1
|
Davis SC, Gil J, Solis M, Strong R, Cassagnol R. Efficacy of a Topical Nitric Oxide-Releasing Gel on Polymicrobial Wound Infections. Mil Med 2024:usae551. [PMID: 39671514 DOI: 10.1093/milmed/usae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Wounds are colonized frequently by heterogeneous microflora. Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are two of the most isolated bacterial species from wounds, and both typically form highly organized biofilms. Nitric oxide (NO) is a short-lived, diatomic, lipophilic gas with antimicrobial activity. Recently, NO and its derivatives have been shown to exhibit broad-spectrum antimicrobial activity against bacteria, viruses, and parasites. MATERIALS AND METHODS P. aeruginosa strain ATCC 27312 or military isolate PA09-010 were combined with methicillin-resistant S. aureus strain MRSA USA300 to demonstrate the ability of NO to reduce polymicrobial infections in a porcine wound infection model. Deep partial-thickness wounds (10 mm × 7 mm × 0.5 mm) were made on four animals using a specialized electrokeratome. Wounds were inoculated with MRSA USA300 combined with PA09-010 in three animals and MRSA USA300 combined with PA27312 in one animal, then wounds were covered with polyurethane film dressings. After 48 hours, three wounds were recovered for baseline enumeration. The remaining wounds were randomly assigned to treatment groups and treated once daily. The NO topical gels tested were combinations of two phases, ointment phases with various concentrations (2-20%) combined with hydrogels with fast or slow release kinetics. A 4-day study with microbiological recovery was conducted on day 4. A separate 7-day study was also conducted, with microbial burden assessed on day 7. RESULTS The largest efficacy against MRSA USA300 was observed for the NO formulation with 2% concentration and fast release kinetics. This treatment reduced the MRSA USA300 bacterial count by more than 99.97% and 99.95% from baseline in wounds co-infected with PA09-010 and PA 27312, respectively, at day 7. Treatments showed a minimal efficacy against PA27312 and PA09-010 strains in both assessment times. MRSA USA300 was reduced to a lesser extent when it was combined with PA27312 as compared to PA09-010. CONCLUSIONS These studies demonstrate that NO-releasing topical formulations effectively reduce the MRSA burden in established biofilms composed of multiple microorganisms. Minimal efficacy against PA was observed. It has been demonstrated that MRSA bioburden is significantly reduced when inoculated together with P. aeruginosa. A better understanding of mechanisms of host-bacteria interactions, in single or mixed species biofilms, may lead to the development of novel therapeutic approaches. Overall, NO offers a promising alternative treatment against MRSA in polymicrobial infections.
Collapse
Affiliation(s)
- Stephen C Davis
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel Gil
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Solis
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ryan Strong
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roger Cassagnol
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, Horswill A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621402. [PMID: 39574578 PMCID: PMC11580920 DOI: 10.1101/2024.11.04.621402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic, non-healing wounds are a leading cause of prolonged patient morbidity and mortality due to biofilm- associated, polymicrobial infections. Staphylococcus aureus and Pseudomonas aeruginosa are the most frequently co-isolated pathogens from chronic wound infections. Competitive interactions between these pathogens contribute to enhanced virulence, persistence, and antimicrobial tolerance. P. aeruginosa utilizes the extracellular proteases LasB, LasA, and AprA to degrade S. aureus surface structures, disrupt cellular physiology, and induce cell lysis, gaining a competitive advantage during co-infection. S. aureus evades P. aeruginosa by employing aggregation mechanisms to form biofilms. The cell wall protein SasG is implicated in S. aureus biofilm formation by facilitating intercellular aggregation upon cleavage by an extracellular protease. We have previously shown that proteolysis by a host protease can induce aggregation. In this study, we report that P. aeruginosa proteases LasA, LasB, and AprA cleave SasG to induce S. aureus aggregation. We demonstrate that SasG contributes to S. aureus biofilm formation in response to interactions with P. aeruginosa proteases by quantifying aggregation, SasG degradation, and proteolytic kinetics. Additionally, we assess the role of SasG in influencing S. aureus biofilm architecture during co-infection in vivo, chronic wound co-infections. This work provides further knowledge of some of the principal interactions that contribute to S. aureus persistence within chronic wounds co-infected with P. aeruginosa, and their impact on healing and infection outcomes.
Collapse
Affiliation(s)
- Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heidi A Crosby
- New England Biolabs, Ipswich, MA, United States of America
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Krista Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Alphabet Health, New York, NY, United States of America
| | - Michael Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Alexander Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
3
|
Smith NM, Kaur H, Kaur R, Minoza T, Kent M, Barekat A, Lenhard JR. Influence of β-lactam pharmacodynamics on the systems microbiology of gram-positive and gram-negative polymicrobial communities. Front Pharmacol 2024; 15:1339858. [PMID: 38895629 PMCID: PMC11183306 DOI: 10.3389/fphar.2024.1339858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives We sought to evaluate the pharmacodynamics of β-lactam antibacterials against polymicrobial communities of clinically relevant gram-positive and gram-negative pathogens. Methods Two Enterococcus faecalis isolates, two Staphylococcus aureus isolates, and three Escherichia coli isolates with varying β-lactamase production were evaluated in static time-killing experiments. Each gram-positive isolate was exposed to a concentration array of ampicillin (E. faecalis) or cefazolin (S. aureus) alone and during co-culture with an E. coli isolate that was β-lactamase-deficient, produced TEM-1, or produced KPC-3/TEM-1B. The results of the time-killing experiments were summarized using an integrated pharmacokinetic/pharmacodynamics analysis as well as mathematical modelling to fully characterize the antibacterial pharmacodynamics. Results In the integrated analysis, the maximum killing of ampicillin (Emax) against both E. faecalis isolates was ≥ 4.11 during monoculture experiments or co-culture with β-lactamase-deficient E. coli, whereas the Emax was reduced to ≤ 1.54 during co-culture with β-lactamase-producing E. coli. In comparison to monoculture experiments, culturing S. aureus with KPC-producing E. coli resulted in reductions of the cefazolin Emax from 3.25 and 3.71 down to 2.02 and 2.98, respectively. Two mathematical models were created to describe the interactions between E. coli and either E. faecalis or S. aureus. When in co-culture with E. coli, S. aureus experienced a reduction in its cefazolin Kmax by 24.8% (23.1%RSE). Similarly, β-lactamase-producing E. coli preferentially protected the ampicillin-resistant E. faecalis subpopulation, reducing Kmax,r by 90.1% (14%RSE). Discussion β-lactamase-producing E. coli were capable of protecting S. aureus and E. faecalis from exposure to β-lactam antibacterials.
Collapse
Affiliation(s)
- Nicholas M. Smith
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Harpreet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ravneet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Trisha Minoza
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Michael Kent
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ayeh Barekat
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Justin R. Lenhard
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| |
Collapse
|
4
|
Vestweber PK, Wächter J, Planz V, Jung N, Windbergs M. The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models. PLoS One 2024; 19:e0304491. [PMID: 38805522 PMCID: PMC11132468 DOI: 10.1371/journal.pone.0304491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.
