1
|
Kopsick JD, Kilgore JA, Adam GC, Ascoli GA. Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus. J Comput Neurosci 2024; 52:303-321. [PMID: 39285088 PMCID: PMC11470887 DOI: 10.1007/s10827-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
The hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood. Here, we demonstrate that a data-driven SNN model quantitatively reflecting the neuron type-specific population sizes, intrinsic electrophysiology, connectivity statistics, synaptic signaling, and long-term plasticity of the mouse CA3 is capable of robust auto-association and pattern completion via cell assemblies. Our results show that a broad range of assembly sizes could successfully and systematically retrieve patterns from heavily incomplete or corrupted cues after a limited number of presentations. Furthermore, performance was robust with respect to partial overlap of assemblies through shared cells, substantially enhancing memory capacity. These novel findings provide computational evidence that the specific biological properties of the CA3 circuit produce an effective neural substrate for associative learning in the mammalian brain.
Collapse
Affiliation(s)
- Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA
| | - Joseph A Kilgore
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA
| | - Gina C Adam
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA.
- Bioengineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
2
|
Sutton NM, Gutiérrez-Guzmán BE, Dannenberg H, Ascoli GA. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology. Int J Mol Sci 2024; 25:6059. [PMID: 38892248 PMCID: PMC11173171 DOI: 10.3390/ijms25116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.
Collapse
Affiliation(s)
- Nate M. Sutton
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
| | - Blanca E. Gutiérrez-Guzmán
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
| | - Holger Dannenberg
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Giorgio A. Ascoli
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
3
|
Myeong J, Stunault MI, Klyachko VA, Ashrafi G. Metabolic regulation of single synaptic vesicle exo- and endocytosis in hippocampal synapses. Cell Rep 2024; 43:114218. [PMID: 38758651 PMCID: PMC11221188 DOI: 10.1016/j.celrep.2024.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Sutton N, Gutiérrez-Guzmán B, Dannenberg H, Ascoli GA. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591748. [PMID: 38746202 PMCID: PMC11092518 DOI: 10.1101/2024.04.29.591748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal was to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software is released as open source to enable broad community reuse and encourage novel applications.
Collapse
Affiliation(s)
- Nate Sutton
- Bioengineering Department, at George Mason University
| | | | - Holger Dannenberg
- Bioengineering Department, at George Mason University
- Interdisciplinary Program in Neuroscience at George Mason University
| | - Giorgio A. Ascoli
- Bioengineering Department, at George Mason University
- Interdisciplinary Program in Neuroscience at George Mason University
| |
Collapse
|
5
|
Kopsick JD, Kilgore JA, Adam GC, Ascoli GA. Formation and Retrieval of Cell Assemblies in a Biologically Realistic Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586909. [PMID: 38585941 PMCID: PMC10996657 DOI: 10.1101/2024.03.27.586909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood. Here, we demonstrate that a data-driven SNN model quantitatively reflecting the neuron type-specific population sizes, intrinsic electrophysiology, connectivity statistics, synaptic signaling, and long-term plasticity of the mouse CA3 is capable of robust auto-association and pattern completion via cell assemblies. Our results show that a broad range of assembly sizes could successfully and systematically retrieve patterns from heavily incomplete or corrupted cues after a limited number of presentations. Furthermore, performance was robust with respect to partial overlap of assemblies through shared cells, substantially enhancing memory capacity. These novel findings provide computational evidence that the specific biological properties of the CA3 circuit produce an effective neural substrate for associative learning in the mammalian brain.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, United States
| | - Joseph A. Kilgore
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., United States
| | - Gina C. Adam
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., United States
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, United States
- Bioengineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA, United States
| |
Collapse
|
6
|
Venkadesh S, Shaikh A, Shakeri H, Barreto E, Van Horn JD. Biophysical modulation and robustness of itinerant complexity in neuronal networks. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1302499. [PMID: 38516614 PMCID: PMC10954887 DOI: 10.3389/fnetp.2024.1302499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Transient synchronization of bursting activity in neuronal networks, which occurs in patterns of metastable itinerant phase relationships between neurons, is a notable feature of network dynamics observed in vivo. However, the mechanisms that contribute to this dynamical complexity in neuronal circuits are not well understood. Local circuits in cortical regions consist of populations of neurons with diverse intrinsic oscillatory features. In this study, we numerically show that the phenomenon of transient synchronization, also referred to as metastability, can emerge in an inhibitory neuronal population when the neurons' intrinsic fast-spiking dynamics are appropriately modulated by slower inputs from an excitatory neuronal population. Using a compact model of a mesoscopic-scale network consisting of excitatory pyramidal and inhibitory fast-spiking neurons, our work demonstrates a relationship between the frequency of pyramidal population oscillations and the features of emergent metastability in the inhibitory population. In addition, we introduce a method to characterize collective transitions in metastable networks. Finally, we discuss potential applications of this study in mechanistically understanding cortical network dynamics.
