1
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
2
|
Hilliard GM, Wilkinson TS, Harris LG, Jenkins RE, Shornick LP. PCL-gelatin honey scaffolds promote Staphylococcus aureus agrA expression in biofilms with Pseudomonas aeruginosa. Front Microbiol 2024; 15:1440658. [PMID: 39290512 PMCID: PMC11405313 DOI: 10.3389/fmicb.2024.1440658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Bacterial infection and biofilm formation contribute to impaired healing in chronic diabetic wounds. Staphylococcus aureus and Pseudomonas aeruginosa are found in human diabetic wound biofilms. They may develop antibiotic resistance, increasing the urgency for alternative or complementary therapies. Diabetic wound healing may be improved with the use of biomedically engineered scaffolds, which can also serve as delivery systems for antibacterial compounds. Manuka honey is a potent antibacterial and wound care agent due to its high osmolarity, low pH, and constituents (such as methylglyoxal). Honey exhibits bacteriostatic and bactericidal effects, modulates the expression of biofilm forming genes, and restores antibiotic susceptibility in previously drug resistant pathogens. Methods In this study, we created a dermal regeneration template (DRT) composed of polycaprolactone-gelatin (PCL-gelatin) and Manuka honey to retain honey in the wound and also provide a scaffold for tissue regeneration. Results and discussion Soluble Manuka honey inhibited the planktonic and biofilm growth of both S. aureus (UWH3) and P. aeruginosa (PA14) co-cultures. Manuka honey embedded PCL-gelatin scaffolds did not exhibit bacteriostatic or bactericidal effects on cocultures of UHW3 and PA14; however, they promoted the expression of AgrA, a gene associated with dispersal of S. aureus biofilms.
Collapse
Affiliation(s)
| | | | - Llinos G Harris
- Biomedical Sciences at University of Swansea, Swansea, Wales, United Kingdom
| | - Rowena E Jenkins
- Biomedical Sciences at University of Swansea, Swansea, Wales, United Kingdom
| | - Laurie P Shornick
- Department of Biology at Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
3
|
Stevanović J, Glavinić U, Ristanić M, Erjavec V, Denk B, Dolašević S, Stanimirović Z. Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being. Pharmaceuticals (Basel) 2024; 17:1050. [PMID: 39204155 PMCID: PMC11357515 DOI: 10.3390/ph17081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
Collapse
Affiliation(s)
- Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey;
| | | | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| |
Collapse
|
4
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
5
|
Dahiya D, Mackin C, Nigam PS. Studies on bioactivities of Manuka and regional varieties of honey for their potential use as natural antibiotic agents for infection control related to wound healing and in pharmaceutical formulations. AIMS Microbiol 2024; 10:288-310. [PMID: 38919717 PMCID: PMC11194624 DOI: 10.3934/microbiol.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Presently, most of the reported infections are of a bacterial origin; however, this leads to a limit within the literature and research around infections caused by fungal pathogens, which are now developing resistance to antibiotic medicines. Of the natural antimicrobial agents, honey has been observed with demonstrable and highly exploitable antimicrobial and infection control related to wound healing properties; therefore, it has been incorporated into many standard pharmaceutical formulations. Generally, these products utilize a pure sample of honey as a bioactive ingredient in a product which has been purposely designed for the convenience of application. This article aims to review information available from published reports on various bioactivities of a variety of medical-grade honey products, including manuka and other conventional non-manuka types sourced from different floral types and geographical regions. Additionally, this review highlights the antibiotic activities of various types of honey products tested against pathogenic strains of bacteria, yeast and fungi, and their applications in the formulation of healthcare products.
