1
|
Dubernat L, Lefevre A, Marousez L, Tran LC, Van Hul M, de Lamballerie M, Cani PD, Gottrand F, Ley D, Lesage J. Donor human milk treated by high-pressure processing improves the body growth of growth-restricted mice pups. J Pediatr Gastroenterol Nutr 2024; 79:362-370. [PMID: 38899575 DOI: 10.1002/jpn3.12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Pasteurized human donor milk (DM) is frequently used for feeding preterm newborns and extrauterine growth-restricted (EUGR) infants. Most human milk banks performed a pasteurization of DM using the standard method of Holder pasteurization (HoP) which consists of heating milk at 62.5°C for 30 min. High hydrostatic pressure (HHP) processing was proposed to be an innovative nonthermal method to pasteurize DM. However, the effect of different modes of DM pasteurization on body growth, intestinal maturation, and microbiota has never been investigated in vivo during the lactation. OBJECTIVES We aimed to study these effects in postnatally growth-restricted (PNGR) mice pups daily supplemented with HoP-DM or HHP-DM. METHODS PNGR was induced by increasing the number of pups per litter (15 pups/mother) at postnatal Day 4 (PND4). From PND8 to PND20, mice pups were supplemented with HoP-DM or HHP-DM. At PND21, the intestinal permeability was measured in vivo, the intestinal mucosal histology, gut microbiota, and short-chain fatty acids (SCFAs) level were analyzed. RESULTS HHP-DM pups displayed a significantly higher body weight gain than HoP-DM pups during lactation. At PND21, these two types of human milk supplementations did not differentially alter intestinal morphology and permeability, the gene-expression level of several mucosal intestinal markers, gut microbiota, and the caecal SCFAs level. CONCLUSION Our data suggest that HHP could be an attractive alternative to HoP and that HHP-DM may ensure a better body growth of preterm and/or EUGR infants.
Collapse
Affiliation(s)
- Laure Dubernat
- CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, University of Lille, INSERM, Lille, France
| | - Augustin Lefevre
- CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, University of Lille, INSERM, Lille, France
| | - Lucie Marousez
- CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, University of Lille, INSERM, Lille, France
| | - Léa C Tran
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, Lille, France
| | - Matthias Van Hul
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute (WELRI), Wavre, Belgium
| | | | - Patrice D Cani
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute (WELRI), Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Gottrand
- CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, University of Lille, INSERM, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, Lille, France
| | - Delphine Ley
- CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, University of Lille, INSERM, Lille, France
- Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, Lille, France
| | - Jean Lesage
- CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, University of Lille, INSERM, Lille, France
| |
Collapse
|
2
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Nishihara K, van Niekerk J, He Z, Innes D, Guan LL, Steele M. Reduction in mucosa thickness is associated with changes in immune function in the colon mucosa during the weaning transition in Holstein bull dairy calves. Genomics 2023; 115:110680. [PMID: 37454938 DOI: 10.1016/j.ygeno.2023.110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study aims to characterize changes in the structure and the molecules related to immune function in the colon mucosa in dairy calves during the weaning transition (weaned at week 6 of age). Colon mucosa thickness, measured at week 5 to 8 and 12 of age, decreased for 2 weeks after weaning, but then recovered. Colon mucosa's transcriptome profiling at week 5, 7, and 12 of age was obtained using RNA-sequencing. Functional analysis showed that pathways related to immune function were up-regulated postweaning. A weighted gene co-expression network analysis identified 17 immune function related genes, expressed higher postweaning, which were negatively correlated with colon mucosa thickness, suggesting that these genes may be involved in colon mucosa inflammation and recovery from mucosa thickness decrement during the weaning transition. As such, it is important to determine the function of immune cells in the colon mucosa during the weaning transition in dairy calves.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Jolet van Niekerk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - David Innes