Collapse
Affiliation(s)
- Siva Venkadesh
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Asmir Shaikh
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Heman Shakeri
- School of Data Science, University of Virginia, Charlottesville, VA, United States
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ernest Barreto
- Department of Physics and Astronomy and the Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- School of Data Science, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. eLife 2024; 12:RP90597. [PMID: 38345923 PMCID: PMC10942544 DOI: 10.7554/elife.90597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W Wheeler
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Alexander O Komendantov
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| |
Collapse
|
8
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540597. [PMID: 37425693 PMCID: PMC10327012 DOI: 10.1101/2023.05.12.540597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression. Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W. Wheeler
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Jeffrey D. Kopsick
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Alexander O. Komendantov
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| |
Collapse
|
9
|
Myeong J, Stunault MI, Klyachko VA, Ashrafi G. Metabolic Regulation of Single Synaptic Vesicle Exo- and Endocytosis in Hippocampal Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566236. [PMID: 37986894 PMCID: PMC10659320 DOI: 10.1101/2023.11.08.566236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Glucose has long been considered a primary source of energy for synaptic function. However, it remains unclear under what conditions alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in cultured hippocampal synapses, we found that mitochondrial ATP production from oxidation of lactate/pyruvate regulates basal vesicle release probability and release location within the active zone (AZ) evoked by single action potentials (APs). Mitochondrial inhibition shifted vesicle release closer to the AZ center, suggesting that the energetic barrier for vesicle release is lower in the AZ center that the periphery. Mitochondrial inhibition also altered the efficiency of single AP evoked vesicle retrieval by increasing occurrence of ultrafast endocytosis, while inhibition of glycolysis had no effect. Mitochondria are sparsely distributed along hippocampal axons and we found that nerve terminals containing mitochondria displayed enhanced vesicle release and reuptake during high-frequency trains, irrespective of whether neurons were supplied with glucose or lactate. Thus, synaptic terminals can entirely bypass glycolysis to robustly maintain the vesicle cycle using oxidative fuels in the absence of glucose. These observations further suggest that mitochondrial metabolic function not only regulates several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63132, United States
| |
Collapse
|
10
|
Mysin I. Phase relations of interneuronal activity relative to theta rhythm. Front Neural Circuits 2023; 17:1198573. [PMID: 37484208 PMCID: PMC10358363 DOI: 10.3389/fncir.2023.1198573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The theta rhythm plays a crucial role in synchronizing neural activity during attention and memory processes. However, the mechanisms behind the formation of neural activity during theta rhythm generation remain unknown. To address this, we propose a mathematical model that explains the distribution of interneurons in the CA1 field during the theta rhythm phase. Our model consists of a network of seven types of interneurons in the CA1 field that receive inputs from the CA3 field, entorhinal cortex, and local pyramidal neurons in the CA1 field. By adjusting the parameters of the connections in the model. We demonstrate that it is possible to replicate the experimentally observed phase relations between interneurons and the theta rhythm. Our model predicts that populations of interneurons receive unimodal excitation and inhibition with coinciding peaks, and that excitation dominates to determine the firing dynamics of interneurons.
