1
|
Katrib C, Hladky H, Timmerman K, Durieux N, Dutheil N, Bezard E, Devos D, Laloux C, Betrouni N. Magnetic resonance imaging characterization of an α-synuclein model of Parkinson's disease. Eur J Neurosci 2024; 60:7038-7057. [PMID: 39551614 DOI: 10.1111/ejn.16610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by three histological hallmarks: dopaminergic neuronal degeneration, α-synuclein accumulation and iron deposition. Over the last years, neuroimaging, particularly magnetic resonance imaging (MRI) has provided invaluable insights into the mechanisms underlying the disease. However, no imaging method has yet been able to translate α-synuclein protein accumulation and spreading. Amongst the animal models mimicking the disease, the α-synuclein rat, generated through the injection of human α-synuclein, has been characterized in terms of behavioural and histological aspects but not thoroughly explored in MRI. The aim of this study is, therefore, to identify the radiological signature from several MRI sequences, while controlling for histological and behavioural characteristics. Rats were assessed for motor and cognitive functions over a 4-month period. During this time, three MRI sessions, including both morphological and functional sequences, were conducted. Histological studies evaluated the three main hallmarks of PD. The progressive dopaminergic neurodegeneration and the spread of human α-synuclein corresponded to the level of sensorimotor, attentional and learning deficits observed in this PD model. MRI analyses showed progressive structural abnormalities in the midbrain, diencephalon and several cortical structures, as well as a pattern of hyperconnectivity in the basal ganglia and cortical networks. The regions affected in imaging demonstrated the highest load of human α-synuclein. This model's structural and functional MRI changes could serve as indirect indicators of α-synuclein accumulation and its association with impaired non-motor functions.
Collapse
Affiliation(s)
- Chirine Katrib
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Hector Hladky
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Kelly Timmerman
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Nicolas Durieux
- US41-UAR2014 PLBS, Lille In vivo imaging and functional exploration platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nathalie Dutheil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| | - Charlotte Laloux
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
- US41-UAR2014 PLBS, Lille In vivo imaging and functional exploration platform, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nacim Betrouni
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1772, LilNCog - Lille Neuroscience & Cognition, Lille University Hospital, Lille, France
| |
Collapse
|
2
|
Haas S, Bravo F, Ionescu TM, Gonzalez-Menendez I, Quintanilla-Martinez L, Dunkel G, Kuebler L, Hahn A, Lanzenberger R, Weigelin B, Reischl G, Pichler BJ, Herfert K. Functional PET/MRI reveals active inhibition of neuronal activity during optogenetic activation of the nigrostriatal pathway. SCIENCE ADVANCES 2024; 10:eadn2776. [PMID: 39454014 PMCID: PMC11506239 DOI: 10.1126/sciadv.adn2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
The dopaminergic system is a central component of the brain's neurobiological framework, governing motor control and reward responses and playing an essential role in various brain disorders. Within this complex network, the nigrostriatal pathway represents a critical circuit for dopamine neurotransmission from the substantia nigra to the striatum. However, stand-alone functional magnetic resonance imaging is unable to study the intricate interplay between brain activation and its molecular underpinnings. In our study, the use of a functional [fluorine-18]2-fluor-2-deoxy-d-glucose positron emission tomography approach, simultaneously with blood oxygen level-dependent functional magnetic resonance imaging, provided an important insight that demonstrates an active suppression of the nigrostriatal activity during optogenetic stimulation. This result increases our understanding of the molecular mechanisms of brain function and provides an important perspective on how dopamine influences hemodynamic responses in the brain.
Collapse
Affiliation(s)
- Sabrina Haas
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fernando Bravo
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tudor M. Ionescu
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gina Dunkel
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Laura Kuebler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Bernd J. Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Lin Y, Ding Y, Chang S, Ge X, Sui X, Jiang Y. RS 2-Net: An end-to-end deep learning framework for rodent skull stripping in multi-center brain MRI. Neuroimage 2024; 298:120769. [PMID: 39122056 DOI: 10.1016/j.neuroimage.2024.120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Skull stripping is a crucial preprocessing step in magnetic resonance imaging (MRI), where experts manually create brain masks. This labor-intensive process heavily relies on the annotator's expertise, as automation faces challenges such as low tissue contrast, significant variations in image resolution, and blurred boundaries between the brain and surrounding tissues, particularly in rodents. In this study, we have developed a lightweight framework based on Swin-UNETR to automate the skull stripping process in MRI scans of mice and rats. The primary objective of this framework is to eliminate the need for preprocessing, reduce the workload, and provide an out-of-the-box solution capable of adapting to various MRI image resolutions. By employing a lightweight neural network, we aim to lower the performance requirements of the framework. To validate the effectiveness of our approach, we trained and evaluated the network using publicly available multi-center data, encompassing 1,037 rodents and 1,142 images from 89 centers, resulting in a preliminary mean Dice coefficient of 0.9914. The framework, data, and pre-trained models can be found on the following link: https://github.com/VitoLin21/Rodent-Skull-Stripping.