Collapse
Affiliation(s)
- Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, England, UK
- current address: Haematology and Blood Transfusion, Basingstoke and North Hampshire Hospital, Basingstoke RG24 9NA, UK
| | - Caoimhin Mackin
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
6
|
Nakayama T, Morimoto K, Uchiyama K, Washida N, Kusahana E, Hama EY, Mitsuno R, Tonomura S, Yoshimoto N, Hishikawa A, Hagiwara A, Azegami T, Yoshino J, Monkawa T, Yoshida T, Yamaguchi S, Hayashi K. Efficacy of sucrose and povidone-iodine mixtures in peritoneal dialysis catheter exit-site care. BMC Nephrol 2024; 25:151. [PMID: 38698327 PMCID: PMC11064401 DOI: 10.1186/s12882-024-03591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Exit-site infection (ESI) is a common recurring complication in patients undergoing peritoneal dialysis (PD). Sucrose and povidone-iodine (SPI) mixtures, antimicrobial ointments that promote wound healing, have been used for the treatment of ulcers and burns, but their efficacy in exit-site care is still unclear. METHODS This single-center retrospective observational study included patients who underwent PD between May 2010 and June 2022 and presented with episodes of ESI. Patients were divided into SPI and non-SPI groups and followed up from initial ESI onset until PD cessation, death, transfer to another facility, or June 2023. RESULTS Among the 82 patients (mean age 62, [54-72] years), 23 were treated with SPI. The median follow-up duration was 39 months (range, 14-64), with an overall ESI incidence of 0.70 episodes per patient-year. Additionally, 43.1% of second and 25.6% of third ESI were caused by the same pathogen as the first. The log-rank test demonstrated significantly better second and third ESI-free survival in the SPI group than that in the non-SPI group (p < 0.01 and p < 0.01, respectively). In a Cox regression analysis, adjusting for potential confounders, SPI use was a significant predictor of decreased second and third ESI episodes (hazard ratio [HR], 0.22; 95% confidence interval [CI], 0.10-0.52 and HR, 0.22; 95%CI, 0.07-0.73, respectively). CONCLUSIONS Our results showed that the use of SPI may be a promising option for preventing the incidence of ESI in patients with PD. TRIAL REGISTRATION This study was approved by the Keio University School of Medicine Ethics Committee (approval number 20231078) on August 28, 2023. Retrospectively registered.
Collapse
Affiliation(s)
- Takashin Nakayama
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kohkichi Morimoto
- Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Kiyotaka Uchiyama
- Department of Nephrology, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Naoki Washida
- Department of Nephrology, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Ei Kusahana
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Eriko Yoshida Hama
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryunosuke Mitsuno
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shun Tonomura
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Norifumi Yoshimoto
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Akihito Hishikawa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Aika Hagiwara
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tatsuhiko Azegami
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Toshiaki Monkawa
- Medical Education Center, Keio University School of Medicine, Tokyo, Japan
| | - Tadashi Yoshida
- Apheresis and Dialysis Center, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Medical Education Center, Keio University School of Medicine, Tokyo, Japan.
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
7
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
8
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
9
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
10
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
11
|
McArdle C, Coyle S, Santos D. The impact of wound pH on the antibacterial properties of Medical Grade Honey when applied to bacterial isolates present in common foot and ankle wounds. An in vitro study. J Foot Ankle Res 2023; 16:66. [PMID: 37784205 PMCID: PMC10544608 DOI: 10.1186/s13047-023-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/13/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) and post-surgical wound infections are amongst the most troublesome complications of diabetes and following foot and ankle surgery (FAS) respectively. Both have significant psychosocial and financial burden for both patients and the healthcare system. FAS has been reported to have higher than average post-surgical infections when compared to other orthopaedic subspecialties. Evidence also indicates that patients with diabetes and other co morbidities undergoing FAS are at a much greater risk of developing surgical site infections (SSIs). With the growing challenges of antibiotic resistance and the increasingly high numbers of resilient bacteria to said antibiotics, the need for alternative antimicrobial therapies has become critical. AIM The aim of this study was to investigate the use of medical grade honey (MGH) when altered to environments typically present in foot and ankle wounds including DFUs and post-surgical wounds (pH6-8). METHODS MGH (Activon) was altered to pH 6, 7 and 8 and experimental inoculums of Pseudomonas aeruginosa (NCTC10782), Escherichia coli, (NCTC10418), Staphylococcus aureus (NCTC10655) and Staphylococcus epidermidis (NCTC 5955) were transferred into each pH adjusted MGH and TSB solution and the positive and negative controls. RESULTS MGH adjusted to various pH values had the ability to reduce bacteria cell survival in all pH variations for all bacteria tested, with the most bacterial reduction/elimination noted for Staphylococcus epidermidis. No correlations were noted among the pH environments investigated and the colony counts, for which there were small amounts of bacteria survived. CONCLUSION This research would indicate that the antibacterial properties of honey remains the same regardless of the pH environment. MGH could therefore potentially be considered for use on non-infected foot and ankle wounds to reduce the bacterial bioburden, the risk of infections and ultimately to improve healing outcomes.
