Canada.,2Department of Agricultural, Food, and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB Canada
| | - Sarah M Lyons
- 3Department of Biology, University of British Columbia (Okanagan Campus), 1177 Research Road, Kelowna, BC Canada
| | - Alexander M Garner
- 4Department of Biochemistry, University of British Columbia (Okanagan Campus), 1177 Research Road, Kelowna, BC Canada
| | - Richard R E Uwiera
- 2Department of Agricultural, Food, and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB Canada
| | - Wesley F Zandberg
- 3Department of Biology, University of British Columbia (Okanagan Campus), 1177 Research Road, Kelowna, BC Canada.,5Department of Chemistry, University of British Columbia (Okanagan Campus), 3247 Research Road, Kelowna, BC Canada
| | - D Wade Abbott
- 1Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB Canada
| | - G Douglas Inglis
- 1Agriculture and Agri-Food Canada, 5403-1st Avenue S, Lethbridge, AB Canada
| |
Collapse
|