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| |
Collapse
|
4
|
Marousez L, Tran LC, Micours E, Antoine M, Gottrand F, Lesage J, Ley D. Prebiotic Supplementation during Lactation Affects Microbial Colonization in Postnatal-Growth-Restricted Mice. Nutrients 2023; 15:2771. [PMID: 37375672 DOI: 10.3390/nu15122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth-restricted mice (PNGR). METHODS Large litters (15 pups/mother) were generated from FVB/NRj mice to induce PNGR at postnatal day 4 (PN4) and compared to control litters (CTRL, 8 pups/mother). PF (a resistant dextrin) or water was orally administered once daily to the pups from PN8 to PN20 (3.5 g/kg/day). Intestinal morphology was evaluated at weaning (PN21) using the ileum and colon. Microbial colonization and short-chain fatty acid (SCFA) production were investigated using fecal and cecal contents. RESULTS At weaning, the PNGR mice showed decreased body weight and ileal crypt depth compared to the CTRL. The PNGR microbiota was associated with decreased proportions of the Lachnospiraceae and Oscillospiraceae families and the presence of the Akkermansia family and Enterococcus genus compared to the CTRL pups. The propionate concentrations were also increased with PNGR. While PF supplementation did not impact intestinal morphology in the PNGR pups, the proportions of the Bacteroides and Parabacteroides genera were enriched, but the proportion of the Proteobacteria phylum was reduced. In the CTRL pups, the Akkermansia genus (Verrucomicrobiota phylum) was present in the PF-supplemented CTRL pups compared to the water-supplemented ones. CONCLUSIONS PNGR alters intestinal crypt maturation in the ileum at weaning and gut microbiota colonization. Our data support the notion that PF supplementation might improve gut microbiota establishment during the early postnatal period.
Collapse
Affiliation(s)
- Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Léa Chantal Tran
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
- CHU Lille, Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, F-59000 Lille, France
| | - Edwina Micours
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Matthieu Antoine
- CHU Lille, Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
- CHU Lille, Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, F-59000 Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
- CHU Lille, Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, F-59000 Lille, France
| |
Collapse
|
5
|
Takahashi K, Yamada T, Hosaka S, Kaneko K, Asai Y, Munakata Y, Seike J, Horiuchi T, Kodama S, Izumi T, Sawada S, Hoshikawa K, Inoue J, Masamune A, Ueno Y, Imai J, Katagiri H. Inter-organ insulin-leptin signal crosstalk from the liver enhances survival during food shortages. Cell Rep 2023:112415. [PMID: 37116488 DOI: 10.1016/j.celrep.2023.112415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023] Open
Abstract
Crosstalk among organs/tissues is important for regulating systemic metabolism. Here, we demonstrate inter-organ crosstalk between hepatic insulin and hypothalamic leptin actions, which maintains survival during food shortages. In inducible liver insulin receptor knockout mice, body weight is increased with hyperphagia and decreased energy expenditure, accompanied by increased circulating leptin receptor (LepR) and decreased hypothalamic leptin actions. Additional hepatic LepR deficiency reverses these metabolic phenotypes. Thus, decreased hepatic insulin action suppresses hypothalamic leptin action with increased liver-derived soluble LepR. Human hepatic and circulating LepR levels also correlate negatively with hepatic insulin action indices. In mice, food restriction decreases hepatic insulin action and energy expenditure with increased circulating LepR. Hepatic LepR deficiency increases mortality with enhanced energy expenditure during food restriction. The liver translates metabolic cues regarding energy-deficient status, which is reflected by decreased hepatic insulin action, into soluble LepR, thereby suppressing energy dissipation and assuring survival during food shortages.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.
| | - Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Junro Seike
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Horiuchi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Yamagata 990-9585, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Yamagata 990-9585, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
6
|
Dore MP, Sau R, Niolu C, Abbondio M, Tanca A, Bibbò S, Loria M, Pes GM, Uzzau S. Metagenomic Changes of Gut Microbiota following Treatment of Helicobacter pylori Infection with a Simplified Low-Dose Quadruple Therapy with Bismuth or Lactobacillus reuteri. Nutrients 2022; 14:nu14142789. [PMID: 35889746 PMCID: PMC9316840 DOI: 10.3390/nu14142789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Probiotic supplementation to antibiotic regimens against Helicobacter pylori infection has been proposed to improve eradication rate and to decrease detrimental effects on gut microbiota. Aims: To evaluate microbiota modifications due to a low-dose quadruple therapy with bismuth or Lactobacillus reuteri. Methods: Forty-six patients infected with H. pylori were prospectively enrolled in a single-centre, randomized controlled trial to receive b.i.d. with meals for 10 days low-dose quadruple therapy consisting of rabeprazole 20 mg and bismuth (two capsules of Pylera® plus 250 mg each of tetracycline and metronidazole), or the same dose of rabeprazole and antibiotics plus Gastrus® (L. reuteri), one tablet twice-a-day for 27 days. Stool samples were collected at the enrolment, at the end and 30–40 days after the treatment. Gut microbiota composition was investigated with 16S rRNA gene sequencing. Results: Eradication rate was by ITT 78% in both groups, and by PP analysis 85.7% and 95.5% for Gastrus® and bismuth group, respectively. Alpha and beta diversity decreased at the end of treatment and was associated with a reduction of bacterial genera beneficial for gut homeostasis, which was rescued 30–40 days later in both groups, suggesting a similar impact of the two regimens in challenging bacterial community complexity. Conclusions: Low-dose bismuth quadruple therapy proved to be effective with lower costs and amount of antibiotics and bismuth. Gastrus® might be an option for patients with contraindications to bismuth. L. reuteri was unable to significantly counteract dysbiosis induced by antibiotics. How to administer probiotics to prevent gut microbiota alterations remains an open question.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
- Correspondence: ; Tel.: +39-079-229886
| | - Rosangela Sau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Caterina Niolu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Marcello Abbondio
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Alessandro Tanca
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Stefano Bibbò
- CEMAD Digestive Disease Center—Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Mariafrancesca Loria
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Sergio Uzzau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| |
Collapse
|
7
|
Hitch TCA, Hall LJ, Walsh SK, Leventhal GE, Slack E, de Wouters T, Walter J, Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol 2022; 15:1095-1113. [PMID: 36180583 PMCID: PMC9705255 DOI: 10.1038/s41385-022-00564-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiome lies at the intersection between the environment and the host, with the ability to modify host responses to disease-relevant exposures and stimuli. This is evident in how enteric microbes interact with the immune system, e.g., supporting immune maturation in early life, affecting drug efficacy via modulation of immune responses, or influencing development of immune cell populations and their mediators. Many factors modulate gut ecosystem dynamics during daily life and we are just beginning to realise the therapeutic and prophylactic potential of microbiome-based interventions. These approaches vary in application, goal, and mechanisms of action. Some modify the entire community, such as nutritional approaches or faecal microbiota transplantation, while others, such as phage therapy, probiotics, and prebiotics, target specific taxa or strains. In this review, we assessed the experimental evidence for microbiome-based interventions, with a particular focus on their clinical relevance, ecological effects, and modulation of the immune system.
Collapse
Affiliation(s)
- Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | | | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
8
|
Li P, Ren Z, Zhang J, Lan H, Szeto IMY, Wang P, Zhao A, Zhang Y. Consumption of Added Sugar among Chinese Toddlers and Its Association with Picky Eating and Daily Screen Time. Nutrients 2022; 14:nu14091840. [PMID: 35565808 PMCID: PMC9102033 DOI: 10.3390/nu14091840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives: This study aimed to examine the relationship between daily screen time, picky eating, and consumption frequency of sugared foods and sugar-sweetened beverages (SSBs). Methods: The research data came from the Young Investigation (YI) study conducted in 10 cities in China. This study used sociodemographic information, feeding behavior, picky eating reported by parents, and the consumption frequency of sugared foods and SSBs of 879 toddlers aged 1−3 years. The relationship between daily screen time and picky eating behavior was assessed using logistic regression. The zero-inflated negative binomial (ZINB) model was used to fit the consumption frequencies of sugared foods and SSBs. Results: In all, 13.1% (n = 115) of toddlers did not have sugared foods 1 month before the survey, while 73.3% (n = 644) of toddlers did not have SSBs 1 month before the survey. The consumption rate of sugared foods was relatively higher than SSBs (χ2 = 661.25, p < 0.001). After adjusting for social demographic information, no relationship was found between daily screen time and picky eating (OR = 1.437; 95% CI: 0.990,2.092). The ZINB model showed that, among children who ate sugared foods, children who were picky eaters ate them more often (IRR = 1.133; 95% CI: 1.095,1.172), but no association was found between picky eating and the chance of avoiding sugared foods (OR = 0.949; 95% CI: 0.613,1.471). Children who were picky eaters were less likely not to drink SSBs (OR = 0.664; 95% CI: 0.478,0.921). However, among children who consumed SSBs, picky eaters drank them less frequently (IRR = 0.599; 95% CI: 0.552,0.650). Children with a screen time of no less than 1 h/d ate sugared foods more frequently (IRR = 1.383; 95% CI: 1.164,1.644), and they were less likely to avoid sugared foods (OR = 0.223; 95% CI: 0.085,0.587). The longer the screen time per day was, the less likely children did not have SSBs (<1 h/d: OR = 0.272; 95% CI: 0.130, 0.569; ≥1 h/d: OR = 0.136; 95% CI: 0.057, 0.328). Conclusions: The consumption rate of sugared foods was higher than that of SSBs. Picky eating and daily screen time were related to the consumption frequency of added sugar among Chinese toddlers aged 1−3 years. Picky eaters consumed sugared foods more frequently and were more likely to drink SSBs. Children whose daily screen time reached 1 h/d were more likely to eat sugared foods and drink SSBs.