Collapse
Affiliation(s)
- Carla McArdle
- Health Service Executive, St Clare's Integrated Care Centre, 502 Griffith Avenue, Glasnevin, D11 AT81, Dublin 11, Ireland.
| | - Shirley Coyle
- Queen Margaret University, Queen Margaret Drive, Musselburgh, EH21 6UU, Edinburgh, UK
| | - Derek Santos
- Queen Margaret University, Queen Margaret Drive, Musselburgh, EH21 6UU, Edinburgh, UK
| |
Collapse
|
12
|
Holubová A, Chlupáčová L, Krocová J, Cetlová L, Peters LJF, Cremers NAJ, Pokorná A. The Use of Medical Grade Honey on Infected Chronic Diabetic Foot Ulcers-A Prospective Case-Control Study. Antibiotics (Basel) 2023; 12:1364. [PMID: 37760661 PMCID: PMC10525154 DOI: 10.3390/antibiotics12091364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Non-healing wounds are usually colonised and contaminated by different types of bacteria. An alternative to antibiotic treatment in patients with infected wounds with local signs of inflammation may be medical grade honey (MGH). MGH has antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory features. This study aims to evaluate the effect of MGH therapy on infected non-healing wounds, especially for diabetic foot syndrome. Prospective, observational case series (n = 5) of patients with wounds of diabetic foot syndrome are presented. There were five males with an average age of 61.6 years. All wounds were treated with MGH, and the healing trajectory was rigorously and objectively monitored. In all cases, there was a gradual disappearance of odour, pain, and exudation. Moreover, the wound areas significantly reduced within 40 days and there was a decrease in glycated haemoglobin and glycaemia values. All these outcomes resulted in improved quality of life of the patients. Despite bacterial colonisation, antibiotic treatment was not necessary. All wounds were completely healed. MGH has antimicrobial, anti-inflammatory, and antioxidant effects in diabetic foot syndrome wounds, does not increase glycated haemoglobin or glycaemia levels, and thus constitutes an effective alternative to the use of antibiotics in the treatment of locally infected wounds.
Collapse
Affiliation(s)
- Adéla Holubová
- Faculty of Health and Social Sciences, University of South Bohemia, 370 11 České Budějovice, Czech Republic;
- DiaPodi Care, spol. s r.o., 392 01 Soběslav, Czech Republic;
| | | | - Jitka Krocová
- Department of Nursing and Midwifery, Faculty of Health Studies, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Lada Cetlová
- Department of Health Sciences, College of Polytechnics Jihlava, 586 01 Jihlava, Czech Republic; (L.C.); (A.P.)
| | | | - Niels A. J. Cremers
- Triticum Exploitatie BV, Sleperweg 44, 6222 NK Maastricht, The Netherlands;
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Andrea Pokorná
- Department of Health Sciences, College of Polytechnics Jihlava, 586 01 Jihlava, Czech Republic; (L.C.); (A.P.)
- Department of Health Sciences, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Aldarhami A, Bazaid AS, Qanash H, Ahmad I, Alshammari FH, Alshammari AM, Alshammari AH, Aljanfawe FM, Aldamiri B, Aldawood E, Alghamdi MA, Binsaleh NK, Saeedi NH, Snoussi M. Effects of Repeated in-vitro Exposure to Saudi Honey on Bacterial Resistance to Antibiotics and Biofilm Formation. Infect Drug Resist 2023; 16:4273-4283. [PMID: 37424668 PMCID: PMC10327913 DOI: 10.2147/idr.s410159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Although Sumra and Sidr Saudi honey is widely used in traditional medicine due to its potent activity, it is unknown whether its prolonged usage has impact upon bacterial virulence or leading to reduced antibiotic sensitivity. Thus, the study aims to investigate the effect of prolonged (repeated) in-vitro exposure to Saudi honey on the antibiotic susceptibility profiles and biofilm formation of pathogenic bacteria. Methods Several bacteria, including Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii, were in-vitro exposed ten times [passaged (P10)]to Sumra and Sider honey individually to introduce adapted bacteria (P10). Antibiotic susceptibility profiles of untreated (P0) and adapted (P10) bacteria were assessed using disc diffusion and microdilution assays. The tendency regarding biofilm formation following in-vitro exposure to honey (P10) was assessed using the Crystal violet staining method. Results Adapted (P10) bacteria to both Sumra and Sidr honey showed an increased sensitivity to gentamicin, ceftazidime, ampicillin, amoxycillin/clavulanic acid, and ceftriaxone, when compared with the parent strains (P0). In addition, A. baumannii (P10) that was adapted to Sidr honey displayed a 4-fold increase in the minimal inhibitory concentration of the same honey following in-vitro exposure. 3-fold reduction in the tendency toward biofilm formation was observed for the Sumra-adapted (P10) methicillin resistant S. aureus strain, although there was a lower rate of reduction (1.5-fold) in biofilm formation by both the Sumra- and Sidr-adapted A. baumannii (P10) strains. Conclusion The data highlight the positive impact of prolonged in-vitro exposure to Saudi honey (Sumra and Sider) for wound-associated bacteria since they displayed a significant increase in their sensitivity profiles to the tested antibiotic and a reduction in their ability to form biofilm. The increased bacterial sensitivity to antibiotics and a limited tendency toward biofilm formation would suggest the great potential therapeutic use of this Saudi honey (Sumra and Sidr) to treat wound infections.