Collapse
Affiliation(s)
| | | | | | - Xinting Ge
- Shandong Normal University, Jinan, China
| | | | | |
Collapse
|
4
|
Gomes-Ribeiro J, Martins J, Sereno J, Deslauriers-Gauthier S, Summavielle T, Coelho JE, Remondes M, Castelo-Branco M, Lopes LV. Mapping functional traces of opioid memories in the rat brain. Brain Commun 2024; 6:fcae281. [PMID: 39229487 PMCID: PMC11369824 DOI: 10.1093/braincomms/fcae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Addiction to psychoactive substances is a maladaptive learned behaviour. Contexts surrounding drug use integrate this aberrant mnemonic process and hold strong relapse-triggering ability. Here, we asked where context and salience might be concurrently represented in the brain during retrieval of drug-context paired associations. For this, we developed a morphine-conditioned place preference protocol that allows contextual stimuli presentation inside a magnetic resonance imaging scanner and investigated differences in activity and connectivity at context recall. We found context-specific responses to stimulus onset in multiple brain regions, namely, limbic, sensory and striatal. Differences in functional interconnectivity were found among amygdala, lateral habenula, and lateral septum. We also investigated alterations to resting-state functional connectivity and found increased centrality of the lateral septum in a proposed limbic network, as well as increased functional connectivity of the lateral habenula and hippocampal 'cornu ammonis' 1 region, after a protocol of associative drug-context. Finally, we found that pre- conditioned place preference resting-state connectivity of the lateral habenula and amygdala was predictive of inter-individual conditioned place preference score differences. Overall, our findings show that drug and saline-paired contexts establish distinct memory traces in overlapping functional brain microcircuits and that intrinsic connectivity of the habenula, septum, and amygdala likely underlies the individual maladaptive contextual learning to opioid exposure. We have identified functional maps of acquisition and retrieval of drug-related memory that may support the relapse-triggering ability of opioid-associated sensory and contextual cues. These findings may clarify the inter-individual sensitivity and vulnerability seen in addiction to opioids found in humans.
Collapse
Affiliation(s)
- Joana Gomes-Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José Sereno
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- CQC, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Teresa Summavielle
- Addiction Biology Group, i3S- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Miguel Remondes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina Veterinária, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Marashli S, Janz P, Redondo RL. Auditory brainstem responses are resistant to pharmacological modulation in Sprague Dawley wild-type and Neurexin1α knockout rats. BMC Neurosci 2024; 25:18. [PMID: 38491350 PMCID: PMC10941391 DOI: 10.1186/s12868-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.
Collapse
Affiliation(s)
- Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
6
|
Ionescu TM, Grohs-Metz G, Hengerer B. Functional ultrasound detects frequency-specific acute and delayed S-ketamine effects in the healthy mouse brain. Front Neurosci 2023; 17:1177428. [PMID: 37266546 PMCID: PMC10229773 DOI: 10.3389/fnins.2023.1177428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction S-ketamine has received great interest due to both its antidepressant effects and its potential to induce psychosis when administered subchronically. However, no studies have investigated both its acute and delayed effects using in vivo small-animal imaging. Recently, functional ultrasound (fUS) has emerged as a powerful alternative to functional magnetic resonance imaging (fMRI), outperforming it in sensitivity and in spatiotemporal resolution. In this study, we employed fUS to thoroughly characterize acute and delayed S-ketamine effects on functional connectivity (FC) within the same cohort at slow frequency bands ranging from 0.01 to 1.25 Hz, previously reported to exhibit FC. Methods We acquired fUS in a total of 16 healthy C57/Bl6 mice split in two cohorts (n = 8 received saline, n = 8 S-ketamine). One day after the first scans, performed at rest, the mice received the first dose of S-ketamine during the second measurement, followed by four further doses administered every 2 days. First, we assessed FC reproducibility and reliability at baseline in six frequency bands. Then, we investigated the acute and delayed effects at day 1 after the first dose and at day 9, 1 day after the last dose, for all bands, resulting in a total of four fUS measurements for every mouse. Results We found reproducible (r > 0.9) and reliable (r > 0.9) group-average readouts in all frequency bands, only the 0.01-0.27 Hz band performing slightly worse. Acutely, S-ketamine induced strong FC increases in five of the six bands, peaking in the 0.073-0.2 Hz band. These increases comprised both cortical and subcortical brain areas, yet were of a transient nature, FC almost returning to baseline levels towards the end of the scan. Intriguingly, we observed robust corticostriatal FC decreases in the fastest band acquired (0.75 Hz-1.25 Hz). These changes persisted to a weaker extent after 1 day and at this timepoint they were accompanied by decreases in the other five bands as well. After 9 days, the decreases in the 0.75-1.25 Hz band were maintained, however no changes between cohorts could be detected in any other bands. Discussion In summary, the study reports that acute and delayed ketamine effects in mice are not only dissimilar but have different directionalities in most frequency bands. The complementary readouts of the employed frequency bands recommend the use of fUS for frequency-specific investigation of pharmacological effects on FC.