Collapse
Affiliation(s)
- Pia Katharina Vestweber
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Subsomwong P, Teng W, Ishiai T, Narita K, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles from Staphylococcus aureus promote the pathogenicity of Pseudomonas aeruginosa. Microbiol Res 2024; 281:127612. [PMID: 38244256 DOI: 10.1016/j.micres.2024.127612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Co-infections with Staphylococcus aureus and Pseudomonas aeruginosa are common in patients with chronic wounds, but little is known about their synergistic effect mediated by extracellular vesicles (EVs). In this study, we investigated the effect of EVs derived from S. aureus (SaEVs) on the pathogenicity of P. aeruginosa. By using lipophilic dye, we could confirm the fusion between SaEV and P. aeruginosa membranes. However, SaEVs did not alter the growth and antibiotic susceptible pattern of P. aeruginosa. Differential proteomic analysis between SaEV-treated and non-treated P. aeruginosa was performed, and the results revealed that lipopolysaccharide (LPS) biosynthesis protein in P. aeruginosa significantly increased after SaEV-treatment. Regarding this result, we also found that SaEVs promoted LPS production, biofilm formation, and expression of polysaccharide polymerization-related genes in P. aeruginosa. Furthermore, invasion of epithelial cells by SaEV-pretreated P. aeruginosa was enhanced. On the other hand, uptake of P. aeruginosa by RAW 264.7 macrophages was impaired after pretreatment P. aeruginosa with SaEVs. Proteomic analysis SaEVs revealed that SaEVs contain the proteins involving in host cell colonization, inhibition of host immune response, anti-phagocytosis of the macrophages, and protein translocation and iron uptake of S. aureus. In conclusion, SaEVs serve as a mediator that promote P. aeruginosa pathogenicity by enhancing LPS biosynthesis, biofilm formation, epithelial cell invasion, and macrophage uptake impairment.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
6
|
Khaliullina A, Kolesnikova A, Khairullina L, Morgatskaya O, Shakirova D, Patov S, Nekrasova P, Bogachev M, Kurkin V, Trizna E, Kayumov A. The Antimicrobial Potential of the Hop ( Humulus lupulus L.) Extract against Staphylococcus aureus and Oral Streptococci. Pharmaceuticals (Basel) 2024; 17:162. [PMID: 38399377 PMCID: PMC10893079 DOI: 10.3390/ph17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Plant extracts are in the focus of the pharmaceutical industry as potential antimicrobials for oral care due to their high antimicrobial activity coupled with low production costs and safety for eukaryotic cells. Here, we show that the extract from Hop (Humulus lupulus L.) exhibits antimicrobial activity against Staphylococcus aureus and Streptococci in both planktonic and biofilm-embedded forms. An extract was prepared by acetone extraction from hop infructescences, followed by purification and solubilization of the remaining fraction in ethanol. The effect of the extract on S. aureus (MSSA and MRSA) was comparable with the reference antibiotics (amikacin, ciprofloxacin, and ceftriaxone) and did not depend on the bacterial resistance to methicillin. The extract also demonstrated synergy with amikacin on six S. aureus clinical isolates, on four of six isolates with ciprofloxacin, and on three of six isolates with ceftriaxone. On various Streptococci, while demonstrating lower antimicrobial activity, an extract exhibited a considerable synergistic effect in combination with two of three of these antibiotics, decreasing their MIC up to 512-fold. Moreover, the extract was able to penetrate S. aureus and S. mutans biofilms, leading to almost complete bacterial death within them. The thin-layer chromatography and LC-MS of the extract revealed the presence of prenylated flavonoids (2',4',6',4-tetrahydroxy-3'-geranylchalcone) and acylphloroglucides (cohumulone, colupulone, humulone, and lupulone), apparently responsible for the observed antimicrobial activity and ability to increase the efficiency of antibiotics. Taken together, these data suggest an extract from H. lupulus as a promising antimicrobial agent for use both as a solely antiseptic and to potentiate conventional antimicrobials.
Collapse
Affiliation(s)
- Alyona Khaliullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Alyona Kolesnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Leysan Khairullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Olga Morgatskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Dilyara Shakirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Sergey Patov
- Institute of Chemistry, FRC “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia; (S.P.); (P.N.)
| | - Polina Nekrasova
- Institute of Chemistry, FRC “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia; (S.P.); (P.N.)
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 5 Professor Popov Street, 197022 St. Petersburg, Russia;
| | - Vladimir Kurkin
- Institute of Pharmacy, Samara State Medical University, 443079 Samara, Russia;
| | - Elena Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| |
Collapse
|
7
|
Soontarach R, Srimanote P, Voravuthikunchai SP, Chusri S. Antibacterial and Anti-Biofilm Efficacy of Endolysin LysAB1245 against a Panel of Important Pathogens. Pharmaceuticals (Basel) 2024; 17:155. [PMID: 38399370 PMCID: PMC10893532 DOI: 10.3390/ph17020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Infections caused by antibiotic-resistant bacteria pose a significant global challenge. This study explores the antibacterial effects of a bacteriophage-derived endolysin, LysAB1245, against important pathogens, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. We determined the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for all tested isolates. A time-kill study was conducted to evaluate the reduction in bacterial survival following treatment with LysAB1245. Additionally, the effects of LysAB1245 on P. aeruginosa K1455 and methicillin-resistant S. aureus (MRSA) NPRC 001R-formed biofilms were investigated. The MIC and MBC of LysAB1245 against all the tested isolates ranged from 4.68 to 9.36 µg/mL and 4.68 to 18.72 µg/mL, respectively. The time-kill study demonstrated more than a 4 log CFU/mL (99.99%) reduction in bacterial survival within 6 h of LysAB1245 treatment at 2MIC. LysAB1245 (1/8-1/2MIC) treatment significantly reduced biofilms formed by P. aeruginosa and MRSA in a concentration-dependent manner. Furthermore, scanning electron and confocal laser scanning microscopy confirmed the potential inhibition effects on 3-day established biofilms formed on abiotic surfaces upon treatment with LysAB1245 at 2MIC. The findings indicate that endolysin LysAB1245 could be employed as a new alternative therapeutic antibacterial and anti-biofilm agent for combating biofilm-related infections.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (S.P.V.)
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potjanee Srimanote
- Graduate in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (S.P.V.)
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
8
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
10
|
Arévalo-Jaimes BV, Admella J, Blanco-Cabra N, Torrents E. Culture media influences Candida parapsilosis growth, susceptibility, and virulence. Front Cell Infect Microbiol 2023; 13:1323619. [PMID: 38156315 PMCID: PMC10753817 DOI: 10.3389/fcimb.2023.1323619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Candida parapsilosis, a pathogenic yeast associated with systemic infections, exhibits metabolic adaptability in response to nutrient availability. Methods We investigated the impact of RPMI glucose supplemented (RPMId), TSB, BHI and YPD media on C. parapsilosis growth, morphology, susceptibility (caspofungin and amphotericin B), and in vivo virulence (Galleria mellonella) in planktonic and biofilm states. Results High-glucose media favors growth but hinders metabolic activity and filamentation. Media promoting carbohydrate production reduces biofilm susceptibility. Virulence differences between planktonic cells and biofilm suspensions from the same media shows that biofilm-related factors influence infection outcome depending on nutrient availability. Pseudohyphal growth occurred in biofilms under low oxygen and shear stress, but its presence is not exclusively correlated with virulence. Discussion This study provides valuable insights into the intricate interplay between nutrient availability and C. parapsilosis pathogenicity. It emphasizes the importance of considering pathogen behavior in diverse conditions when designing research protocols and therapeutic strategies.
Collapse
Affiliation(s)
- Betsy V. Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Ellis JR, Rowley PA. An apparent lack of synergy between degradative enzymes against Staphylococcus aureus biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561034. [PMID: 37873330 PMCID: PMC10592981 DOI: 10.1101/2023.10.05.561034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The use of enzymes represents an approach to combat bacterial infections by degrading extracellular biomolecules to disperse Staphylococcus aureus biofilms. Commercial enzyme preparations, including cellulase, amylase, pectinase, zymolyase, and pepsin, exhibit concentration-dependent dispersion of S. aureus biofilms. Here, we report that low concentrations of these enzymes generally lack synergy when combined or added together sequentially to biofilms. Only the addition of a protease (pepsin) followed by a commercial mixture of degradative enzymes from Arthrobacter luteus (zymolyase 20T), demonstrated synergy and was effective at dispersing S. aureus biofilms. A more purified mixture of Arthrobacter luteus enzymes (zymolyase 100T) showed improved dispersal of S. aureus biofilms compared to zymolyase 20T but lacked synergy with pepsin. This study emphasizes the complexity of enzymatic biofilm dispersal and the need for tailored approaches based on the properties of degradative enzymes and biofilm composition.
Collapse
Affiliation(s)
- Jeremy R Ellis
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
- Johns Hopkins University, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul A Rowley
- University of Idaho, Department of Biological Sciences, Moscow, ID 83844, USA
| |
Collapse
|
12
|
Pan X, Liu W, Du Q, Zhang H, Han D. Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci 2023; 24:14311. [PMID: 37762613 PMCID: PMC10531727 DOI: 10.3390/ijms241814311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The recurrence of bacterial infectious diseases is closely associated with bacterial persisters. This subpopulation of bacteria can escape antibiotic treatment by entering a metabolic status of low activity through various mechanisms, for example, biofilm, toxin-antitoxin modules, the stringent response, and the SOS response. Correspondingly, multiple new treatments are being developed. However, due to their spontaneous low abundance in populations and the lack of research on in vivo interactions between persisters and the host's immune system, microfluidics, high-throughput sequencing, and microscopy techniques are combined innovatively to explore the mechanisms of persister formation and maintenance at the single-cell level. Here, we outline the main mechanisms of persister formation, and describe the cutting-edge technology for further research. Despite the significant progress regarding study techniques, some challenges remain to be tackled.
