1
|
Thuy Linh H, Nakade Y, Wada T, Iwata Y. The Potential Mechanism of D-Amino Acids - Mitochondria Axis in the Progression of Diabetic Kidney Disease. Kidney Int Rep 2025; 10:343-354. [PMID: 39990887 PMCID: PMC11843130 DOI: 10.1016/j.ekir.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and stands out as the leading cause of end-stage renal disease worldwide. There is increasing evidence that mitochondrial dysfunction, including impaired mitochondrial biogenesis, dynamics, and oxidative stress, contributes to the development and progression of DKD. D-amino acids (D-AAs), which are enantiomers of L-AAs, have recently been detected in various living organisms and are acknowledged to play important roles in numerous physiological processes in the human body. Accumulating evidence demonstrates that D-AA levels in blood or urine could serve as useful biomarkers for reflecting renal function. The physiological roles of D-AAs are implicated in the regulation of cellular proliferation, oxidative stress, generation of reactive oxygen species (ROS), and innate immunity. This article reviews current evidence relating to D-AAs and mitochondrial dysfunction and proposes a potential interaction and contribution of the D-AAs-mitochondria axis in DKD pathophysiology and progression. This insight could provide novel therapeutic approaches for preventing or ameliorating DKD based on this biological axis.
Collapse
Affiliation(s)
- Hoang Thuy Linh
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yusuke Nakade
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
- Department of Clinical Laboratory, Kanazawa University, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| |
Collapse
|
2
|
Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci 2024; 25:10668. [PMID: 39408997 PMCID: PMC11477438 DOI: 10.3390/ijms251910668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, playing a pivotal role in the pathogenesis and prognosis of this disorder. Cognitive impairment in schizophrenia encompasses a wide range of domains, including processing speed, episodic memory, working memory, and executive function. These deficits persist throughout the course of the illness and significantly impact functional outcomes and quality of life. Therefore, it is imperative to identify the biological basis of cognitive deficits in schizophrenia and develop effective treatments. The role of N-methyl-D-aspartate (NMDA) receptors in synaptic transmission and plasticity has long been recognized, making them potential targets for schizophrenia treatment. This review will focus on emerging pharmacology targeting NMDA receptors, offering strategies for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (T.Z.); (C.L.); (N.Z.); (Y.W.); (Y.H.)
| |
Collapse
|
3
|
KIMURA R, UEDA R, TSUJIMURA H, BAN T, TANAKA A. Urinary D-amino acid profiles in cats with chronic kidney disease. J Vet Med Sci 2024; 86:855-859. [PMID: 38853004 PMCID: PMC11300134 DOI: 10.1292/jvms.24-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Chronic kidney disease (CKD) is highly prevalent in domestic cats. This study aimed to compare urinary D-amino acid levels between control and CKD-afflicted cats as a novel noninvasive method for assessing CKD. Cats were divided into control and CKD stage II groups in accordance with the International Renal Interest Society guidelines. The urinary DL-amino acid levels of the cats were analyzed using chiral tandem liquid chromatography-tandem mass spectrometry, and their medical records were investigated. The CKD group had considerably lower urinary D-amino acid concentrations and enantiomeric ratios than the control group. The total urinary D-amino acid contents significantly correlated with blood parameters (creatinine and urea nitrogen). These findings may contribute towards the detection of CKD stage II in domestic cats.