Collapse
|
7
|
Menon V, Cerri D, Lee B, Yuan R, Lee SH, Shih YYI. Optogenetic stimulation of anterior insular cortex neurons in male rats reveals causal mechanisms underlying suppression of the default mode network by the salience network. Nat Commun 2023; 14:866. [PMID: 36797303 PMCID: PMC9935890 DOI: 10.1038/s41467-023-36616-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The salience network (SN) and default mode network (DMN) play a crucial role in cognitive function. The SN, anchored in the anterior insular cortex (AI), has been hypothesized to modulate DMN activity during stimulus-driven cognition. However, the causal neural mechanisms underlying changes in DMN activity and its functional connectivity with the SN are poorly understood. Here we combine feedforward optogenetic stimulation with fMRI and computational modeling to dissect the causal role of AI neurons in dynamic functional interactions between SN and DMN nodes in the male rat brain. Optogenetic stimulation of Chronos-expressing AI neurons suppressed DMN activity, and decreased AI-DMN and intra-DMN functional connectivity. Our findings demonstrate that feedforward optogenetic stimulation of AI neurons induces dynamic suppression and decoupling of the DMN and elucidates previously unknown features of rodent brain network organization. Our study advances foundational knowledge of causal mechanisms underlying dynamic cross-network interactions and brain network switching.
Collapse
Grants
- R01 MH121069 NIMH NIH HHS
- P50 HD103573 NICHD NIH HHS
- T32 AA007573 NIAAA NIH HHS
- R01 NS091236 NINDS NIH HHS
- R01 MH126518 NIMH NIH HHS
- S10 MH124745 NIMH NIH HHS
- U01 AA020023 NIAAA NIH HHS
- R01 MH111429 NIMH NIH HHS
- S10 OD026796 NIH HHS
- R01 NS086085 NINDS NIH HHS
- R01 EB022907 NIBIB NIH HHS
- P60 AA011605 NIAAA NIH HHS
- RF1 NS086085 NINDS NIH HHS
- RF1 MH117053 NIMH NIH HHS
- This work was supported in part by the National Institute of Mental Health (R01MH121069 to V.M., and R01MH126518, RF1MH117053, R01MH111429, S10MH124745 to Y.-Y.I.S.), National Institute on Alcohol Abuse and Alcoholism (P60AA011605 and U01AA020023 to Y.-Y.I.S., T32AA007573 to D.C.), National Institute of Neurological Disorders and Stroke (R01NS086085 to V.M., R01NS091236 to Y.-Y.I.S.), National Institute of Child Health and Human Development (P50HD103573 to Y.-Y.I.S.), National Institute of Biomedical Imaging and Bioengineering (R01EB022907 to V.M.), and National Institute of Health Office of the Director (S10OD026796 to Y.-Y.I.S.).
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Domenic Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rui Yuan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
9
|
Lambers H, Wachsmuth L, Lippe C, Faber C. The impact of vasomotion on analysis of rodent fMRI data. Front Neurosci 2023; 17:1064000. [PMID: 36908777 PMCID: PMC9998505 DOI: 10.3389/fnins.2023.1064000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Small animal fMRI is an essential part of translational research in the cognitive neurosciences. Due to small dimensions and animal physiology preclinical fMRI is prone to artifacts that may lead to misinterpretation of the data. To reach unbiased translational conclusions, it is, therefore, crucial to identify potential sources of experimental noise and to develop correction methods for contributions that cannot be avoided such as physiological noise. Aim of this study was to assess origin and prevalence of hemodynamic oscillations (HDO) in preclinical fMRI in rat, as well as their impact on data analysis. Methods Following the development of algorithms for HDO detection and suppression, HDO prevalence in fMRI measurements was investigated for different anesthetic regimens, comprising isoflurane and medetomidine, and for both gradient echo and spin echo fMRI sequences. In addition to assessing the effect of vasodilation on HDO, it was studied if HDO have a direct neuronal correlate using local field potential (LFP) recordings. Finally, the impact of HDO on analysis of fMRI data was assessed, studying both the impact on calculation of activation maps as well as the impact on brain network analysis. Overall, 303 fMRI measurements and 32 LFP recordings were performed in 71 rats. Results In total, 62% of the fMRI measurements showed HDO with a frequency of (0.20 ± 0.02) Hz. This frequent occurrence indicated that HDO cannot be generally neglected in fMRI experiments. Using the developed algorithms, HDO were detected with a specificity of 95%, and removed efficiently from the signal time courses. HDO occurred brain-wide under vasoconstrictive conditions in both small and large blood vessels. Vasodilation immediately interrupted HDO, which, however, returned within 1 h under vasoconstrictive conditions. No direct neuronal correlate of HDO was observed in LFP recordings. HDO significantly impacted analysis of fMRI data, leading to altered cluster sizes and F-values for activated voxels, as well as altered brain networks, when comparing data with and without HDO. Discussion We therefore conclude that HDO are caused by vasomotion under certain anesthetic conditions and should be corrected during fMRI data analysis to avoid bias.