Collapse
Affiliation(s)
- Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
13
|
Mésinèle J, Ruffin M, Guillot L, Boëlle PY, Corvol H. Airway infections as a risk factor for Pseudomonas aeruginosa acquisition and chronic colonisation in children with cystic fibrosis. J Cyst Fibros 2023; 22:901-908. [PMID: 37422431 DOI: 10.1016/j.jcf.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) infection is detrimental to people with cystic fibrosis (pwCF). Several clinical and genetic factors predispose to early Pa infections. However, the role of earlier infections with other pathogens on the risk of Pa infection in paediatric pwCF remains unknown. METHODS Using Kaplan-Meier method, we computed the cumulative incidences of bacterial and fungal initial acquisition (IA) and chronic colonisation (CC) in 1,231 French pwCF under 18 years of age for methicillin-susceptible and resistant Staphylococcus aureus (MSSA and MRSA), Stenotrophomonas maltophilia, Haemophilus influenzae, Achromobacter xylosoxidans, and Aspergillus species. Previous infections were analysed as Pa-IA and Pa-CC risk factors using Cox regression models. RESULTS By 2 years of age, 65.5% pwCF had experienced at least one bacterial or fungal IA, and 27.9% had experienced at least one CC. The median age of Pa-IA was 5.1 years, and Pa-CC was present in 25% pwCF by 14.7 years. While 50% acquired MSSA at 2.1 years, 50% progressed to chronic MSSA colonisation at 8.4 years. At 7.9 and 9.7 years, 25% pwCF were infected by S. maltophilia and Aspergillus spp., respectively. The risk of Pa-IA and Pa-CC increased with IAs of all other species, with hazard ratios (HR) up to 2.19 (95% Confidence interval (CI) 1.18-4.07). The risk of Pa-IA increased with the number of previous bacterial/fungal IAs (HR=1.89, 95% CI 1.57-2.28), with a 16% increase per additional pathogen; same trend was noted for Pa-CC. CONCLUSIONS This study establishes that the microbial community in CF airways can modulate Pa occurrence. At the dawn of targeted therapies, it paves the way for characterizing future trends and evolution of infections.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; Inovarion, 75005, Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France.
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, 75012 Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Service de Pneumologie Pédiatrique, 75012 Paris, France.
| |
Collapse
|
14
|
González-Ballesteros N, Fernandes M, Machado R, Sampaio P, Gomes AC, Cavazza A, Bigi F, Rodríguez-Argüelles MC. Valorisation of the Invasive Macroalgae Undaria pinnatifida (Harvey) Suringar for the Green Synthesis of Gold and Silver Nanoparticles with Antimicrobial and Antioxidant Potential. Mar Drugs 2023; 21:397. [PMID: 37504928 PMCID: PMC10381743 DOI: 10.3390/md21070397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Bacterial and fungal infections are a challenging global problem due to the reported increasing resistance of pathogenic microorganisms to conventional antimicrobials. Nanomaterials are a promising strategy to fight infections caused by multidrug-resistant microbes. In this work, gold (Au@UP) and silver (Ag@UP) nanoparticles were produced for the first time by green synthesis using an aqueous extract of the invasive macroalgae Undaria pinnatifida (UP). The nanoparticles were characterized by a wide range of physicochemical techniques. Au@UP and Ag@UP demonstrated to be spherical and crystalline with an average size of 6.8 ± 1.0 nm and 14.1 ± 2.8 nm, respectively. Carbohydrates and proteins of the UP extract may participate in the synthesis and capping of the nanoparticles. The UP extract, Ag@UP, and Au@UP were assessed for their antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Candida auris. Ag@UP showed the highest antimicrobial activity with very low MIC and MBC values for all the tested bacteria, and Au@UP demonstrated to be very effective against biofilm-producing bacteria. The antifungal properties of both Ag@UP and Au@UP were remarkable, inhibiting hyphae formation. This study points towards a very promising biomedical exploitation of this invasive brown algae.
Collapse
Affiliation(s)
| | - Mário Fernandes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C. Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonella Cavazza
- Dipartimento Scienze Chimiche, Della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy
| | - Franca Bigi
- Dipartimento Scienze Chimiche, Della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy
- Institute of Materials for Electronics and Magnetism, National Research Council, 43124 Parma, Italy
| | | |
Collapse
|
15
|
Shahina Z, Dahms TES. A Simple and Reproducible Stereomicroscopic Method to Assess Fungal Biofilms: Application to Antifungal Susceptibility Testing. Bio Protoc 2023; 13:e4713. [PMID: 37449038 PMCID: PMC10336566 DOI: 10.21769/bioprotoc.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023] Open
Abstract
Candida albicans, a well-known opportunistic pathogen, is a major cause of human fungal infections. Biofilm formation is considered an important pathogenesis factor. Biofilms are less sensitive to antibiotics and immune responses, allowing them to colonize and persist in host niches. Biofilm screening is important in the identification of anti-biofilm drugs. However, developing nations, with limited financial resources, often do not have access to advanced scientific equipment. Here, we describe an in vitro, protocol using common materials and simple equipment to evaluate static microbial biofilms.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada
| |
Collapse
|
16
|
Fernandes M, González-Ballesteros N, da Costa A, Machado R, Gomes AC, Rodríguez-Argüelles MC. Antimicrobial and anti-biofilm activity of silver nanoparticles biosynthesized with Cystoseira algae extracts. J Biol Inorg Chem 2023; 28:439-450. [PMID: 37083842 PMCID: PMC10149473 DOI: 10.1007/s00775-023-01999-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial resistance is an ever-growing global concern to public health with no clear or immediate solution. Silver nanoparticles (AgNPs) have long been proposed as efficient agents to fight the growing number of antibiotic-resistant strains. However, the synthesis of these particles is often linked to high costs and the use of toxic, hazardous chemicals, with environmental and health impact. In this study, we successfully produced AgNPs by green synthesis with the aid of the extract of two brown algae-Cystoseira baccata (CB) and Cystoseira tamariscifolia (CT)-and characterized their physico-chemical properties. The NPs produced in both cases (Ag@CB and Ag@CT) present similar sizes, with mean diameters of around 22 nm. The antioxidant activity of the extracts and the NPs was evaluated, with the extracts showing important antioxidant activity. The bacteriostatic and bactericidal properties of both Ag@CB and Ag@CT were tested and compared with gold NPs produced in the same algae extracts as previously reported. AgNPs demonstrated the strongest bacteriostatic and bactericidal properties, at concentrations as low as 2.16 µg/mL against Pseudomonas aeruginosa and Escherichia coli. Finally, the capacity of these samples to prevent the formation of biofilms characteristic of infections with a poorer outcome was assessed, obtaining similar results. This work points towards an alternative for the treatment of bacterial infections, even biofilm-inducing, with the possibility of minimizing the risk of drug resistance, albeit the necessary caution implied using metallic NPs.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - André da Costa
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | | |
Collapse
|
17
|
Coleman L, Adams JRG, Buchanan W, Chen T, La Ragione RM, Liu LX. Non-Antibiotic Compounds Synergistically Kill Chronic Wound-Associated Bacteria and Disrupt Their Biofilms. Pharmaceutics 2023; 15:1633. [PMID: 37376081 DOI: 10.3390/pharmaceutics15061633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds and their treatment present a significant burden to patients and healthcare systems alike, with their management further complicated by bacterial infection. Historically, antibiotics have been deployed to prevent and treat infections, but the emergence of bacterial antimicrobial resistance and the frequent development of biofilms within the wound area necessitates the identification of novel treatment strategies for use within infected chronic wounds. Here, several non-antibiotic compounds, polyhexamethylene biguanide (PHMB), curcumin, retinol, polysorbate 40, ethanol, and D-α-tocopheryl polyethylene glycol succinate 1000 (TPGS) were screened for their antibacterial and antibiofilm capabilities. The minimum inhibitory concentration (MIC) and crystal violet (CV) biofilm clearance against two bacteria frequently associated with infected chronic wounds, Staphylococcus aureus and Pseudomonas aeruginosa, were determined. PHMB was observed to have highly effective antibacterial activity against both bacteria, but its ability to disperse biofilms at MIC levels was variable. Meanwhile, TPGS had limited inhibitory activity but demonstrated potent antibiofilm properties. The subsequent combination of these two compounds in a formulation resulted in a synergistic enhancement of their capability to kill both S. aureus and P. aeruginosa and disperse their biofilms. Collectively, this work highlights the utility of combinatory approaches to the treatment of infected chronic wounds where bacterial colonization and biofilm formation remains significant issues.
Collapse
Affiliation(s)
- Lucy Coleman
- School of Chemistry & Chemical Engineering, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK
| | - James R G Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
- Avian Immunology, The Pirbright Institute, Woking GU24 0NE, UK
| | - Will Buchanan
- Phytoceutical Ltd., Midhurst, West Sussex GU29 9DJ, UK
| | - Tao Chen
- School of Chemistry & Chemical Engineering, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto M La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Lian X Liu
- School of Chemistry & Chemical Engineering, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
18
|
Mironova AV, Karimova AV, Bogachev MI, Kayumov AR, Trizna EY. Alterations in Antibiotic Susceptibility of Staphylococcus aureus and Klebsiella pneumoniae in Dual Species Biofilms. Int J Mol Sci 2023; 24:ijms24108475. [PMID: 37239822 DOI: 10.3390/ijms24108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
In the last decades, it has been shown that biofilm-associated infections in most cases are caused by rather two or even more pathogens than by single microorganisms. Due to intermicrobial interactions in mixed communities, bacteria change their gene expression profile, in turn leading to alterations in the biofilm structure and properties, as well as susceptibility to antimicrobials. Here, we report the alterations of antimicrobials efficiency in mixed biofilms of Staphylococcus aureus-Klebsiella pneumoniae in comparison with mono-species biofilms of each counterpart and discuss possible mechanisms of these alterations. In cell clumps detached from dual-species biofilms, S. aureus became insensitive to vancomycin, ampicillin, and ceftazidime compared to solely S. aureus cell clumps. In turn, the increased efficiency of amikacin and ciprofloxacin against both bacteria could be observed, compared to mono-species biofilms of each counterpart. Scanning electron microscopy and confocal microscopy indicate the porous structure of the dual-species biofilm, and differential fluorescent staining revealed an increased number of polysaccharides in the matrix, in turn leading to more loose structure and thus apparently providing increased permeability of the dual-species biofilm to antimicrobials. The qRT-PCR showed that ica operon in S. aureus became repressed in mixed communities, and polysaccharides are produced mainly by K. pneumoniae. While the molecular trigger of these changes remains undiscovered, detailed knowledge of the alterations in antibiotic susceptibility to given drugs opens doors for treatment correction options for S. aureus-K. pneumoniae biofilm-associated infections.