Collapse
Affiliation(s)
- Ren KIMURA
- Analytical Science Research Laboratories, Kao Corporation,
Tokyo, Japan
| | - Reeko UEDA
- Sanitary Products Research Laboratories, Kao Corporation,
Tochigi, Japan
| | - Hisashi TSUJIMURA
- Analytical Science Research Laboratories, Kao Corporation,
Tokyo, Japan
| | - Takeshi BAN
- Sanitary Products Research Laboratories, Kao Corporation,
Tochigi, Japan
| | - Atsushi TANAKA
- Analytical Science Research Laboratories, Kao Corporation,
Wakayama, Japan
| |
Collapse
|
4
|
Zha Z, Wang R, Wang Q, Chen F, Ye Z, Li Y. A fast and efficient liquid chromatography-tandem mass spectrometry method for measuring l- and d-amino acids in the urine of patients with immunoglobulin A nephropathy. Biomed Chromatogr 2024; 38:e5866. [PMID: 38618866 DOI: 10.1002/bmc.5866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 04/16/2024]
Abstract
Immunoglobulin nephropathy (IgAN) stands as the most prevalent primary glomerular nephropathy globally, typically diagnosed through an invasive renal biopsy. Emerging research suggests the significant involvement of chiral amino acids in kidney disease progression. This study introduces a nonderivative LC-tandem mass spectrometry approach, offering efficient separation outcomes within 15 min for identifying chiral amino acids in human urine samples. Subsequently, using this method, the analysis of l- and d-amino acids in the urine of both patients with IgAN and healthy individuals was conducted. Fourteen d-amino acids and 20 l-amino acids were identified in the urine samples obtained from 17 patients with IgAN and 21 healthy individuals. The results indicated notable variances in the concentrations of both l- and d-amino acids between the IgAN and healthy control groups. In contrast to the healthy group, the IgAN group exhibited higher mean urine concentrations of most l-amino acids and lower concentrations of d-amino acids. Furthermore, correlations between amino acids and clinical markers were investigated. These results propose a novel method for monitoring trace amino acids in urine samples and introduce a new concept for potential markers of IgAN.
Collapse
Affiliation(s)
- Zhijian Zha
- Third Clinical School, Shanxi University of Traditional Chinese Medicine, Taiyuan City, Shanxi Province, China
| | - Ruihua Wang
- Third Clinical School, Shanxi University of Traditional Chinese Medicine, Taiyuan City, Shanxi Province, China
| | - Qian Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Fahui Chen
- Third Clinical School, Shanxi University of Traditional Chinese Medicine, Taiyuan City, Shanxi Province, China
| | - Ziyang Ye
- Third Clinical School, Shanxi University of Traditional Chinese Medicine, Taiyuan City, Shanxi Province, China
| | - Yafeng Li
- Third Clinical School, Shanxi University of Traditional Chinese Medicine, Taiyuan City, Shanxi Province, China
- Chronic Kidney Disease Medical and Pharmaceutical Basic Research Innovation Center of the Ministry of Education of the People's Republic of China, Taiyuan, China
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
- Hejin Municipal People's Hospital, Hejin, China
| |
Collapse
|
5
|
Rullo-Tubau J, Martinez-Molledo M, Bartoccioni P, Puch-Giner I, Arias Á, Saen-Oon S, Stephan-Otto Attolini C, Artuch R, Díaz L, Guallar V, Errasti-Murugarren E, Palacín M, Llorca O. Structure and mechanisms of transport of human Asc1/CD98hc amino acid transporter. Nat Commun 2024; 15:2986. [PMID: 38582862 PMCID: PMC10998858 DOI: 10.1038/s41467-024-47385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Recent cryoEM studies elucidated details of the structural basis for the substrate selectivity and translocation of heteromeric amino acid transporters. However, Asc1/CD98hc is the only neutral heteromeric amino acid transporter that can function through facilitated diffusion, and the only one that efficiently transports glycine and D-serine, and thus has a regulatory role in the central nervous system. Here we use cryoEM, ligand-binding simulations, mutagenesis, transport assays, and molecular dynamics to define human Asc1/CD98hc determinants for substrate specificity and gain insights into the mechanisms that govern substrate translocation by exchange and facilitated diffusion. The cryoEM structure of Asc1/CD98hc is determined at 3.4-3.8 Å resolution, revealing an inward-facing semi-occluded conformation. We find that Ser 246 and Tyr 333 are essential for Asc1/CD98hc substrate selectivity and for the exchange and facilitated diffusion modes of transport. Taken together, these results reveal the structural bases for ligand binding and transport features specific to human Asc1.