Collapse
Affiliation(s)
- Pin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (P.L.); (Z.R.); (J.Z.)
| | - Zhongxia Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (P.L.); (Z.R.); (J.Z.)
| | - Jian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (P.L.); (Z.R.); (J.Z.)
| | - Hanglian Lan
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China; (H.L.); (I.M.-Y.S.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Ignatius Man-Yau Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China; (H.L.); (I.M.-Y.S.)
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Peiyu Wang
- Department of Social Science and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China;
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Correspondence: (A.Z.); (Y.Z.)
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (P.L.); (Z.R.); (J.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100022, China
- Correspondence: (A.Z.); (Y.Z.)
| |
Collapse
|
9
|
Ley D, Beghin L, Morcel J, Flamein F, Garabedian C, Accart B, Drumez E, Labreuche J, Gottrand F, Hermann E. Impact of early life nutrition on gut health in children: a prospective clinical study. BMJ Open 2021; 11:e050432. [PMID: 34489289 PMCID: PMC8422494 DOI: 10.1136/bmjopen-2021-050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/03/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The first 1000 days of life could contribute to individual susceptibility to the later development of chronic non-communicable diseases. Nutrition in early life appears to be an important determinant factor for a sustainable child's health. In this study, we propose to investigate the impact of exclusive breast feeding on gut health in children. METHODS AND ANALYSIS A prospective cohort of newborns (n=350) will be recruited at birth and followed up to 4 years of age. The main objective is to evaluate the link between exclusive breast feeding for at least 3 months and the gut health of the child at 4 years. The primary endpoint of assessment of gut health will be based on the non-invasive measurement of faecal secretory IgA (sIgA) as a sensitive biomarker of the intestinal ecosystem. The presence of gastrointestinal disorders will be defined according to the clinical criteria of Rome IV. Information on parent's nutritional habits and life style, breastfeeding duration and child's complementary feeding will be collected along the follow-up. Cord blood cells and plasma at birth will be purified for further analysis. The meconium and stools collected at birth, 6 months, 2 years and 4 years of age will allow sIgA analysis. ETHICS AND DISSEMINATION This clinical study has obtained the approval from the national ethical committee. We plan to publish the results of the study in peer-review journals and by means of national and international conference. TRIAL REGISTRATION NUMBER NCT04195425.