Collapse
|
11
|
Kopsick JD, Tecuatl C, Moradi K, Attili SM, Kashyap HJ, Xing J, Chen K, Krichmar JL, Ascoli GA. Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus. Cognit Comput 2023; 15:1190-1210. [PMID: 37663748 PMCID: PMC10473858 DOI: 10.1007/s12559-021-09954-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022]
Abstract
Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood. Leveraging the Hippocampome.org knowledge base, we developed a data-driven, large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal architecture of this system subserves its crucial cognitive roles.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Keivan Moradi
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Sarojini M. Attili
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
| | - Hirak J. Kashyap
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jinwei Xing
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kexin Chen
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Giorgio A. Ascoli
- Interdepartmental Program in Neuroscience, George Mason University, Fairfax, VA, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
12
|
Martínez San Segundo P, Terni B, Llobet A. Multivesicular release favors short term synaptic depression in hippocampal autapses. Front Cell Neurosci 2023; 17:1057242. [PMID: 37265578 PMCID: PMC10230035 DOI: 10.3389/fncel.2023.1057242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Presynaptic terminals of the central nervous system can support univesicular and multivesicular synchronous release of neurotransmitters, however, the functional implications of the prevalence of one mechanism over the other are yet unresolved. Here, we took advantage of the expression of SF-iGluSnFR.S72A in the astrocytic feeder layer of autaptic hippocampal neuronal cultures to associate the liberation of glutamate to excitatory postsynaptic currents. The presence of the glutamate sensor in glial cells avoided any interference with the function of endogenous postsynaptic receptors. It was possible to optically detect changes in neurotransmitter release probability, which was heterogeneous among synaptic boutons studied. For each neuron investigated, the liberation of neurotransmitters occurred through a predominant mechanism. The prevalence of multivesicular over univesicular release increased synaptic strength and enhanced short-term synaptic depression. These results show that the preference of hippocampal boutons to synchronously release one or more vesicles determines the strength and low pass filtering properties of the synapses established.
Collapse
Affiliation(s)
- Pablo Martínez San Segundo
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
13
|
Hu M, Jiang X. PatchView: A Python Package for Patch-clamp Data Analysis and Visualization. JOURNAL OF OPEN SOURCE SOFTWARE 2022; 7:4706. [PMID: 37008890 PMCID: PMC10062055 DOI: 10.21105/joss.04706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Ming Hu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston,TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston,TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
14
|
Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer C, Steinegger M, Bhowmik D, Rost B. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022. [PMID: 34232869 DOI: 10.1101/2020.07.12.199554] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from UniRef and BFD containing up to 393 billion amino acids. The protein LMs (pLMs) were trained on the Summit supercomputer using 5616 GPUs and TPU Pod up-to 1024 cores. Dimensionality reduction revealed that the raw pLM-embeddings from unlabeled data captured some biophysical features of protein sequences. We validated the advantage of using the embeddings as exclusive input for several subsequent tasks: (1) a per-residue (per-token) prediction of protein secondary structure (3-state accuracy Q3=81%-87%); (2) per-protein (pooling) predictions of protein sub-cellular location (ten-state accuracy: Q10=81%) and membrane versus water-soluble (2-state accuracy Q2=91%). For secondary structure, the most informative embeddings (ProtT5) for the first time outperformed the state-of-the-art without multiple sequence alignments (MSAs) or evolutionary information thereby bypassing expensive database searches. Taken together, the results implied that pLMs learned some of the grammar of the language of life. All our models are available through https://github.com/agemagician/ProtTrans.