Collapse
Affiliation(s)
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Chris Lippe
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Adami C, Bergadano A, Casoni D. Tranquilizers, sedatives, local anaesthetics and antimuscarinic agents. ANESTHESIA AND ANALGESIA IN LABORATORY ANIMALS 2023:87-107. [DOI: 10.1016/b978-0-12-822215-7.00029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Lopez-Castro A, Angeles-Valdez D, Rojas-Piloni G, Garza-Villarreal EA. Focal electrical stimulation on an alcohol disorder model using magnetic resonance imaging-compatible chronic neural monopolar carbon fiber electrodes. Front Neurosci 2022; 16:945594. [PMID: 36248656 PMCID: PMC9558902 DOI: 10.3389/fnins.2022.945594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation interventions, such as Deep Brain Stimulation (DBS) and repeated transcranial magnetic stimulation (rTMS), are proposed as possible new complementary therapies to treat substance use disorders (SUD) such as alcohol use disorder (AUD). It is hypothesized that neuromodulation may induce neural plasticity in the reward and frontostriatal systems via electrical field induction, possibly reducing symptoms. Preclinical self-administration rodent models of AUD may help us gain insight into the effects of neuromodulation therapies on different pathology, as well as the neural mechanisms behind the positive effects. DBS, or any type of brain stimulation using intracranial electrodes in rodents, would benefit from the use of magnetic resonance imaging (MRI) to study the longitudinal effects and mechanisms of stimulation as well as novel targets, as it is a non-invasive technique that allows the analysis of structural and functional changes in the brain. To do this, there is a need for MRI-compatible electrodes that allow for MRI acquisition with minimal distortion of the magnetic field. In this protocol, we present a method for the construction and surgery of chronically implantable monopolar carbon electrodes for use in rats. Unlike conventional electrodes, carbon electrodes are resistant to high temperatures, flexible, and generate fewer artifacts in MRI compared to conventional ones. We validated its use by using a focal electrical stimulation high-frequency (20 Hz) protocol that lasted ∼10 sessions. We propose that this technique can also be used for the research of the neurophysiological bases of the neuromodulatory treatment in other preclinical substance use disorders (SUD) models.
Collapse
Affiliation(s)
- Alejandra Lopez-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Alejandra Lopez-Castro,
| | - Diego Angeles-Valdez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerardo Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Eduardo A. Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Eduardo A. Garza-Villarreal,
| |
Collapse
|
12
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
13
|
Sirmpilatze N, Mylius J, Ortiz-Rios M, Baudewig J, Paasonen J, Golkowski D, Ranft A, Ilg R, Gröhn O, Boretius S. Spatial signatures of anesthesia-induced burst-suppression differ between primates and rodents. eLife 2022; 11:e74813. [PMID: 35607889 PMCID: PMC9129882 DOI: 10.7554/elife.74813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/01/2022] [Indexed: 01/19/2023] Open
Abstract
During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats, the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded-predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.
Collapse
Affiliation(s)
- Nikoloz Sirmpilatze
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Georg-August University of GöttingenGöttingenGermany
- International Max Planck Research School for NeurosciencesGöttingenGermany
| | - Judith Mylius
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Michael Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Jürgen Baudewig
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
| | - Jaakko Paasonen
- A.I.V. Institute for Molecular Sciences, University of Eastern FinlandKuopioFinland
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
- Department of Neurology, Heidelberg University HospitalHeidelbergGermany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum Rechts der Isar der Technischen Universität MünchenMunichGermany
- Department of Neurology, Asklepios Stadtklinik Bad TölzBad TölzGermany
| | - Olli Gröhn
- A.I.V. Institute for Molecular Sciences, University of Eastern FinlandKuopioFinland
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate ResearchGöttingenGermany
- Georg-August University of GöttingenGöttingenGermany
- International Max Planck Research School for NeurosciencesGöttingenGermany
- Leibniz Science Campus Primate CognitionGöttingenGermany
| |
Collapse
|
14
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Arboit A, Ku SP, Krautwald K, Angenstein F. Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state. Neuroimage 2021; 245:118769. [PMID: 34861394 DOI: 10.1016/j.neuroimage.2021.118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.