Collapse
Affiliation(s)
- Anna V Mironova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Agniya V Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail I Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Y Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
19
|
Ding W, Wang S, Qin P, Fan S, Su X, Cai P, Lu J, Cui H, Wang M, Shu Y, Wang Y, Fu HH, Zhang YZ, Li YX, Zhang W. Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms. Nat Commun 2023; 14:2033. [PMID: 37041201 PMCID: PMC10090131 DOI: 10.1038/s41467-023-37759-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Thiosulfate oxidation by microbes has a major impact on global sulfur cycling. Here, we provide evidence that bacteria within various Roseobacter lineages are important for thiosulfate oxidation in marine biofilms. We isolate and sequence the genomes of 54 biofilm-associated Roseobacter strains, finding conserved sox gene clusters for thiosulfate oxidation and plasmids, pointing to a niche-specific lifestyle. Analysis of global ocean metagenomic data suggests that Roseobacter strains are abundant in biofilms and mats on various substrates, including stones, artificial surfaces, plant roots, and hydrothermal vent chimneys. Metatranscriptomic analysis indicates that the majority of active sox genes in biofilms belong to Roseobacter strains. Furthermore, we show that Roseobacter strains can grow and oxidize thiosulfate to sulfate under both aerobic and anaerobic conditions. Transcriptomic and membrane proteomic analyses of biofilms formed by a representative strain indicate that thiosulfate induces sox gene expression and alterations in cell membrane protein composition, and promotes biofilm formation and anaerobic respiration. We propose that bacteria of the Roseobacter group are major thiosulfate-oxidizers in marine biofilms, where anaerobic thiosulfate metabolism is preferred.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Shougang Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Peng Qin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shen Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Su
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Han Cui
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yi Shu
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yongming Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
20
|
Fimbres-García JO, Flores-Sauceda M, Othon-Díaz ED, García-Galaz A, Tapia-Rodríguez MR, Silva-Espinoza BA, Ayala-Zavala JF. Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics (Basel) 2022; 11:antibiotics11121777. [PMID: 36551436 PMCID: PMC9774595 DOI: 10.3390/antibiotics11121777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance is a serious global threat, and the misuse of antibiotics is considered its main cause. It is characterized by the expression of bacterial defense mechanisms, e.g., β-lactamases, expulsion pumps, and biofilm development. Acinetobacter baumannii and Pseudomonas aeruginosa are antibiotic-resistant species that cause high morbidity and mortality. Several alternatives are proposed to defeat antibiotic resistance, including antimicrobial peptides, bacteriophages, and plant compounds. Terpenes from different plant essential oils have proven antimicrobial action against pathogenic bacteria, and evidence is being generated about their effect against antibiotic-resistant species. That is the case for oregano essential oil (Lippia graveolens), whose antibacterial effect is widely attributed to carvacrol, its main component; however, minor constituents could have an important contribution. The analyzed evidence reveals that most antibacterial evaluations have been performed on single species; however, it is necessary to analyze their activity against multispecies systems. Hence, another alternative is using plant compounds to inactivate hydrolytic enzymes and biofilms to potentiate antibiotics' effects. Despite the promising results of plant terpenes, more extensive and deep mechanistic studies are needed involving antibiotic-resistant multispecies to understand their full potential against this problem.
Collapse
Affiliation(s)
- Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Elsa Daniela Othon-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Alfonso García-Galaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Melvin R. Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
| | - Jesus F. Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico
- Correspondence: ; Tel.: +52-6622892400 (ext. 430)
| |
Collapse
|
21
|
Rubio-Canalejas A, Baelo A, Herbera S, Blanco-Cabra N, Vukomanovic M, Torrents E. 3D spatial organization and improved antibiotic treatment of a Pseudomonas aeruginosa-Staphylococcus aureus wound biofilm by nanoparticle enzyme delivery. Front Microbiol 2022; 13:959156. [PMID: 36466653 PMCID: PMC9708873 DOI: 10.3389/fmicb.2022.959156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
Chronic wounds infected by Pseudomonas aeruginosa and Staphylococcus aureus are a relevant health problem worldwide because these pathogens grow embedded in a network of polysaccharides, proteins, lipids, and extracellular DNA, named biofilm, that hinders the transport of antibiotics and increases their antimicrobial tolerance. It is necessary to investigate therapies that improve the penetrability and efficacy of antibiotics. In this context, our main objectives were to study the relationship between P. aeruginosa and S. aureus and how their relationship can affect the antimicrobial treatment and investigate whether functionalized silver nanoparticles can improve the antibiotic therapy. We used an optimized in vitro wound model that mimics an in vivo wound to co-culture P. aeruginosa and S. aureus biofilm. The in vitro wound biofilm was treated with antimicrobial combinatory therapies composed of antibiotics (gentamycin and ciprofloxacin) and biofilm-dispersing free or silver nanoparticles functionalized with enzymes (α-amylase, cellulase, DNase I, or proteinase K) to study their antibiofilm efficacy. The interaction and colocalization of P. aeruginosa and S. aureus in a wound-like biofilm were examined and detailed characterized by confocal and electronic microscopy. We demonstrated that antibiotic monotherapy is inefficient as it differentially affects the two bacterial species in the mixed biofilm, driving P. aeruginosa to overcome S. aureus when using ciprofloxacin and the contrary when using gentamicin. In contrast, dual-antibiotic therapy efficiently reduces both species while maintaining a balanced population. In addition, DNase I nanoparticle treatment had a potent antibiofilm effect, decreasing P. aeruginosa and S. aureus viability to 0.017 and 7.7%, respectively, in combined antibiotics. The results showed that using nanoparticles functionalized with DNase I enhanced the antimicrobial treatment, decreasing the bacterial viability more than using the antibiotics alone. The enzymes α-amylase and cellulase showed some antibiofilm effect but were less effective compared to the DNase I treatment. Proteinase K showed insignificant antibiofilm effect. Finally, we proposed a three-dimensional colocalization model consisting of S. aureus aggregates within the biofilm structure, which could be associated with the low efficacy of antibiofilm treatments on bacteria. Thus, designing a clinical treatment that combines antibiofilm enzymes and antibiotics may be essential to eliminating chronic wound infections.
Collapse
Affiliation(s)
- Alba Rubio-Canalejas
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aida Baelo
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sara Herbera
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marija Vukomanovic
- Advanced Materials Department, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Tomlinson BR, Denham GA, Torres NJ, Brzozowski RS, Allen JL, Jackson JK, Eswara PJ, Shaw LN. Assessing the Role of Cold-Shock Protein C: a Novel Regulator of Acinetobacter baumannii Biofilm Formation and Virulence. Infect Immun 2022; 90:e0037622. [PMID: 36121221 PMCID: PMC9584223 DOI: 10.1128/iai.00376-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a formidable opportunistic pathogen that is notoriously difficult to eradicate from hospital settings. This resilience is often attributed to a proclivity for biofilm formation, which facilitates a higher tolerance toward external stress, desiccation, and antimicrobials. Despite this, little is known regarding the mechanisms orchestrating A. baumannii biofilm formation. Here, we performed RNA sequencing (RNA-seq) on biofilm and planktonic populations for the multidrug-resistant isolate AB5075 and identified 438 genes with altered expression. To assess the potential role of genes upregulated within biofilms, we tested the biofilm-forming capacity of their respective mutants from an A. baumannii transposon library. In so doing, we uncovered 24 genes whose disruption led to reduced biofilm formation. One such element, cold shock protein C (cspC), had a highly mucoid colony phenotype, enhanced tolerance to polysaccharide degradation, altered antibiotic tolerance, and diminished adherence to abiotic surfaces. RNA-seq of the cspC mutant revealed 201 genes with altered expression, including the downregulation of pili and fimbria genes and the upregulation of multidrug efflux pumps. Using transcriptional arrest assays, it appears that CspC mediates its effects, at least in part, through RNA chaperone activity, influencing the half-life of several important transcripts. Finally, we show that CspC is required for survival during challenge by the human immune system and is key for A. baumannii dissemination and/or colonization during systemic infection. Collectively, our work identifies a cadre of new biofilm-associated genes within A. baumannii and provides unique insight into the global regulatory network of this emerging human pathogen.