Collapse
|
15
|
Moradi K, Aldarraji Z, Luthra M, Madison GP, Ascoli GA. Normalized unitary synaptic signaling of the hippocampus and entorhinal cortex predicted by deep learning of experimental recordings. Commun Biol 2022; 5:418. [PMID: 35513471 PMCID: PMC9072429 DOI: 10.1038/s42003-022-03329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Biologically realistic computer simulations of neuronal circuits require systematic data-driven modeling of neuron type-specific synaptic activity. However, limited experimental yield, heterogeneous recordings conditions, and ambiguous neuronal identification have so far prevented the consistent characterization of synaptic signals for all connections of any neural system. We introduce a strategy to overcome these challenges and report a comprehensive synaptic quantification among all known neuron types of the hippocampal-entorhinal network. First, we reconstructed >2600 synaptic traces from ∼1200 publications into a unified computational representation of synaptic dynamics. We then trained a deep learning architecture with the resulting parameters, each annotated with detailed metadata such as recording method, solutions, and temperature. The model learned to predict the synaptic properties of all 3,120 circuit connections in arbitrary conditions with accuracy approaching the intrinsic experimental variability. Analysis of data normalized and completed with the deep learning model revealed that synaptic signals are controlled by few latent variables associated with specific molecular markers and interrelating conductance, decay time constant, and short-term plasticity. We freely release the tools and full dataset of unitary synaptic values in 32 covariate settings. Normalized synaptic data can be used in brain simulations, and to predict and test experimental hypothesis. A deep learning model trained on roughly 2,600 synaptic traces from hippocampal electrophysiology datasets demonstrates how specific covariates influence synaptic signals.
Collapse
Affiliation(s)
- Keivan Moradi
- Interdisciplinary Neuroscience Program and Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.,Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zainab Aldarraji
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Megha Luthra
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Grey P Madison
- Chemistry and Biochemistry Department, College of Science, George Mason University, Fairfax, VA, USA
| | - Giorgio A Ascoli
- Interdisciplinary Neuroscience Program and Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA. .,Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
16
|
Attili SM, Moradi K, Wheeler DW, Ascoli GA. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization. Eur J Neurosci 2022; 55:1724-1741. [PMID: 35301768 PMCID: PMC10026515 DOI: 10.1111/ejn.15639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Quantifying the population sizes of distinct neuron types in different anatomical regions is an essential step towards establishing a brain cell census. Although estimates exist for the total neuronal populations in different species, the number and definition of each specific neuron type are still intensively investigated. Hippocampome.org is an open-source knowledge base with morphological, physiological and molecular information for 122 neuron types in the rodent hippocampal formation. While such framework identifies all known neuron types in this system, their relative abundances remain largely unknown. This work quantitatively estimates the counts of all Hippocampome.org neuron types by literature mining and numerical optimization. We report the number of neurons in each type identified by main neurotransmitter (glutamate or GABA) and axonal-dendritic patterns throughout 26 subregions and layers of the dentate gyrus, Ammon's horn, subiculum and entorhinal cortex. We produce by sensitivity analysis reliable numerical ranges for each type and summarize the amounts across broad neuronal families defined by biomarkers expression and firing dynamics. Study of density distributions indicates that the number of dendritic-targeting interneurons, but not of other neuronal classes, is independent of anatomical volumes. All extracted values, experimental evidence and related software code are released on Hippocampome.org.
Collapse
Affiliation(s)
- Sarojini M Attili
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
| | - Keivan Moradi
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
| | - Diek W Wheeler
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
17
|
Determining clinically relevant features in cytometry data using persistent homology. PLoS Comput Biol 2022; 18:e1009931. [PMID: 35312683 PMCID: PMC9009779 DOI: 10.1371/journal.pcbi.1009931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/14/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree based classifier, sample points randomly and compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as ‘elbows’. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or existing bioinformatic tools. Identifying differences between cytometry data seen as a point cloud can be complicated by random variations in data collection and data sources. We apply persistent homology used in topological data analysis to describe the shape and structure of the data representing immune cells in healthy donors and COVID-19 patients. By looking at how the shape and structure differ between healthy donors and COVID-19 patients, we are able to definitively conclude how these groups differ despite random variations in the data. Furthermore, these results are novel in their ability to capture shape and structure of cytometry data, something not described by other analyses.