Collapse
Affiliation(s)
- Alberto Arboit
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Shih-Pi Ku
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany; Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany; Center for Behavior and Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39118, Germany.
| |
Collapse
|
16
|
Sanganahalli BG, Chitturi J, Herman P, Elkabes S, Heary R, Hyder F, Kannurpatti S. Supraspinal sensorimotor and pain-related reorganization after a hemicontusion rat cervical spinal cord injury. J Neurotrauma 2021; 38:3393-3405. [PMID: 34714150 DOI: 10.1089/neu.2021.0190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the presence of pain impedes motor recovery in individuals with spinal cord injury (SCI), it is necessary to understand their supraspinal substrates in translational animal models. Using functional magnetic resonance imaging (fMRI) in a rat model of hemicontusion cervical SCI, supraspinal changes were mapped and correlated with sensorimotor behavioral outcomes. Female adult rats underwent sham or SCI using a 2.5 mm impactor and 150 kDyne force. SCI permanently impaired motor activity in only the ipsilesional forelimb along with thermal hyperalgesia at 5 and 6 wks. Spinal MRI at 8 wks after SCI showed ipsilateral T1 and T2 lesions with no discernable lesions across shams. fMRI mapping during electrical forepaw stimulation indicated SCI-induced sensorimotor reorganization with an expansion of the contralesional forelimb representation. Resting state fMRI based functional connectivity density (FCD), a marker of regional neuronal hubs increased or decreased across brain regions involved in nociception. FCD increases after SCI were in the primary and secondary somatosensory cortices (S1 and S2), anterior cingulate cortex (ACC), insula and the prefrontal cortex (PFC) and decreases were across the hippocampus, thalamus, hypothalamus and amygdala in SCI. Resting state functional connectivity (RSFC) assessments from the FCD altered regions of interest indicated cortico-cortical RSFC increases and cortico-insular, cortico-thalamic and cortico-hypothalamic RSFC decreases after SCI. Hippocampus, amygdala and thalamus showed decreased RSFC with most cortical regions and between themselves except the hippocampus-amygdala network, which showed increased RSFC after SCI. While select nociceptive region's intrinsic activity associated strongly with evoked pain behaviors after SCI (eg., PFC, ACC, hippocampus, thalamus, hypothalamus, M1 and S1BF) other nociceptive regions had weaker associations (eg., amygdala, insula, auditory cortex, S1FL, S1HL, S2 and M2), but differed significantly in their intrinsic activities between sham and SCI. The weaker associated nociceptive regions may possibly encode both the evoked and affective components of pain.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Yale University School of Medicine, 12228, Diagnostic Radiology, New Haven, Connecticut, United States;
| | - Jyothsna Chitturi
- Rutgers Biomedical and Health Sciences, 5751, Radiology, Newark, New Jersey, United States;
| | - Peter Herman
- Yale University School of Medicine, 12228, Magnetic Resonance Research Center, Department of Diagnostic Radiology and Biomedical Engineering, Section of Bioimaging Science, New Haven, Connecticut, United States;
| | - Stella Elkabes
- Rutgers Biomedical and Health Sciences, 5751, Neurosurgery, Newark, New Jersey, United States;
| | - Robert Heary
- Hackensack Meridian School of Medicine, 576909, Nutley, New Jersey, United States;
| | | | - Sridhar Kannurpatti
- Rutgers Biomedical and Health Sciences, 5751, Radiology, Newark, New Jersey, United States;
| |
Collapse
|
17
|
Pradier B, Wachsmuth L, Nagelmann N, Segelcke D, Kreitz S, Hess A, Pogatzki-Zahn EM, Faber C. Combined resting state-fMRI and calcium recordings show stable brain states for task-induced fMRI in mice under combined ISO/MED anesthesia. Neuroimage 2021; 245:118626. [PMID: 34637903 DOI: 10.1016/j.neuroimage.2021.118626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
For fMRI in animal models, the combination of low-dose anesthetic, isoflurane (ISO), and the sedative medetomidine (MED) has recently become an advocated regimen to achieve stable neuronal states and brain networks in rats that are required for reliable task-induced BOLD fMRI. However, in mice the temporal stability of neuronal states and networks in resting-state (rs)-fMRI experiments during the combined ISO/MED regimen has not been systematically investigated. Using a multimodal approach with optical calcium (Ca2+) recordings and rs-fMRI, we investigated cortical neuronal/astrocytic Ca2+activity states and brain networks at multiple time points while switching from anesthesia with 1% ISO to a combined ISO/MED regimen. We found that cortical activity states reached a steady-state 45 min following start of MED infusion as indicated by stable Ca2+ transients. Similarly, rs-networks were not statistically different between anesthesia with ISO and the combined ISO/MED regimen 45 and 100 min after start of MED. Importantly, during the transition time we identified changed rs-network signatures that likely reflect the different mode of action of the respective anesthetic; these included a dose-dependent increase in cortico-cortical functional connectivity (FC) presumably caused by reduction of ISO concentration and decreased FC in subcortical arousal nuclei due to MED infusion. Furthermore, we report detection of visual stimulation-induced BOLD fMRI during the stable ISO/MED neuronal state 45 min after induction. Based on our findings, we recommend a 45-minute waiting period after switching from ISO anesthesia to the combined ISO/MED regimen before performing rs- or task-induced fMRI experiments.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany; Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Daniel Segelcke
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany.