Collapse
Affiliation(s)
- Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Beghin
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Jules Morcel
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Florence Flamein
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Charles Garabedian
- Univ. Lille, CHU Lille, Department of Obstetrics & Gynecology, F-59000 Lille, France
- Univ. Lille, CHU Lille, ULR 2694-METRICS: évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
| | | | - Elodie Drumez
- Univ. Lille, CHU Lille, ULR 2694-METRICS: évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
- CHU Lille, Department of Biostatistics, F-59000 Lille, France
| | - Julien Labreuche
- Univ. Lille, CHU Lille, ULR 2694-METRICS: évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
- CHU Lille, Department of Biostatistics, F-59000 Lille, France
| | - Frederic Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Emmanuel Hermann
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
10
|
Munasinghe M, Almotayri A, Thomas J, Heydarian D, Jois M. Early Exposure is Necessary for the Lifespan Extension Effects of Cocoa in C. elegans. Nutr Metab Insights 2021; 14:11786388211029443. [PMID: 34290507 PMCID: PMC8278456 DOI: 10.1177/11786388211029443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
Background We previously showed that cocoa, a rich source of polyphenols improved the age-associated health and extended the lifespan in C. elegans when supplemented starting from L1 stage. Aim In this study, we aimed to find out the effects of timing of cocoa exposure on longevity improving effects and the mechanisms and pathways involved in lifespan extension in C. elegans. Methods The standard E. coli OP50 diet of wild type C. elegans was supplemented with cocoa powder starting from different larval stages (L1, L2, L3, and L4) till the death, from L1 to adult day 1 and from adult day 1 till the death. For mechanistic studies, different mutant strains of C. elegans were supplemented with cocoa starting from L1 stage till the death. Survival curves were plotted, and mean lifespan was reported. Results Cocoa exposure starting from L1 stage till the death and till adult day 1 significantly extended the lifespan of worms. However, cocoa supplementation at other larval stages as well as at adulthood could not extend the lifespan, instead the lifespan was significantly reduced. Cocoa could not extend the lifespan of daf-16, daf-2, sir-2.1, and clk-1 mutants. Conclusion Early-start supplementation is essential for cocoa-mediated lifespan extension which is dependent on insulin/IGF-1 signaling pathway and mitochondrial respiration.
Collapse
Affiliation(s)
- Mihiri Munasinghe
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Abdullah Almotayri
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Jency Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Deniz Heydarian
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Markandeya Jois
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
11
|
Bibbò S, Abbondio M, Sau R, Tanca A, Pira G, Errigo A, Manetti R, Pes GM, Dore MP, Uzzau S. Fecal Microbiota Signatures in Celiac Disease Patients With Poly-Autoimmunity. Front Cell Infect Microbiol 2020; 10:349. [PMID: 32793511 PMCID: PMC7390951 DOI: 10.3389/fcimb.2020.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
To date, reliable tests enabling the identification of celiac disease (CD) patients at a greater risk of developing poly-autoimmune diseases are not yet available. We therefore aimed to identify non-invasive microbial biomarkers, useful to implement diagnosis of poly-autoimmunity. Twenty CD patients with poly-autoimmunity (cases) and 30 matched subjects affected exclusively by CD (controls) were selected. All patients followed a varied gluten-free diet for at least 1 year. Fecal microbiota composition was characterized using bacterial 16S ribosomal RNA gene sequencing. Significant differences in gut microbiota composition between CD patients with and without poly-autoimmune disease were found using the edgeR algorithm. Spearman correlations between gut microbiota and clinical, demographic, and anthropometric data were also examined. A significant reduction of Bacteroides, Ruminococcus, and Veillonella abundances was found in CD patients with poly-autoimmunity compared to the controls. Bifidobacterium was specifically reduced in CD patients with Hashimoto's thyroiditis and its abundance correlated negatively with abdominal circumference values in patients affected exclusively by CD. In addition, the duration of CD correlated with the abundance of Firmicutes (negatively) and Odoribacter (positively), whereas the abundance of Desulfovibrionaceae correlated positively with the duration of poly-autoimmunity. This study provides supportive evidence that specific variations of gut microbial taxa occur in CD patients with poly-autoimmune diseases. These findings open the way to future validation studies on larger cohorts, which might in turn lead to promising diagnostic applications.
Collapse
Affiliation(s)
- Stefano Bibbò
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rosangela Sau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Errigo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Maria Pina Dore
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Baylor College of Medicine, Houston, TX, United States
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
12
|
Abstract
Lay Summary
A person’s diet may impact inflammatory bowel disease (IBD) risk. IBD is an inflammatory condition. We explore how certain foods may trigger, or indeed attenuate, inflammation in some IBD patients, but not others. Greater knowledge is needed underpinning personalized nutrition within effective medical management.
Collapse
Affiliation(s)
- Colm B Collins
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland,Institute for Global Food Security, Queen’s University Belfast, Northern Ireland, UK,Address correspondence to: Helen M. Roche, PhD, UCD Conway Institute and School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland ()
| |
Collapse
|