Collapse
|
18
|
Reconstruction of the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:261-283. [DOI: 10.1007/978-3-030-89439-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe hippocampus is a widely studied brain region thought to play an important role in higher cognitive functions such as learning, memory, and navigation. The amount of data on this region increases every day and delineates a complex and fragmented picture, but an integrated understanding of hippocampal function remains elusive. Computational methods can help to move the research forward, and reconstructing a full-scale model of the hippocampus is a challenging yet feasible task that the research community should undertake.In this chapter, we present strategies for reconstructing a large-scale model of the hippocampus. Based on a previously published approach to reconstruct and simulate brain tissue, which is also explained in Chap. 10, we discuss the characteristics of the hippocampus in the light of its special anatomical and physiological features, data availability, and existing large-scale hippocampus models. A large-scale model of the hippocampus is a compound model of several building blocks: ion channels, morphologies, single cell models, connections, synapses. We discuss each of those building blocks separately and discuss how to merge them back and simulate the resulting network model.
Collapse
|
19
|
Venkadesh S, Van Horn JD. Integrative Models of Brain Structure and Dynamics: Concepts, Challenges, and Methods. Front Neurosci 2021; 15:752332. [PMID: 34776853 PMCID: PMC8585845 DOI: 10.3389/fnins.2021.752332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
The anatomical architecture of the brain constrains the dynamics of interactions between various regions. On a microscopic scale, neural plasticity regulates the connections between individual neurons. This microstructural adaptation facilitates coordinated dynamics of populations of neurons (mesoscopic scale) and brain regions (macroscopic scale). However, the mechanisms acting on multiple timescales that govern the reciprocal relationship between neural network structure and its intrinsic dynamics are not well understood. Studies empirically investigating such relationships on the whole-brain level rely on macroscopic measurements of structural and functional connectivity estimated from various neuroimaging modalities such as Diffusion-weighted Magnetic Resonance Imaging (dMRI), Electroencephalography (EEG), Magnetoencephalography (MEG), and functional Magnetic Resonance Imaging (fMRI). dMRI measures the anisotropy of water diffusion along axonal fibers, from which structural connections are estimated. EEG and MEG signals measure electrical activity and magnetic fields induced by the electrical activity, respectively, from various brain regions with a high temporal resolution (but limited spatial coverage), whereas fMRI measures regional activations indirectly via blood oxygen level-dependent (BOLD) signals with a high spatial resolution (but limited temporal resolution). There are several studies in the neuroimaging literature reporting statistical associations between macroscopic structural and functional connectivity. On the other hand, models of large-scale oscillatory dynamics conditioned on network structure (such as the one estimated from dMRI connectivity) provide a platform to probe into the structure-dynamics relationship at the mesoscopic level. Such investigations promise to uncover the theoretical underpinnings of the interplay between network structure and dynamics and could be complementary to the macroscopic level inquiries. In this article, we review theoretical and empirical studies that attempt to elucidate the coupling between brain structure and dynamics. Special attention is given to various clinically relevant dimensions of brain connectivity such as the topological features and neural synchronization, and their applicability for a given modality, spatial or temporal scale of analysis is discussed. Our review provides a summary of the progress made along this line of research and identifies challenges and promising future directions for multi-modal neuroimaging analyses.