| |
Collapse
|
18
|
Characterization of brain-wide somatosensory BOLD fMRI in mice under dexmedetomidine/isoflurane and ketamine/xylazine. Sci Rep 2021; 11:13110. [PMID: 34162952 PMCID: PMC8222234 DOI: 10.1038/s41598-021-92582-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Mouse fMRI under anesthesia has become increasingly popular due to improvement in obtaining brain-wide BOLD response. Medetomidine with isoflurane has become well-accepted for resting-state fMRI, but whether this combination allows for stable, expected, and robust brain-wide evoked response in mice has yet to be validated. We thus utilized intravenous infusion of dexmedetomidine with inhaled isoflurane and intravenous infusion of ketamine/xylazine to elucidate whether stable mouse physiology and BOLD response are obtainable in response to simultaneous forepaw and whisker-pad stimulation throughout 8 h. We found both anesthetics result in hypercapnia with depressed heart rate and respiration due to self-breathing, but these values were stable throughout 8 h. Regardless of the mouse condition, brain-wide, robust, and stable BOLD response throughout the somatosensory axis was observed with differences in sensitivity and dynamics. Dexmedetomidine/isoflurane resulted in fast, boxcar-like, BOLD response with consistent hemodynamic shapes throughout the brain. Ketamine/xylazine response showed higher sensitivity, prolonged BOLD response, and evidence for cortical disinhibition as significant bilateral cortical response was observed. In addition, differing hemodynamic shapes were observed between cortical and subcortical areas. Overall, we found both anesthetics are applicable for evoked mouse fMRI studies.
Collapse
|
19
|
Measuring Glycolytic Activity with Hyperpolarized [ 2H 7, U- 13C 6] D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions. Metabolites 2021; 11:metabo11070413. [PMID: 34201777 PMCID: PMC8303162 DOI: 10.3390/metabo11070413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
Glucose is the primary fuel for the brain; its metabolism is linked with cerebral function. Different magnetic resonance spectroscopy (MRS) techniques are available to assess glucose metabolism, providing complementary information. Our first aim was to investigate the difference between hyperpolarized 13C-glucose MRS and non-hyperpolarized 2H-glucose MRS to interrogate cerebral glycolysis. Isoflurane anesthesia is commonly employed in preclinical MRS, but it affects cerebral hemodynamics and functional connectivity. A combination of low doses of isoflurane and medetomidine is routinely used in rodent functional magnetic resonance imaging (fMRI) and shows similar functional connectivity, as in awake animals. As glucose metabolism is tightly linked to neuronal activity, our second aim was to assess the impact of these two anesthetic conditions on the cerebral metabolism of glucose. Brain metabolism of hyperpolarized 13C-glucose and non-hyperpolaized 2H-glucose was monitored in two groups of mice in a 9.4 T MRI system. We found that the very different duration and temporal resolution of the two techniques enable highlighting the different aspects in glucose metabolism. We demonstrate (by numerical simulations) that hyperpolarized 13C-glucose reports on de novo lactate synthesis and is sensitive to cerebral metabolic rate of glucose (CMRGlc). We show that variations in cerebral glucose metabolism, under different anesthesia, are reflected differently in hyperpolarized and non-hyperpolarized X-nuclei glucose MRS.