Collapse
Affiliation(s)
- Brooke R. Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Grant A. Denham
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Nathanial J. Torres
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Robert S. Brzozowski
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jessie L. Allen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jessica K. Jackson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
23
|
Murrieta-Dueñas R, Serrano-Rubio J, López-Ramírez V, Segovia-Dominguez I, Cortez-González J. Prediction of microbial growth via the hyperconic neural network approach. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Bernardy EE, Raghuram V, Goldberg JB. Staphylococcus aureus and Pseudomonas aeruginosa Isolates from the Same Cystic Fibrosis Respiratory Sample Coexist in Coculture. Microbiol Spectr 2022; 10:e0097622. [PMID: 35867391 PMCID: PMC9431432 DOI: 10.1128/spectrum.00976-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Respiratory infections with bacterial pathogens remain the major cause of morbidity in individuals with the genetic disease cystic fibrosis (CF). Some studies have shown that CF patients that harbor both Staphylococcus aureus and Pseudomonas aeruginosa in their lungs are at even greater risk for more severe and complicated respiratory infections and earlier death. However, the drivers for this worse clinical condition are not well understood. To investigate the interactions between these two microbes that might be responsible for their increased pathogenic potential, we obtained 28 pairs of S. aureus and P. aeruginosa from the same respiratory samples from 18 individuals with CF. We compared the survival of each S. aureus CF isolate cocultured with its corresponding coinfecting CF P. aeruginosa to when it was cocultured with non-CF laboratory strains of P. aeruginosa. We found that the S. aureus survival was significantly higher in the presence of the coinfecting P. aeruginosa compared to laboratory P. aeruginosa strains, regardless of whether the coinfecting isolate was mucoid or nonmucoid. We also tested how a non-CF S. aureus strain, JE2, behaved with each P. aeruginosa CF isolate and found that its interaction was similar to how the CF S. aureus isolate interacted with its coinfecting P. aeruginosa. Altogether, our work suggests that interactions between S. aureus and P. aeruginosa that promote coexistence in the CF lung are isolate-dependent and that this interaction appears to be driven mainly by P. aeruginosa. IMPORTANCE Previous studies have shown that in laboratory settings, Pseudomonas aeruginosa generally kills Staphylococcus aureus. However, these bacteria are often found coinfecting the lungs of cystic fibrosis (CF) patients, which has been associated with worse patient outcomes. To investigate the interactions between these two bacteria, we competed 28 coinfection pairs obtained from the same lung samples of 18 different CF patients. We compared these results to those we previously reported of each CF S. aureus isolate against a non-CF laboratory strain of P. aeruginosa. We found that S. aureus survival against its corresponding coinfection P. aeruginosa was higher than its survival against the laboratory strain of P. aeruginosa. These results suggest that there may be selection for coexistence of these microbes in the CF lung environment. Further understanding of the interactions between P. aeruginosa and S. aureus will provide insights into the drivers of coexistence and their impact on the host.
Collapse
Affiliation(s)
- Eryn E. Bernardy
- Department of Biology, Elon University, Elon, North Carolina, USA
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Durand BARN, Pouget C, Magnan C, Molle V, Lavigne JP, Dunyach-Remy C. Bacterial Interactions in the Context of Chronic Wound Biofilm: A Review. Microorganisms 2022; 10:microorganisms10081500. [PMID: 35893558 PMCID: PMC9332326 DOI: 10.3390/microorganisms10081500] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds, defined by their resistance to care after four weeks, are a major concern, affecting millions of patients every year. They can be divided into three types of lesions: diabetic foot ulcers (DFU), pressure ulcers (PU), and venous/arterial ulcers. Once established, the classical treatment for chronic wounds includes tissue debridement at regular intervals to decrease biofilm mass constituted by microorganisms physiologically colonizing the wound. This particular niche hosts a dynamic bacterial population constituting the bed of interaction between the various microorganisms. The temporal reshuffle of biofilm relies on an organized architecture. Microbial community turnover is mainly associated with debridement (allowing transitioning from one major representant to another), but also with microbial competition and/or collaboration within wounds. This complex network of species and interactions has the potential, through diversity in antagonist and/or synergistic crosstalk, to accelerate, delay, or worsen wound healing. Understanding these interactions between microorganisms encountered in this clinical situation is essential to improve the management of chronic wounds.
Collapse
Affiliation(s)
- Benjamin A. R. N. Durand
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Cassandra Pouget
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR 5235, 34000 Montpellier, France;
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, UMR 1047, Université Montpellier, INSERM, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France; (B.A.R.N.D.); (C.P.); (C.M.); (J.-P.L.)
- Correspondence: ; Tel.: +33-466-683-202
| |
Collapse
|
26
|
Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. NPJ Biofilms Microbiomes 2022; 8:52. [PMID: 35787627 PMCID: PMC9253323 DOI: 10.1038/s41522-022-00317-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
The extracellular matrix protects biofilm cells by reducing diffusion of antimicrobials. Tobramycin is an antibiotic used extensively to treat P. aeruginosa biofilms, but it is sequestered in the biofilm periphery by the extracellular negative charge matrix and loses its efficacy significantly. Dispersal of the biofilm extracellular matrix with enzymes such as DNase I is another promising therapy that enhances antibiotic diffusion into the biofilm. Here, we combine the charge neutralization of tobramycin provided by dextran-based single-chain polymer nanoparticles (SCPNs) together with DNase I to break the biofilm matrix. Our study demonstrates that the SCPNs improve the activity of tobramycin and DNase I by neutralizing the ionic interactions that keep this antibiotic in the biofilm periphery. Moreover, the detailed effects and interactions of nanoformulations with extracellular matrix components were revealed through time-lapse imaging of the P. aeruginosa biofilms by laser scanning confocal microscopy with specific labeling of the different biofilm components.
Collapse
|
27
|
Maunders EA, Ngu DHY, Ganio K, Hossain SI, Lim BYJ, Leeming MG, Luo Z, Tan A, Deplazes E, Kobe B, McDevitt CA. The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis. Front Microbiol 2022; 13:903146. [PMID: 35685933 PMCID: PMC9171197 DOI: 10.3389/fmicb.2022.903146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration.
Collapse
Affiliation(s)
- Eve A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Dalton H. Y. Ngu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bryan Y. J. Lim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Michael G. Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Paulitsch-Fuchs AH, Bödendorfer B, Wolrab L, Eck N, Dyer NP, Lohberger B. Effect of Cobalt–Chromium–Molybdenum Implant Surface Modifications on Biofilm Development of S. aureus and S. epidermidis. Front Cell Infect Microbiol 2022; 12:837124. [PMID: 35300379 PMCID: PMC8921486 DOI: 10.3389/fcimb.2022.837124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
Periprosthetic infections are an eminent factor in patient care and also having significant economic implications. The number of biofilm-infection related replacement surgeries is increasing and will continue to do so in the following decades. To reduce both the health burden of the patients and the costs to the healthcare sector, new solutions for implant materials resistant to such infections are necessary. This study researches different surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant materials and their influence on the development of biofilms. Three smooth surfaces (CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two species have been chosen as model organisms. Biofilms were grown on material disks for 48 h and cell number, polysaccharide content, and protein contend of the biofilms were measured. Additionally, regulation of genes involved in early biofilm development (S. aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-PCR. All results were compared to the base alloy without modifications. The results show a correlation between the surface roughness and the protein and polysaccharide content of biofilm structures and also the gene expression of the biofilms grown on the different surface modifications. This is supported by the significantly different protein and polysaccharide contents of the biofilms associated with rough and smooth surface types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are statistically significantly downregulated compared to the control at 48 h on rough surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface modifications which performed best on the basis of low biofilm content.
Collapse
Affiliation(s)
- Astrid H. Paulitsch-Fuchs
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Benjamin Bödendorfer
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
| | - Lukas Wolrab
- Biomedical Sciences, University of Applied Sciences Carinthia, Klagenfurt, Austria
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Nigel P. Dyer
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
- *Correspondence: Birgit Lohberger,
| |
Collapse
|
29
|
Strain-specific interspecies interactions between co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization. Sci Rep 2022; 12:3374. [PMID: 35233050 PMCID: PMC8888623 DOI: 10.1038/s41598-022-07018-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization were examined. The genetic and phenotypic diversity between the isolates was high making the interactions detected strain-specific. Despite this, and the clinical origin of the strains, some interactions were common between some co-isolated pairs. For most pairs, P. aeruginosa exoproducts affected biofilm formation and reduced growth in vitro in its S. aureus counterpart. Conversely, S. aureus did not impair biofilm formation and stimulated swarming motility in P. aeruginosa. Co-culture in a medium that mimics respiratory mucus promoted coexistence and favored mixed microcolony formation within biofilms. Under these conditions, key genes controlled by quorum sensing were differentially regulated in both species in an isolate-dependent manner. Finally, co-infection in the acute infection model in Galleria mellonella larvae showed an additive effect only in the co-isolated pair in which P. aeruginosa affected less S. aureus growth. This work contributes to understanding the complex interspecies interactions between P. aeruginosa and S. aureus by studying strains isolated during acute infection.