Collapse
Affiliation(s)
- Josep Rullo-Tubau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain
| | - Maria Martinez-Molledo
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, E-28029, Madrid, Spain
| | - Paola Bartoccioni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain
| | - Ignasi Puch-Giner
- Electronic and atomic protein modelling group, Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1-3, E-08034, Barcelona, Spain
| | - Ángela Arias
- Clinical Biochemistry Department, Sant Joan de Déu Research Institute, Pg. de Sant Joan de Déu, 2, E-08950, Esplugues de Llobregat, Spain
| | - Suwipa Saen-Oon
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, E-08029, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain
| | - Rafael Artuch
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain
- Clinical Biochemistry Department, Sant Joan de Déu Research Institute, Pg. de Sant Joan de Déu, 2, E-08950, Esplugues de Llobregat, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, E-08029, Barcelona, Spain
| | - Víctor Guallar
- Electronic and atomic protein modelling group, Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1-3, E-08034, Barcelona, Spain
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, E-08029, Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain.
- Physiological Sciences Department, Genetics Area, School of Medicine and Health Sciences, University of Barcelona, Bellvitge Campus. Feixa Llarga s/n, E-08907, L'Hospitalet de Llobregat, Spain.
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, IDIBELL, Hospital Duran i Reynals, Avd. Gran Via de L'Hospitalet 199, E-08908, L'Hospitalet de Llobregat, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain.
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain.
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Av. Diagonal, 643, E-08028, Barcelona, Spain.
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, E-28029, Madrid, Spain.
| |
Collapse
|
6
|
Kimura T, Sakai S, Isaka Y. D-Serine as a sensor and effector of the kidney. Clin Exp Nephrol 2023; 27:891-900. [PMID: 37498348 PMCID: PMC10582142 DOI: 10.1007/s10157-023-02384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
D-Serine, a rare enantiomer of serine, is a biomarker of kidney disease and function. The level of D-serine in the human body is precisely regulated through the urinary clearance of the kidney, and its clearance serves as a new measure of glomerular filtration rate with a lower bias than creatinine clearance. D-Serine also has a direct effect on the kidneys and mediates the cellular proliferation of tubular cells via mTOR signaling and induces kidney remodeling as a compensatory reaction to the loss of kidney mass. In living kidney donors, the removal of the kidney results in an increase in blood D-serine level, which in turn accelerates kidney remodeling and augments kidney clearance, thus reducing blood levels of D-serine. This feedback system strictly controls D-serine levels in the body. The function of D-serine as a biomarker and modulator of kidney function will be the basis of precision medicine for kidney diseases.
Collapse
Affiliation(s)
- Tomonori Kimura
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan.
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan.
- Department of Nephrology, Osaka University Graduate School of Medicine, Yamada-oka 2-2, Suita, Osaka, 5650871, Japan.
| | - Shinsuke Sakai
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito-Asagi 7-6-8, Ibaraki, Osaka, 5670085, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Yamada-oka 2-2, Suita, Osaka, 5650871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Yamada-oka 2-2, Suita, Osaka, 5650871, Japan.
| |
Collapse
|
7
|
Chiral resolution of plasma amino acids reveals enantiomer-selective associations with organ functions. Amino Acids 2022; 54:421-432. [PMID: 35226151 DOI: 10.1007/s00726-022-03140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Plasma amino acids reflect the dynamics of amino acids in organs and their levels have clinical significance. Amino acids as clinical indicators have been evaluated as a mixture of D- and L-amino acids because D-enantiomers are believed to be physiologically nonexistent. However, it has become clear that some D-amino acids are synthesized by endogenous enzymes and symbiotic bacteria. Here, using a two-dimensional HPLC system, we measured enantiomers of all proteinogenic amino acids in plasma and urine and analyzed for correlation with other biochemical parameters in humans who underwent health checkups at our institutional hospital. Four D-amino acids (D-asparagine, D-alanine, D-serine, and D-proline) were detected in the plasma, amounting to less than 1% of the quantities of L-amino acids, but in the urine at several tens of percent, showing that D-amino acids have much higher fractional excretion than their L-counterparts. Detected plasma D-amino acids and D-/L-amino acid ratios were well correlated with renal parameters, such as blood urea nitrogen, creatinine, and cystatin C. On the other hand, a set of plasma L-amino acids were associated with body mass index and correlated with metabolic parameters such as liver enzymes, lipids, blood glucose, and uric acid. Thus, chiral resolution of plasma amino acids revealed totally different associations of the enantiomers with organ functions, and warrants further investigation for clinical and laboratory usefulness.