Collapse
Affiliation(s)
- Siva Venkadesh
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA, United States.,School of Data Science, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
20
|
Vakilna YS, Tang WC, Wheeler BC, Brewer GJ. The Flow of Axonal Information Among Hippocampal Subregions: 1. Feed-Forward and Feedback Network Spatial Dynamics Underpinning Emergent Information Processing. Front Neural Circuits 2021; 15:660837. [PMID: 34512275 PMCID: PMC8430040 DOI: 10.3389/fncir.2021.660837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The tri-synaptic pathway in the mammalian hippocampus enables cognitive learning and memory. Despite decades of reports on anatomy and physiology, the functional architecture of the hippocampal network remains poorly understood in terms of the dynamics of axonal information transfer between subregions. Information inputs largely flow from the entorhinal cortex (EC) to the dentate gyrus (DG), and then are processed further in the CA3 and CA1 before returning to the EC. Here, we reconstructed elements of the rat hippocampus in a novel device over an electrode array that allowed for monitoring the directionality of individual axons between the subregions. The direction of spike propagation was determined by the transmission delay of the axons recorded between two electrodes in microfluidic tunnels. The majority of axons from the EC to the DG operated in the feed-forward direction, with other regions developing unexpectedly large proportions of feedback axons to balance excitation. Spike timing in axons between each region followed single exponential log-log distributions over two orders of magnitude from 0.01 to 1 s, indicating that conventional descriptors of mean firing rates are misleading assumptions. Most of the spiking occurred in bursts that required two exponentials to fit the distribution of inter-burst intervals. This suggested the presence of up-states and down-states in every region, with the least up-states in the DG to CA3 feed-forward axons and the CA3 subregion. The peaks of the log-normal distributions of intra-burst spike rates were similar in axons between regions with modes around 95 Hz distributed over an order of magnitude. Burst durations were also log-normally distributed around a peak of 88 ms over two orders of magnitude. Despite the diversity of these spike distributions, spike rates from individual axons were often linearly correlated to subregions. These linear relationships enabled the generation of structural connectivity graphs, not possible previously without the directional flow of axonal information. The rich axonal spike dynamics between subregions of the hippocampus reveal both constraints and broad emergent dynamics of hippocampal architecture. Knowledge of this network architecture may enable more efficient computational artificial intelligence (AI) networks, neuromorphic hardware, and stimulation and decoding from cognitive implants.
Collapse
Affiliation(s)
- Yash S Vakilna
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Bruce C Wheeler
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Center for Neuroscience of Learning and Memory, Memory Impairments and Neurological Disorders (MIND) Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
21
|
Sutton NM, Ascoli GA. Spiking Neural Networks and Hippocampal Function: A Web-Accessible Survey of Simulations, Modeling Methods, and Underlying Theories. COGN SYST RES 2021; 70:80-92. [PMID: 34504394 DOI: 10.1016/j.cogsys.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Computational modeling has contributed to hippocampal research in a wide variety of ways and through a large diversity of approaches, reflecting the many advanced cognitive roles of this brain region. The intensively studied neuron type circuitry of the hippocampus is a particularly conducive substrate for spiking neural models. Here we present an online knowledge base of spiking neural network simulations of hippocampal functions. First, we overview theories involving the hippocampal formation in subjects such as spatial representation, learning, and memory. Then we describe an original literature mining process to organize published reports in various key aspects, including: (i) subject area (e.g., navigation, pattern completion, epilepsy); (ii) level of modeling detail (Hodgkin-Huxley, integrate-and-fire, etc.); and (iii) theoretical framework (attractor dynamics, oscillatory interference, self-organizing maps, and others). Moreover, every peer-reviewed publication is also annotated to indicate the specific neuron types represented in the network simulation, establishing a direct link with the Hippocampome.org portal. The web interface of the knowledge base enables dynamic content browsing and advanced searches, and consistently presents evidence supporting every annotation. Moreover, users are given access to several types of statistical reports about the collection, a selection of which is summarized in this paper. This open access resource thus provides an interactive platform to survey spiking neural network models of hippocampal functions, compare available computational methods, and foster ideas for suitable new directions of research.