Collapse
|
30
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Dop RA, Neill DR, Hasell T. Antibacterial Activity of Inverse Vulcanized Polymers. Biomacromolecules 2021; 22:5223-5233. [PMID: 34784205 PMCID: PMC7614836 DOI: 10.1021/acs.biomac.1c01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inverse vulcanization is a bulk polymerization method for synthesizing high sulfur content polymers from elemental sulfur, a byproduct of the petrochemical industry, with vinylic comonomers. There is growing interest in polysulfides as novel antimicrobial agents due to the antimicrobial activity of natural polysulfides found in garlic and onions (Tsao et al. J. Antimicrob. Chemother. 2001, 47, 665-670). Herein, we report the antibacterial properties of several inverse vulcanized polymers against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, two common causes of nosocomial infection and pathogens identified by the World Health Organization as priorities for antimicrobial development. High sulfur content polymers were synthesized with different divinyl comonomers and at different sulfur/comonomer ratios, to determine the effect of such variables on the antibacterial properties of the resulting materials. Furthermore, polymers were tested for their potential as antibacterial materials at different temperatures. It was found that the test temperature influenced the antibacterial efficacy of the polymers and could be related to the glass transition temperature of the polymer. These findings provide further understanding of the antibacterial properties of inverse vulcanized polymers and show that such polymers have the potential to be used as antibacterial surfaces.
Collapse
Affiliation(s)
- Romy A Dop
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
33
|
Maliuchenko LI, Nikolaev NS, Pchelova NN, Nikolaevich Efimov D, Preobrazhenskaia EV, Emelianov VU. Linear-Chain Nanostructured Carbon with a Silver Film Plated on Metal Components Has a Promising Effect for the Treatment of Periprosthetic Joint Infection. OSTEOLOGY 2021; 1:238-246. [DOI: https:/doi.org/10.3390/osteology1040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Background: Due to the aging of the world population, the number of joint diseases, along with the number of arthroplasties, has increased, simultaneously increasing the amount of complications, including periprosthetic joint infection (PPI). In this study, to combat a PPI, we investigated the antimicrobial properties of the new composite cover for titanium implants, silver-doped carbyne-like carbon (S-CLC) film. Methods: The first assay investigated the antimicrobial activity against Pseudomonas aeruginosa and releasing of silver ions from S-CLC films into growth media covered with S-CLC with a thickness of 1, 2, and 4 mm. The second assay determined the direct antibacterial properties of the S-CLC film’s surface against Staphylococcus aureus, Enterococcus faecalis, or P. aeruginosa. The third assay studied the formation of microbial biofilms of S. aureus or P. aeruginosa on the S-CLC coating. Silver-doped carbyne-like carbon (S-CLC)-covered or titanium plates alone were used as controls. Results: S-CLC films, compared to controls, prevented P. aeruginosa growth on 1 mm thickness agar; had direct antimicrobial properties against S. aureus, E. faecalis, and P. aeruginosa; and could prevent P. aeruginosa biofilm formation. Conclusions: S-CLC films on the Ti surface could successfully fight the most common infectious agent in PPI, and prevented biofilm formation.
Collapse
|
34
|
Kadam S, Madhusoodhanan V, Dhekane R, Bhide D, Ugale R, Tikhole U, Kaushik KS. Milieu matters: An in vitro wound milieu to recapitulate key features of, and probe new insights into, mixed-species bacterial biofilms. Biofilm 2021; 3:100047. [PMID: 33912828 PMCID: PMC8065265 DOI: 10.1016/j.bioflm.2021.100047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilms are a major cause of delayed wound healing. Consequently, the study of wound biofilms, particularly in host-relevant conditions, has gained importance. Most in vitro studies employ refined laboratory media to study biofilms, representing conditions that are not relevant to the infection state. To mimic the wound milieu, in vitro biofilm studies often incorporate serum or plasma in growth conditions, or employ clot or matrix-based biofilm models. While incorporating serum or plasma alone is a minimalistic approach, the more complex in vitro wound models are technically demanding, and poorly compatible with standard biofilm assays. Based on previous reports of clinical wound fluid composition, we have developed an in vitro wound milieu (IVWM) that includes, in addition to serum (to recapitulate wound fluid), matrix elements and biochemical factors. With Luria-Bertani broth and Fetal Bovine Serum (FBS) for comparison, the IVWM was used to study planktonic growth, biofilm features, and interspecies interactions, of common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. We demonstrate that the IVWM recapitulates widely reported in vivo biofilm features such as biomass formation, metabolic activity, increased antibiotic tolerance, 3D structure, and interspecies interactions for monospecies and mixed-species biofilms. Further, the IVWM is simple to formulate, uses laboratory-grade components, and is compatible with standard biofilm assays. Given this, it holds potential as a tractable approach to study wound biofilms under host-relevant conditions.
Collapse
Affiliation(s)
- Snehal Kadam
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Vandana Madhusoodhanan
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Radhika Dhekane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Devyani Bhide
- MES Abasaheb Garware College of Arts and Science, Pune, India
| | - Rutuja Ugale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Utkarsha Tikhole
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Karishma S. Kaushik
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
35
|
Žiemytė M, Carda-Diéguez M, Rodríguez-Díaz JC, Ventero MP, Mira A, Ferrer MD. Real-time monitoring of Pseudomonas aeruginosa biofilm growth dynamics and persister cells' eradication. Emerg Microbes Infect 2021; 10:2062-2075. [PMID: 34663186 PMCID: PMC8583918 DOI: 10.1080/22221751.2021.1994355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023]
Abstract
Biofilm formation and the appearance of persister cells with low metabolic rates are key factors affecting conventional treatment failure and antibiotic resistance. Using impedance-based measurements, crystal violet staining and traditional culture we have studied the biofilm growth dynamics of 13 Pseudomonas aeruginosa strains under the effect of seven conventional antibiotics. Real-time growth quantifications revealed that the exposure of established P. aeruginosa biofilms to certain concentrations of ciprofloxacin, ceftazidime and tobramycin induced the emergence of persister cells, that showed different morphology and pigmentation, as well increased antibiotic resistance. Whole-genome sequencing of wildtype and persister cells identified several SNPs, a genomic inversion and a genomic duplication in one of the strains. However, these mutations were not uniquely associated with persisters, suggesting that the persistent phenotype may be related to metabolic and transcriptional changes. Given that mannitol has been proposed to activate bacterial metabolism, the synergistic combination of mannitol and ciprofloxacin was evaluated on clinical 48 h P. aeruginosa biofilms. When administered at doses ≥320 mg/L, mannitol was capable of preventing persister cell formation by efficiently activating dormant bacteria and making them susceptible to the antibiotic. These results were confirmed using viable colony counting. As the tested ciprofloxacin-mannitol combination appeared to fully eradicate mature biofilms, we conclude that impedance-based biofilm diagnostics, which permits antibiotic susceptibility testing and the identification of persister cells, is of great potential for the clinical practice and could aid in establishing treatment breakpoints for emerging biofilm-related infections.
Collapse
Affiliation(s)
- Miglė Žiemytė
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | | | - Juan C. Rodríguez-Díaz
- Servicio de Microbiología, Hospital General Universitario de Alicante, ISABIAL, Alicante, Spain
| | - Maria P. Ventero
- Servicio de Microbiología, Hospital General Universitario de Alicante, ISABIAL, Alicante, Spain
| | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - María D. Ferrer
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
36
|
Raval YS, Mohamed A, Flurin L, Mandrekar JN, Greenwood Quaintance KE, Beyenal H, Patel R. Hydrogen-peroxide generating electrochemical bandage is active in vitro against mono- and dual-species biofilms. Biofilm 2021; 3:100055. [PMID: 34585138 PMCID: PMC8455977 DOI: 10.1016/j.bioflm.2021.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms formed by antibiotic-resistant bacteria in wound beds present unique challenges in terms of treating chronic wound infections; biofilms formed by one or more than one bacterial species are often involved. In this work, the in vitro anti-biofilm activity of a novel electrochemical bandage (e-bandage) composed of carbon fabric and controlled by a wearable potentiostat, designed to continuously deliver low amounts of hydrogen peroxide (H2O2) was evaluated against 34 mono-species and 12 dual-species membrane bacterial biofilms formed by Staphylococcus aureus, S. epidermidis, Enterococcus faecium, E. faecalis, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Cutibacterium acnes, and Bacteroides fragilis. Biofilms were grown on polycarbonate membranes placed atop agar plates. An e-bandage, which electrochemically reduces dissolved oxygen to H2O2 when polarized at -0.6 VAg/AgCl, was then placed atop each membrane biofilm and polarized continuously for 12, 24, and 48 h using a wearable potentiostat. Time-dependent decreases in viable CFU counts of all mono- and dual-species biofilms were observed after e-bandage treatment. 48 h of e-bandage treatment resulted in an average reduction of 8.17 ± 0.40 and 7.99 ± 0.32 log10 CFU/cm2 for mono- and dual-species biofilms, respectively. Results suggest that the described H2O2 producing e-bandage can reduce in vitro viable cell counts of biofilms grown either in mono- or dual-species forms, and should be further developed as a potential antibiotic-free treatment strategy for treating chronic wound infections.