Collapse
|
8
|
Sun XC, Song X, Guo F, Yuan YH, Wang SY, Wang S, Liu KL, Lv XY, Han B, Zhang C, Liu JT. Terrestrosin D, a spirostanol saponin from Tribulus terrestris L. with potential hepatorenal toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114716. [PMID: 34626781 DOI: 10.1016/j.jep.2021.114716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Tribuli (FT) has been commonly used as a traditional medicine for thousands of years. With the diverse uses of FT, more attention has been paid to its hepatorenal toxicity. However, the compounds causing the hepatorenal toxicity of FT remain undetermined. Terrestrosin D (TED), a major spirostanol saponin isolated from FT, may exert hepatorenal toxicity. AIM OF THE STUDY This study aimed to evaluate the potential hepatorenal toxicity of TED, and preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. MATERIALS AND METHODS Cytotoxicity assays, a repeated-dose 28-day in-vivo study, a toxicokinetic study, and a tissue distribution study were used to evaluate the potential hepatorenal toxicity of TED. Furthermore, network pharmacology was applied to preliminarily explore the possible mechanism of TED-induced hepatorenal toxicity. RESULTS Both the in vitro and in vivo studies showed that the spirostanol saponin TED had potential hepatorenal toxicity. Nonetheless, hepatorenal toxicity induced by oral treatment with TED at a dosage range of 5 - 15 mg/kg daily for 28 consecutive days to Sprague-Dawley (SD) rats was reversible after 14 days of TED withdrawal. The toxicokinetic study demonstrated that the systematic exposure of SD rats to TED had an accumulation phenomenon and a dose-dependent trend after a 28-day repeated-dose oral administration. The tissue distribution study revealed that TED had a targeted distribution in the liver and kidneys accompanied by a phenomenon of accumulation in SD rats. Network pharmacology combined with molecular docking methods was used to screen for the key targets (HSP90AA1, CNR1, and DRD2) and the key pathways of TED-induced hepatorenal toxicity. CONCLUSIONS The spirostanol saponin TED, a major spirostanol saponin isolated from FT, had potential hepatorenal toxicity.
Collapse
Affiliation(s)
- Xiao-Chen Sun
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Song
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Drug and Food Vocational College, Weihai, 264210, China
| | - Fei Guo
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yao-Hui Yuan
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shu-Yue Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kun-Lin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xi-Yu Lv
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bing Han
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang-Ting Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
9
|
Calderón C, Lämmerhofer M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2022; 207:114430. [PMID: 34757254 DOI: 10.1016/j.jpba.2021.114430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Metabolomics strives to capture the entirety of the metabolites in a biological system by comprehensive analysis, often by liquid chromatography hyphenated to mass spectrometry. A particular challenge thereby is the differentiation of structural isomers. Common achiral targeted and untargeted assays do not distinguish between enantiomers. This may lead to information loss. An increasing number of publications demonstrate that the enantiomeric ratio of certain metabolites can be meaningful biomarkers of certain diseases emphasizing the importance of introducing enantioselective analytical procedures in metabolomics. In this work, the state-of-the-art in the field of LC-MS based metabolomics is summarized with focus on developments in the recent decade. Methodologies, tagging strategies, workflows and general concepts are outlined. Selected biological applications in which enantioselective metabolomics has documented its usefulness are briefly discussed. In general, targeted enantioselective metabolomics assays are often based on a direct approach using chiral stationary phases (CSP) with polysaccharide derivatives, macrocyclic antibiotics, chiral crown ethers, chiral ion exchangers, donor-acceptor phases as chiral selectors. Rarely, these targeted assays focus on more than 20 analytes and usually are restricted to a certain metabolite class. In a variety of cases, pre-column derivatization of metabolites has been performed, especially for amino acids, to improve separation and detection sensitivity. Triple quadrupole instruments are the detection methods of first choice in targeted assays. Here, issues like matrix effect, absence of blank matrix impair accuracy of results. In selected applications, multiple heart cutting 2D-LC (RP followed by chiral separation) has been pursued to overcome this problem and alleviate bias due to interferences. Non-targeted assays, on the other hand, are based on indirect approach involving tagging with a chiral derivatizing agent (CDA). Besides classical CDAs numerous innovative reagents and workflows have been proposed and are discussed. Thereby, a critical issue for the accuracy is often neglected, viz. the validation of the enantiomeric impurity in the CDA. The majority of applications focus on amino acids, hydroxy acids, oxidized fatty acids and oxylipins. Some potential clinical applications are highlighted.