Collapse
Affiliation(s)
- Nate M Sutton
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| | - Giorgio A Ascoli
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA).,Interdepartmental Neuroscience Program, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| |
Collapse
|
22
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
23
|
Binini N, Talpo F, Spaiardi P, Maniezzi C, Pedrazzoli M, Raffin F, Mattiello N, Castagno AN, Masetto S, Yanagawa Y, Dickson CT, Ramat S, Toselli M, Biella GR. Membrane Resonance in Pyramidal and GABAergic Neurons of the Mouse Perirhinal Cortex. Front Cell Neurosci 2021; 15:703407. [PMID: 34366789 PMCID: PMC8339929 DOI: 10.3389/fncel.2021.703407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
The perirhinal cortex (PRC) is a polymodal associative region of the temporal lobe that works as a gateway between cortical areas and hippocampus. In recent years, an increasing interest arose in the role played by the PRC in learning and memory processes, such as object recognition memory, in contrast with certain forms of hippocampus-dependent spatial and episodic memory. The integrative properties of the PRC should provide all necessary resources to select and enhance the information to be propagated to and from the hippocampus. Among these properties, we explore in this paper the ability of the PRC neurons to amplify the output voltage to current input at selected frequencies, known as membrane resonance. Within cerebral circuits the resonance of a neuron operates as a filter toward inputs signals at certain frequencies to coordinate network activity in the brain by affecting the rate of neuronal firing and the precision of spike timing. Furthermore, the ability of the PRC neurons to resonate could have a fundamental role in generating subthreshold oscillations and in the selection of cortical inputs directed to the hippocampus. Here, performing whole-cell patch-clamp recordings from perirhinal pyramidal neurons and GABAergic interneurons of GAD67-GFP+ mice, we found, for the first time, that the majority of PRC neurons are resonant at their resting potential, with a resonance frequency of 0.5–1.5 Hz at 23°C and of 1.5–2.8 Hz at 36°C. In the presence of ZD7288 (blocker of HCN channels) resonance was abolished in both pyramidal neurons and interneurons, suggesting that Ih current is critically involved in resonance generation. Otherwise, application of TTx (voltage-dependent Na+ channel blocker) attenuates the resonance in pyramidal neurons but not in interneurons, suggesting that only in pyramidal neurons the persistent sodium current has an amplifying effect. These experimental results have also been confirmed by a computational model. From a functional point of view, the resonance in the PRC would affect the reverberating activity between neocortex and hippocampus, especially during slow wave sleep, and could be involved in the redistribution and strengthening of memory representation in cortical regions.
Collapse
Affiliation(s)
- Noemi Binini
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Matteo Pedrazzoli
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Niccolò Mattiello
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Antonio N Castagno
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University, Maebashi, Japan
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Stefano Ramat
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Mauro Toselli
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Lan Z, Zhang W, Xu J, Lu W. GABA A receptor-mediated inhibition of Dahlgren cells electrical activity in the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2021; 306:113753. [PMID: 33711316 DOI: 10.1016/j.ygcen.2021.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 11/24/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system. We investigated its potential role as a neurotransmitter in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) of the flounder Paralichthys olivaceus. The application of GABA in vitro resulted in a decrease in electrical activity of Dahlgren cells, followed by an increase of the number of silent cells, together with a decreased firing frequency of all three activity patterns (tonic, phasic, bursting). GABAA receptor agonist etomidate decreased Dahlgren cell firing activity, in a similar way to GABA. The response to GABA was blocked by the GABAA receptor antagonist bicuculline. GABAA receptor gamma2 subunit (Gabrg2) and chloride channel (Clcn2) mRNA expression were significantly upregulated in the CNSS after GABA superfusion. These data suggest that GABA may modulate CNSS activity in vivo mediated by GABAA receptors.