Collapse
|
20
|
Lu CQ, Zeng CH, Cui Y, Meng XP, Luan Y, Xu XM, Ju S. An Investigation of the Impacts of Three Anesthetic Regimens on Task-Functional Magnetic Resonance Imaging and Functional Connectivity Resting-State Functional Magnetic Resonance Imaging in Sprague Dawley and Wistar Rats. Brain Connect 2021; 12:74-84. [PMID: 33947271 DOI: 10.1089/brain.2020.0875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Aim: The aim of this study was to investigate basic task-functional magnetic resonance imaging (fMRI) or resting-state fMRI (rs-fMRI) results on Sprague Dawley (SD) rats and Wistar rats under three anesthetic regimens. Introduction: SD rats and Wistar rats are the two-most commonly used rat strains in medical research and neuroimaging studies. It still lacks a direct comparison of basic task-fMRI and rs-fMRI results between the Wistar rats and SD rats under different anesthetic regimens. Methods: Two rat strains and different time points were adopted to investigate task-fMRI activation and rs-fMRI functional connectivity (FC) results under three kinds of anesthetic regimens (2-2.5% isoflurane only, dexmedetomidine bolus combined with a continuous infusion, and dexmedetomidine bolus combined with 0.3-0.5% isoflurane). The electrical forepaw stimulation method and seed-based FC results were used to compare the task-fMRI brain activation and rs-fMRI FC patterns between the two rat strains. Results: The results showed that Wistar rats had more robust brain activation in task fMRI experiments while exhibiting a less specific interhemispheric FC than that of SD rats under the two dexmedetomidine anesthetic regimens. Moreover, even low-level isoflurane could significantly affect task-fMRI and rs-fMRI results in both rat strains. Conclusions: SD and Wistar rats showed different brain activations and interhemispheric FC patterns under the two dexmedetomidine anesthetic regimens. These results may serve as reference information for small-animal fMRI studies. Impact statement Our study demonstrates different stimulation-induced blood oxygen level-dependent responses and functional connectivity patterns between Sprague Dawley rats and Wistar rats under three anesthetics. This study provides some reference results for different anesthetics' effects on different rat strains in different functional magnetic resonance imaging modalities.
Collapse
Affiliation(s)
- Chun-Qiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ying Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiang-Pan Meng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ying Luan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiao-Min Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
21
|
Hayashi T, Hou Y, Glasser MF, Autio JA, Knoblauch K, Inoue-Murayama M, Coalson T, Yacoub E, Smith S, Kennedy H, Van Essen DC. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 2021; 229:117726. [PMID: 33484849 PMCID: PMC8079967 DOI: 10.1016/j.neuroimage.2021.117726] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022] Open
Abstract
Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.
Collapse
Affiliation(s)
- Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yujie Hou
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Matthew F Glasser
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA; Department of Neuroscience and Radiology, Washington University Medical School, St Louis, MO USA
| | - Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 MI R&D Center 3F, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenneth Knoblauch
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | | | - Tim Coalson
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA
| | - Stephen Smith
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Henry Kennedy
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS, Shanghai, China
| | - David C Van Essen
- Department of Neuroscience, Washington University Medical School, St Louis, MO USA
| |
Collapse
|
22
|
Diao Y, Yin T, Gruetter R, Jelescu IO. PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain. Front Neurosci 2021; 15:602170. [PMID: 33841071 PMCID: PMC8032956 DOI: 10.3389/fnins.2021.602170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 01/12/2023] Open
Abstract
Resting state functional MRI (rs-fMRI) is a widespread and powerful tool for investigating functional connectivity (FC) and brain disorders. However, FC analysis can be seriously affected by random and structured noise from non-neural sources, such as physiology. Thus, it is essential to first reduce thermal noise and then correctly identify and remove non-neural artifacts from rs-fMRI signals through optimized data processing methods. However, existing tools that correct for these effects have been developed for human brain and are not readily transposable to rat data. Therefore, the aim of the present study was to establish a data processing pipeline that can robustly remove random and structured noise from rat rs-fMRI data. It includes a novel denoising approach based on the Marchenko-Pastur Principal Component Analysis (MP-PCA) method, FMRIB's ICA-based Xnoiseifier (FIX) for automatic artifact classification and cleaning, and global signal regression (GSR). Our results show that: (I) MP-PCA denoising substantially improves the temporal signal-to-noise ratio, (II) the pre-trained FIX classifier achieves a high accuracy in artifact classification, and (III) both independent component analysis (ICA) cleaning and GSR are essential steps in correcting for possible artifacts and minimizing the within-group variability in control animals while maintaining typical connectivity patterns. Reduced within-group variability also facilitates the exploration of potential between-group FC changes, as illustrated here in a rat model of sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Yujian Diao
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Laboratoire d’Imagerie Fonctionnelle et Métabolique, EPFL, Lausanne, Switzerland
| | - Ting Yin
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratoire d’Imagerie Fonctionnelle et Métabolique, EPFL, Lausanne, Switzerland