Collapse
Affiliation(s)
- Carlos Calderón
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
Meftah A, Hasegawa H, Kantrowitz JT. D-Serine: A Cross Species Review of Safety. Front Psychiatry 2021; 12:726365. [PMID: 34447324 PMCID: PMC8384137 DOI: 10.3389/fpsyt.2021.726365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Background:D-Serine, a direct, full agonist at the D-serine/glycine modulatory site of the N-methyl-D-aspartate-type glutamate receptors (NMDAR), has been assessed as a treatment for multiple psychiatric and neurological conditions. Based on studies in rats, concerns of nephrotoxicity have limited D-serine research in humans, particularly using high doses. A review of D-serine's safety is timely and pertinent, as D-serine remains under active study for schizophrenia, both directly (R61 MH116093) and indirectly through D-amino acid oxidase (DAAO) inhibitors. The principal focus is on nephrotoxicity, but safety in other physiologic and pathophysiologic systems are also reviewed. Methods: Using the search terms "D-serine," "D-serine and schizophrenia," "D-serine and safety," "D-serine and nephrotoxicity" in PubMed, we conducted a systematic review on D-serine safety. D-serine physiology, dose-response and efficacy in clinical studies and dAAO inhibitor safety is also discussed. Results: When D-serine doses >500 mg/kg are used in rats, nephrotoxicity, manifesting as an acute tubular necrosis syndrome, seen within hours of administration is highly common, if not universal. In other species, however, D-serine induced nephrotoxicity has not been reported, even in other rodent species such as mice and rabbits. Even in rats, D--serine related toxicity is dose dependent and reversible; and does not appear to be present in rats at doses producing an acute Cmax of <2,000 nmol/mL. For comparison, the Cmax of D-serine 120 mg/kg, the highest dose tested in humans, is ~500 nmol/mL in acute dosing. Across all published human studies, only one subject has been reported to have abnormal renal values related to D-serine treatment. This abnormality did not clearly map on to the acute tubular necrosis syndrome seen in rats, and fully resolved within a few days of stopping treatment. DAAO inhibitors may be nephroprotective. D-Serine may have a physiologic role in metabolic, extra-pyramidal, cardiac and other systems, but no other clinically significant safety concerns are revealed in the literature. Conclusions: Even before considering human to rat differences in renal physiology, using current FDA guided monitoring paradigms, D-serine appears safe at currently studied maximal doses, with potential safety in combination with DAAO inhibitors.
Collapse
Affiliation(s)
- Amir Meftah
- College of Physicians and Surgeons, Columbia University, New York City, NY, United States
- New York State Psychiatric Institute, New York City, NY, United States
| | - Hiroshi Hasegawa
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Joshua T. Kantrowitz
- College of Physicians and Surgeons, Columbia University, New York City, NY, United States
- New York State Psychiatric Institute, New York City, NY, United States
- Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
11
|
Li C, Gao X, Gao X, Lv J, Bian X, Lv J, Sun J, Luo G, Zhang H. Effects of medicine food Fructus Gardeniae on liver and kidney functions after oral administration to rats for 12 weeks. J Food Biochem 2021; 45:e13752. [PMID: 34086366 DOI: 10.1111/jfbc.13752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 01/09/2023]
Abstract
Fructus Gardeniae (FG) is medicine food widely used for the treatment and prevention of various diseases. However, in recent years, research has suggested that high doses of FG can cause hepatotoxicity and nephrotoxicity. To assess this potential toxicity in more depth, this study investigated the effects of decocted FG and two of its bioactive constituents (geniposide and genipin) on liver and kidney function in rats. Rats were intragastrically administered FG (330 mg/kg body weight), geniposide (50 mg/kg body weight), or genipin (50 mg/kg body weight) for 12 weeks. Changes in body weight, liver and kidney indices, biochemical indices, and inflammatory factors were monitored. In addition, pathological sections were assessed and the expression of caspase-3, NF-κBp65, COX-2, and iNOS was detected by immunohistochemistry and Western blot. It was found that the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, and urea nitrogen increased following administration of FG, geniposide, and genipin. Furthermore, the activities of superoxide dismutase and reduced glutathione decreased following treatment, while malondialdehyde levels increased. Pathological and immunohistochemical evaluations further confirmed that FG and its constituents may cause damage to the liver and kidneys. The mechanism study revealed that the protein level of inflammatory pathway increased and further promoted apoptosis, suggesting that it should not be taken orally for extended periods of time. PRACTICAL APPLICATIONS: Chinese medicine and food safety have always been public health concerns. Fructus Gardeniae (FG) is a plant with a dual-purpose as it is used as both a medicine and food. Medicinally, it has the effects of heat-clearing and detoxification. However, its adverse effects and related mechanisms are not clear, and this has potential safety implications. In this study, rats were treated with FG for 12 weeks and found that the long-term administration of FG or high dosing can lead to damage to liver and kidney function. Therefore, close attention must be paid to the dosage of FG in order to achieve a therapeutic effect and avoid adverse reactions. Thus, this study lays a foundation for the safety evaluation and clinical application of FG.