Collapse
Affiliation(s)
- Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Jinling Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
25
|
Sanchez-Aguilera A, Wheeler DW, Jurado-Parras T, Valero M, Nokia MS, Cid E, Fernandez-Lamo I, Sutton N, García-Rincón D, de la Prida LM, Ascoli GA. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLoS Biol 2021; 19:e3001213. [PMID: 33956790 PMCID: PMC8130934 DOI: 10.1371/journal.pbio.3001213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/18/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.
Collapse
Affiliation(s)
| | - Diek W. Wheeler
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
| | | | - Manuel Valero
- Instituto Cajal CSIC, Madrid, Spain
- NYU Neuroscience Institute, New York, United States of America
| | - Miriam S. Nokia
- Instituto Cajal CSIC, Madrid, Spain
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Nate Sutton
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
| | | | | | - Giorgio A. Ascoli
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
- * E-mail: (LMP); (GAA)
| |
Collapse
|
26
|
Mukherjee S, Wethington D, Dey TK, Das J. Determining clinically relevant features in cytometry data using persistent homology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33948593 DOI: 10.1101/2021.04.26.441473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. Our method identifies proteins of interest by a decision-tree based classifier and passes them to a kernel-density estimator (KDE) for sampling points from the density distribution. We then compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as 'elbows'. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or in the presence of large batch effects. Author summary Identifying differences between cytometry data seen as a point cloud can be complicated by random variations in data collection and data sources. We apply persistent homology used in topological data analysis to describe the shape and structure of the data representing immune cells in healthy donors and COVID-19 patients. By looking at how the shape and structure differ between healthy donors and COVID-19 patients, we are able to definitively conclude how these groups differ despite random variations in the data. Furthermore, these results are novel in their ability to capture shape and structure of cytometry data, something not described by other analyses.
Collapse
|
27
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
28
|
Venkadesh S, Barreto E, Ascoli GA. Itinerant complexity in networks of intrinsically bursting neurons. CHAOS (WOODBURY, N.Y.) 2020; 30:061106. [PMID: 32611128 PMCID: PMC7311180 DOI: 10.1063/5.0010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Active neurons can be broadly classified by their intrinsic oscillation patterns into two classes characterized by spiking or bursting. Here, we show that networks of identical bursting neurons with inhibitory pulsatory coupling exhibit itinerant dynamics. Using the relative phases of bursts between neurons, we numerically demonstrate that the network exhibits endogenous transitions between multiple modes of transient synchrony. This is true even for bursts consisting of two spikes. In contrast, our simulations reveal that networks of identical singlet-spiking neurons do not exhibit such complexity. These results suggest a role for bursting dynamics in realizing itinerant complexity in neural circuits.
Collapse
|
29
|
Diabetic encephalopathy causes the imbalance of neural activities between hippocampal glutamatergic neurons and GABAergic neurons in mice. Brain Res 2020; 1742:146863. [PMID: 32360099 DOI: 10.1016/j.brainres.2020.146863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Diabetic encephalopathy is a severe diabetes-related complication in the central nervous system (CNS) that is characterized by the impairment of neurochemical and structural changes leading to cognitive dysfunction. Its cellular and molecular mechanisms are still unclear and clinical approaches are still lacking of promising therapies. In this study, we have investigated the changes of different hippocampal neurons during diabetic encephalopathy in mouse models of diabetes by simultaneously analyzing the activities and synaptic transmission of glutamatergic neurons and GABAergic neurons in brain slices. Compared with the data from a group of control, diabetic encephalopathy permanently impairs the excitability of GABAergic neurons and synaptic transmission mediated by γ-aminobutyric acid (GABA). However, glutamatergic neurons appear to be more excited. Our findings highlight the critical role of the dysfunction of GABAergic neurons and glutamatergic neurons during diabetic encephalopathy in hippocampus to neural impairment as well as a strategy to prevent the function of progress of diabetic encephalopathy by protecting central neurons.
Collapse
|