Collapse
Affiliation(s)
- Yash S. Raval
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Laure Flurin
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Robin Patel
- Division of Clinical Microbiology, Mayo Clinic, Rochester, MN, USA
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Fathollahi A, Coupe SJ. Effect of environmental and nutritional conditions on the formation of single and mixed-species biofilms and their efficiency in cadmium removal. CHEMOSPHERE 2021; 283:131152. [PMID: 34147985 DOI: 10.1016/j.chemosphere.2021.131152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Remediation of contaminated water and wastewater using biosorption methods has attracted significant attention in recent decades due to its efficiency, convenience and minimised environmental effects. Bacterial biosorbents are normally deployed as a non-living powder or suspension. Little is known about the mechanisms or rates of bacterial attachment to surfaces and effect of various conditions on the biofilm development, as well as efficiency of living biofilms in the removal of heavy metals. In the present study, the effect of environmental and nutritional conditions such as pH, temperature, concentrations of phosphate, glucose, amino acid, nitrate, calcium and magnesium, on planktonic and biofilm growth of single and mixed bacterial cultures, were measured. Actinomyces meyeri, Bacillus cereus, Escherichia coli, Pseudomonas fluorescens strains were evaluated to determine the optimum biofilm growth conditions. The Cd(II) biosorption efficiencies of the mixed-species biofilm developed in the optimum growth condition, were investigated and modelled using Langmuir, Freundlich and Dubnin Radushkevich models. The biofilm quantification techniques revealed that the optimum concentration of phosphate, glucose, amino acid, nitrate, calcium and magnesium for the biofilm development were 25, 10, 1, 1.5, 5 and 0.5 g L-1, respectively. Further increases in the nutrient concentrations resulted in less biofilm growth. The optimum pH for the biofilm growth was 7 and alkaline or acidic conditions caused significant negative effects on the bacterial attachment and development. The optimum temperatures for the bacterial attachment to the surface were between 25 and 35 °C. The maximum Cd(II) biosorption efficiency (99%) and capacity (18.19 mg g-1) of the mixed-species biofilm, occurred on day 35 (Ci = 0.1 mg L-1) and 1 (Ci = 20 mg L-1) of biofilm growth, respectively. Modelling of the biosorption data revealed that Cd(II) removal by the living biofilm was a physical process by a monolayer of biofilm. The results of present study suggested that environmental and nutritional conditions had a significant effect on bacterial biofilm formation and its efficiency in Cd(II) removal.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| |
Collapse
|
38
|
Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021; 7:73. [PMID: 34504100 PMCID: PMC8429633 DOI: 10.1038/s41522-021-00243-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Burn wounds can create significant damage to human skin, compromising one of the key barriers to infection. The leading cause of death among burn wound patients is infection. Even in the patients that survive, infections can be notoriously difficult to treat and can cause lasting damage, with delayed healing and prolonged hospital stays. Biofilm formation in the burn wound site is a major contributing factor to the failure of burn treatment regimens and mortality as a result of burn wound infection. Bacteria forming a biofilm or a bacterial community encased in a polysaccharide matrix are more resistant to disinfection, the rigors of the host immune system, and critically, more tolerant to antibiotics. Burn wound-associated biofilms are also thought to act as a launchpad for bacteria to establish deeper, systemic infection and ultimately bacteremia and sepsis. In this review, we discuss some of the leading burn wound pathogens and outline how they regulate biofilm formation in the burn wound microenvironment. We also discuss the new and emerging models that are available to study burn wound biofilm formation in vivo.
Collapse
|
39
|
Blanco-Cabra N, López-Martínez MJ, Arévalo-Jaimes BV, Martin-Gómez MT, Samitier J, Torrents E. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. NPJ Biofilms Microbiomes 2021; 7:62. [PMID: 34344902 PMCID: PMC8333102 DOI: 10.1038/s41522-021-00236-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as well as to measure the effect of antimicrobials on biofilms without introducing disturbances due to manipulation, thus better mimicking real-life clinical situations. Our results demonstrate that BiofilmChip is a straightforward tool for antimicrobial biofilm susceptibility testing that could be easily implemented in routine clinical laboratories.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria José López-Martínez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Monforte de Lemos 3-5, Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Monforte de Lemos 3-5, Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
40
|
Del Mar Cendra M, Torrents E. Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle. Virulence 2021; 11:862-876. [PMID: 32697923 PMCID: PMC7549915 DOI: 10.1080/21505594.2020.1787034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Intracellular invasion is an advantageous mechanism used by pathogens to evade host defense and antimicrobial therapy. In patients, the intracellular microbial lifestyle can lead to infection persistence and recurrence, thus worsening outcomes. Lung infections caused by Pseudomonas aeruginosa, especially in cystic fibrosis (CF) patients, are often aggravated by intracellular invasion and persistence of the pathogen. Proliferation of the infectious species relies on a continuous deoxyribonucleotide (dNTP) supply, for which the ribonucleotide reductase enzyme (RNR) is the unique provider. The large genome plasticity of P. aeruginosa and its ability to rapidly adapt to different environments are challenges for studying the pathophysiology associated with this type of infection. Using different reference strains and clinical isolates of P. aeruginosa independently combined with alveolar (A549) and bronchial (16HBE14o- and CF-CFBE41o-) epithelial cells, we analyzed host-pathogen interactions and intracellular bacterial persistence with the aim of determining a cell type-directed infection promoted by the P. aeruginosa strains. The oscillations in cellular toxicity and oxygen consumption promoted by the intracellular persistence of the strains were also analyzed among the different infectious lung models. Significantly, we identified class II RNR as the enzyme that supplies dNTPs to intracellular P. aeruginosa. This discovery could contribute to the development of RNR-targeted strategies against the chronicity occurring in this type of lung infection. Overall our study demonstrates that the choice of bacterial strain is critical to properly study the type of infectious process with relevant translational outcomes.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Science and Technology , Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Science and Technology , Barcelona, Spain.,Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona , Barcelona, Spain
| |
Collapse
|
41
|
Tomlinson BR, Malof ME, Shaw LN. A global transcriptomic analysis of Staphylococcus aureus biofilm formation across diverse clonal lineages. Microb Genom 2021; 7. [PMID: 34227933 PMCID: PMC8477394 DOI: 10.1099/mgen.0.000598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A key characteristic of Staphylococcus aureus infections, and one that also varies phenotypically between clones, is that of biofilm formation, which aids in bacterial persistence through increased adherence and immune evasion. Though there is a general understanding of the process of biofilm formation - adhesion, proliferation, maturation and dispersal - the tightly orchestrated molecular events behind each stage, and what drives variation between S. aureus strains, has yet to be unravelled. Herein we measure biofilm progression and dispersal in real-time across the five major S. aureus CDC-types (USA100-USA500) revealing adherence patterns that differ markedly amongst strains. To gain insight into this, we performed transcriptomic profiling on these isolates at multiple timepoints, compared to planktonically growing counterparts. Our findings support a model in which eDNA release, followed by increased positive surface charge, perhaps drives initial abiotic attachment. This is seemingly followed by cooperative repression of autolysis and activation of poly-N-acetylglucosamine (PNAG) production, which may indicate a developmental shift in structuring the biofilm matrix. As biofilms mature, diminished translational capacity was apparent, with 53 % of all ribosomal proteins downregulated, followed by upregulation of anaerobic respiration enzymes. These findings are noteworthy because reduced cellular activity and an altered metabolic state have been previously shown to contribute to higher antibiotic tolerance and bacterial persistence. In sum, this work is, to our knowledge, the first study to investigate transcriptional regulation during the early, establishing phase of biofilm formation, and to compare global transcriptional regulation both temporally and across multiple clonal lineages.