Collapse
Affiliation(s)
- Chunnan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xu Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaochen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuefeng Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinpeng Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangming Luo
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Affiliation(s)
- Kameliya Spasova
- Institut für Vegetative Physiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Fähling
- Institut für Vegetative Physiologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
14
|
de la Garrigue N, Glasser J, Sehatpour P, Iosifescu DV, Dias E, Carlson M, Shope C, Sobeih T, Choo TH, Wall MM, Kegeles LS, Gangwisch J, Mayer M, Brazis S, De Baun HM, Wolfer S, Bermudez D, Arnold M, Rette D, Meftah AM, Conant M, Lieberman JA, Kantrowitz JT. Grant Report on d-Serine Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia †. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200018. [PMID: 32856005 PMCID: PMC7448686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report on the rationale and design of an ongoing NIMH sponsored R61-R33 project in schizophrenia/schizoaffective disorder. This project studies augmenting the efficacy of auditory neuroplasticity cognitive remediation (AudRem) with d-serine, an N-methyl-d-aspartate-type glutamate receptor (NMDAR) glycine-site agonist. We operationalize improved (smaller) thresholds in pitch (frequency) between successive auditory stimuli after AudRem as improved plasticity, and mismatch negativity (MMN) and auditory θ as measures of functional target engagement of both NMDAR agonism and plasticity. Previous studies showed that AudRem alone produces significant, but small cognitive improvements, while d-serine alone improves symptoms and MMN. However, the strongest results for plasticity outcomes (improved pitch thresholds, auditory MMN and θ) were found when combining d-serine and AudRem. AudRem improvements correlated with reading and other auditory cognitive tasks, suggesting plasticity improvements are predictive of functionally relevant outcomes. While d-serine appears to be efficacious for acute AudRem enhancement, the optimal dose remains an open question, as does the ability of combined d-serine + AudRem to produce sustained improvement. In the ongoing R61, 45 schizophrenia patients will be randomized to receive three placebo-controlled, double-blind d-serine + AudRem sessions across three separate 15 subject dose cohorts (80/100/120 mg/kg). Successful completion of the R61 is defined by ≥moderate effect size changes in target engagement and correlation with function, without safety issues. During the three-year R33, we will assess the sustained effects of d-serine + AudRem. In addition to testing a potentially viable treatment, this project will develop a methodology to assess the efficacy of novel NMDAR modulators, using d-serine as a "gold-standard".
Collapse
Affiliation(s)
| | - Juliana Glasser
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Pejman Sehatpour
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Elisa Dias
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Marlene Carlson
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Tarek Sobeih
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Tse-Hwei Choo
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Melanie M. Wall
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence S. Kegeles
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - James Gangwisch
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Megan Mayer
- New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | - Dalton Bermudez
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Molly Arnold
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | | - Amir M. Meftah
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Melissa Conant
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jeffrey A. Lieberman
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Joshua T. Kantrowitz
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA,Correspondence: Joshua T. Kantrowitz, ; Tel.: +1-646-774-6738
| |
Collapse
|