| | - Ileana O. Jelescu
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
23
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part B: Effects of Anesthetic Agents, Doses and Timing. Animals (Basel) 2021; 11:ani11010199. [PMID: 33467584 PMCID: PMC7830239 DOI: 10.3390/ani11010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To understand brain function in rats and mice functional magnetic resonance imaging of the brain is used. With this type of “brain scan” regional changes in blood flow and oxygen consumption are measured as an indirect surrogate for activity of brain regions. Animals are often anesthetized for the experiments to prevent stress and blurred images due to movement. However, anesthesia may alter the measurements, as blood flow within the brain is differently affected by different anesthetics, and anesthetics also directly affect brain function. Consequently, results obtained under one anesthetic protocol may not be comparable with those obtained under another, and/or not representative for awake animals and humans. We have systematically searched the existing literature for studies analyzing the effects of different anesthesia methods or studies that compared anesthetized and awake animals. Most studies reported that anesthetic agents, doses and timing had an effect on functional magnetic resonance imaging results. To obtain results which promote our understanding of brain function, it is therefore essential that a standard for anesthetic protocols for functional magnetic resonance is defined and their impact is well characterized. Abstract In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University and ETH Zurich, 8093 Zurich, Switzerland;
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
24
|
Barron HC, Mars RB, Dupret D, Lerch JP, Sampaio-Baptista C. Cross-species neuroscience: closing the explanatory gap. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190633. [PMID: 33190601 PMCID: PMC7116399 DOI: 10.1098/rstb.2019.0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Helen C. Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, CanadaM5G 1L7
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
25
|
Hsu LM, Wang S, Ranadive P, Ban W, Chao THH, Song S, Cerri DH, Walton LR, Broadwater MA, Lee SH, Shen D, Shih YYI. Automatic Skull Stripping of Rat and Mouse Brain MRI Data Using U-Net. Front Neurosci 2020; 14:568614. [PMID: 33117118 PMCID: PMC7575753 DOI: 10.3389/fnins.2020.568614] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate removal of magnetic resonance imaging (MRI) signal outside the brain, a.k.a., skull stripping, is a key step in the brain image pre-processing pipelines. In rodents, this is mostly achieved by manually editing a brain mask, which is time-consuming and operator dependent. Automating this step is particularly challenging in rodents as compared to humans, because of differences in brain/scalp tissue geometry, image resolution with respect to brain-scalp distance, and tissue contrast around the skull. In this study, we proposed a deep-learning-based framework, U-Net, to automatically identify the rodent brain boundaries in MR images. The U-Net method is robust against inter-subject variability and eliminates operator dependence. To benchmark the efficiency of this method, we trained and validated our model using both in-house collected and publicly available datasets. In comparison to current state-of-the-art methods, our approach achieved superior averaged Dice similarity coefficient to ground truth T2-weighted rapid acquisition with relaxation enhancement and T2∗-weighted echo planar imaging data in both rats and mice (all p < 0.05), demonstrating robust performance of our approach across various MRI protocols.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shuai Wang
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paridhi Ranadive
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Woomi Ban
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tzu-Hao Harry Chao
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sheng Song
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Domenic Hayden Cerri
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsay R Walton
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Margaret A Broadwater
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sung-Ho Lee
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dinggang Shen
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
26
|
The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats. Animals (Basel) 2020; 10:ani10061050. [PMID: 32570809 PMCID: PMC7341258 DOI: 10.3390/ani10061050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Anaesthetic protocols involving the combined use of a sedative agent, medetomidine, and an anaesthetic agent, isoflurane, are increasingly being used in functional magnetic resonance imaging (fMRI) studies of the rodent brain. Despite the popularity of this combination, a standardised protocol for the combined use of medetomidine and isoflurane has not been established, resulting in inconsistencies in the reported use of these drugs. This study investigated the pharmacokinetic detail required to standardise the use of medetomidine and isoflurane in rat brain fMRI studies. Using mass spectrometry, serum concentrations of medetomidine were determined in Sprague-Dawley rats during medetomidine and isoflurane anaesthesia. The serum concentration of medetomidine for administration with 0.5% (vapouriser setting) isoflurane was found to be 14.4 ng/mL (±3.0 ng/mL). The data suggests that a steady state serum concentration of medetomidine when administered with 0.5% (vapouriser setting) isoflurane can be achieved with an initial subcutaneous (SC) dose of 0.12 mg/kg of medetomidine followed by a 0.08 mg/kg/h SC infusion of medetomidine. Consideration of these results for future studies will facilitate standardisation of medetomidine and isoflurane anaesthetic protocols during fMRI data acquisition.
Collapse
|
27
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|