Collapse
Affiliation(s)
- Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Morgan E Malof
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| |
Collapse
|
42
|
Tomlinson BR, Malof ME, Shaw LN. A global transcriptomic analysis of Staphylococcus aureus biofilm formation across diverse clonal lineages. Microb Genom 2021. [PMID: 34227933 DOI: 10.1099/mgen0000598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
A key characteristic of Staphylococcus aureus infections, and one that also varies phenotypically between clones, is that of biofilm formation, which aids in bacterial persistence through increased adherence and immune evasion. Though there is a general understanding of the process of biofilm formation - adhesion, proliferation, maturation and dispersal - the tightly orchestrated molecular events behind each stage, and what drives variation between S. aureus strains, has yet to be unravelled. Herein we measure biofilm progression and dispersal in real-time across the five major S. aureus CDC-types (USA100-USA500) revealing adherence patterns that differ markedly amongst strains. To gain insight into this, we performed transcriptomic profiling on these isolates at multiple timepoints, compared to planktonically growing counterparts. Our findings support a model in which eDNA release, followed by increased positive surface charge, perhaps drives initial abiotic attachment. This is seemingly followed by cooperative repression of autolysis and activation of poly-N-acetylglucosamine (PNAG) production, which may indicate a developmental shift in structuring the biofilm matrix. As biofilms mature, diminished translational capacity was apparent, with 53 % of all ribosomal proteins downregulated, followed by upregulation of anaerobic respiration enzymes. These findings are noteworthy because reduced cellular activity and an altered metabolic state have been previously shown to contribute to higher antibiotic tolerance and bacterial persistence. In sum, this work is, to our knowledge, the first study to investigate transcriptional regulation during the early, establishing phase of biofilm formation, and to compare global transcriptional regulation both temporally and across multiple clonal lineages.
Collapse
Affiliation(s)
- Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Morgan E Malof
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015, Tampa, FL, USA
| |
Collapse
|
43
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Chen X, Lorenzen J, Xu Y, Jonikaite M, Thaarup IC, Bjarnsholt T, Kirketerp-Møller K, Thomsen TR. A novel chronic wound biofilm model sustaining coexistence of Pseudomonas aeruginosa and Staphylococcus aureus suitable for testing of antibiofilm effect of antimicrobial solutions and wound dressings. Wound Repair Regen 2021; 29:820-829. [PMID: 34105845 PMCID: PMC8453894 DOI: 10.1111/wrr.12944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 01/20/2023]
Abstract
Chronic wounds are a large burden to patients and healthcare systems. Biofilm infections in chronic wounds are crucial factors leading to non‐healing of wounds. It is important to study biofilm in wounds and to develop effective interventions against wound biofilm. This study presents a novel in vitro biofilm model mimicking infected chronic wounds. The novel layered chronic wound biofilm model uses woundlike media and includes both Pseudomonas aeruginosa and Staphylococcus aureus, which have been identified as the most important pathogens in wounds. The model sustains their coexistence for at least 96 h. Microscopy of the model revealed microbial growth in non‐surface attached microcolonies as previously observed in vivo. The model was used to determine log10‐reduction for the use of an antimicrobial solution and antimicrobial dressings (containing silver or honey) showing moderate‐to‐low antibiofilm effect, which indicates better concordance with the observed clinical performance of this type of treatment than other widely used standard tests.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | - Jan Lorenzen
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Yijuan Xu
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark.,Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Monika Jonikaite
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | | | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Kirketerp-Møller
- Department of Dermatology and Wounds, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark.,Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| |
Collapse
|
45
|
Czajkowska J, Junka A, Hoppe J, Toporkiewicz M, Pawlak A, Migdał P, Oleksy-Wawrzyniak M, Fijałkowski K, Śmiglak M, Markowska-Szczupak A. The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR 1 Footprint. Int J Mol Sci 2021; 22:ijms22115826. [PMID: 34072418 PMCID: PMC8198359 DOI: 10.3390/ijms22115826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is one of the most prevalent pathogens associated with several types of biofilm-based infections, including infections of chronic wounds. Mature staphylococcal biofilm is extremely hard to eradicate from a wound and displays a high tendency to induce recurring infections. Therefore, in the present study, we aimed to investigate in vitro the interaction between S. aureus biofilm and fibroblast cells searching for metabolites that could be considered as potential biomarkers of critical colonization and infection. Utilizing advanced microscopy and microbiological methods to examine biofilm formation and the staphylococcal infection process, we were able to distinguish 4 phases of biofilm development. The analysis of staphylococcal biofilm influence on the viability of fibroblasts allowed us to pinpoint the moment of critical colonization-12 h post contamination. Based on the obtained model we performed a metabolomics analysis by 1H NMR spectroscopy to provide new insights into the pathophysiology of infection. We identified a set of metabolites related to the switch to anaerobic metabolism that was characteristic for staphylococcal biofilm co-cultured with fibroblast cells. The data presented in this study may be thus considered a noteworthy but preliminary step in the direction of developing a new, NMR-based tool for rapid diagnosing of infection in a chronic wound.
Collapse
Affiliation(s)
- Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Adam Junka
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence: ; Tel.: +48-889-229-341
| | - Jakub Hoppe
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Andrzej Pawlak
- Department of Nervous System Diseases, Kazimierza Bartla 5, 50-996 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Monika Oleksy-Wawrzyniak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Marcin Śmiglak
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| |
Collapse
|
46
|
A Pseudomonas aeruginosa Antimicrobial Affects the Biogeography but Not Fitness of Staphylococcus aureus during Coculture. mBio 2021; 12:mBio.00047-21. [PMID: 33785630 PMCID: PMC8092195 DOI: 10.1128/mbio.00047-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many human infections result from the action of multispecies bacterial communities. Within these communities, bacteria have been proposed to directly interact via physical and chemical means, resulting in increased disease and antimicrobial tolerance. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common coinfecting bacteria in human infections, including the cystic fibrosis (CF) lung. There is emerging evidence that coinfection with these microbes enhances disease severity and antimicrobial tolerance through direct interactions. However, one of the challenges to studying microbial interactions relevant to human infection is the lack of experimental models with the versatility to investigate complex interaction dynamics while maintaining biological relevance. Here, we developed a model based on an in vitro medium that mimics human CF lung secretions (synthetic CF sputum medium [SCFM2]) and allows time-resolved assessment of fitness and community spatial structure at the micrometer scale. Our results reveal that P. aeruginosa and S. aureus coexist as spatially structured communities in SCFM2 under static growth conditions, with S. aureus enriched at a distance of 3.5 μm from P. aeruginosa. Multispecies aggregates were rare, and aggregate (biofilm) sizes resembled those in human CF sputum. Elimination of P. aeruginosa’s ability to produce the antistaphylococcal small molecule HQNO (2-heptyl-4-hydroxyquinoline N-oxide) had no effect on bacterial fitness but altered the spatial structure of the community by increasing the distance of S. aureus from P. aeruginosa to 7.6 μm. Lastly, we show that coculture with P. aeruginosa sensitizes S. aureus to killing by the antibiotic tobramycin compared to monoculture growth despite HQNO enhancing tolerance during coculture. Our findings reveal that SCFM2 is a powerful model for studying P. aeruginosa and S. aureus and that HQNO alters S. aureus biogeography and antibiotic susceptibility without affecting fitness.
Collapse
|
47
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
48
|
Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021; 116:1-15. [PMID: 33576132 DOI: 10.1111/mmi.14699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are opportunistic pathogens that are most commonly co-isolated from chronic wounds and the sputum of cystic fibrosis patients. Over the last few years, there have been plenty of contrasting results from studies involving P. aeruginosa and S. aureus co-cultures. The general concept that P. aeruginosa outcompetes S. aureus has been challenged and there is more evidence now that they can co-exist. Nevertheless, it still remains difficult to mimic polymicrobial infections in vitro and in vivo. In this review, we discuss recent advances in regard to Pa-Sa molecular interactions, their physical responses, and in vitro and in vivo models. We believe it is important to optimize growth conditions in the laboratory, determine appropriate bacterial starting ratios, and consider environmental factors to study the co-existence of these two pathogens. Ideally, optimized growth media should reflect host-mimicking conditions with or without host cells that allow both bacteria to co-exist. To further identify mechanisms that could help to treat these complex infections, we propose to use relevant polymicrobial animal models. Ultimately, we briefly discuss how polymicrobial infections can increase antibiotic tolerance.
Collapse
Affiliation(s)
- Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
50
|
Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020; 11:600221. [PMID: 33362747 PMCID: PMC7755613 DOI: 10.3389/fmicb.2020.600221] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane vesicles are the nano-sized vesicles originating from membranes. The production of membrane vesicles is a common feature among bacteria. Depending on the bacterial growth phase and environmental conditions, membrane vesicles show diverse characteristics. Various physiological and ecological roles have been attributed to membrane vesicles under both homeostatic and stressful conditions. Pathogens encounter several stressors during colonization in the hostile environment of host tissues. Nutrient deficiency, the presence of antibiotics as well as elements of the host’s immune system are examples of stressors threatening pathogens inside their host. To combat stressors and survive, pathogens have established various defensive mechanisms, one of them is production of membrane vesicles. Pathogens produce membrane vesicles to alleviate the destructive effects of antibiotics or other types of antibacterial treatments. Additionally, membrane vesicles can also provide benefits for the wider bacterial community during infections, through the transfer of resistance or virulence factors. Hence, given that membrane vesicle production may affect the activities of antibacterial agents, their production should be considered when administering antibacterial treatments. Besides, regarding that membrane vesicles play vital roles in bacteria, disrupting their production may suggest an alternative strategy for battling against pathogens. Here, we aim to review the stressors encountered by pathogens and shed light on the roles of membrane vesicles in increasing pathogen adaptabilities in the presence of stress-inducing factors.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|