Collapse
Affiliation(s)
- Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 21961, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Fahad H Alshammari
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Abdulrahman M Alshammari
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Abdulrahman H Alshammari
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Fahad M Aljanfawe
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Bushra Aldamiri
- Biochemistry Department, College of Science, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Esraa Aldawood
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Mashail A Alghamdi
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
| | - Nizar H Saeedi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mejdi Snoussi
- Medical and Diagnostic Research Center, University of Ha’il, Hail, 55473, Saudi Arabia
- Department of Biology, College of Science, University of Ha’il, Hail, 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
14
|
Dewey MJ, Collins AJ, Tiffany A, Barnhouse VR, Lu C, Kolliopoulos V, Mutreja I, Hickok NJ, Harley BAC. Evaluation of bacterial attachment on mineralized collagen scaffolds and addition of manuka honey to increase mesenchymal stem cell osteogenesis. Biomaterials 2023; 294:122015. [PMID: 36701999 PMCID: PMC9928779 DOI: 10.1016/j.biomaterials.2023.122015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria R Barnhouse
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Crislyn Lu
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vasiliki Kolliopoulos
- Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isha Mutreja
- Department of Restorative Science, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
16
|
Diban F, Di Lodovico S, Di Fermo P, D’Ercole S, D’Arcangelo S, Di Giulio M, Cellini L. Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. Int J Mol Sci 2023; 24:1004. [PMID: 36674518 PMCID: PMC9862456 DOI: 10.3390/ijms24021004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic wounds have harmful effects on both patients and healthcare systems. Wound chronicity is attributed to an impaired healing process due to several host and local factors that affect healing pathways. The resulting ulcers contain a wide variety of microorganisms that are mostly resistant to antimicrobials and possess the ability to form mono/poly-microbial biofilms. The search for new, effective and safe compounds to handle chronic wounds has come a long way throughout the history of medicine, which has included several studies and trials of conventional treatments. Treatments focus on fighting the microbial colonization that develops in the wound by multidrug resistant pathogens. The development of molecular medicine, especially in antibacterial agents, needs an in vitro model similar to the in vivo chronic wound environment to evaluate the efficacy of antimicrobial agents. The Lubbock chronic wound biofilm (LCWB) model is an in vitro model developed to mimic the pathogen colonization and the biofilm formation of a real chronic wound, and it is suitable to screen the antibacterial activity of innovative compounds. In this review, we focused on the characteristics of chronic wound biofilms and the contribution of the LCWB model both to the study of wound poly-microbial biofilms and as a model for novel treatment strategies.
Collapse
Affiliation(s)
- Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Di Fermo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Sara D’Arcangelo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
17
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Anti-Inflammatory and Antibacterial Effects and Mode of Action of Greek Arbutus, Chestnut, and Fir Honey in Mouse Models of Inflammation and Sepsis. Microorganisms 2022; 10:microorganisms10122374. [PMID: 36557628 PMCID: PMC9784341 DOI: 10.3390/microorganisms10122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Honey has been shown to possess anti-inflammatory and bactericidal properties that may be useful for the prevention and treatment of infections as well as of acute and chronic inflammatory diseases. The antimicrobial potency of honey could be attributed to its physicochemical characteristics combined with the presence of certain compounds, such as hydrogen peroxide and polyphenols. Honey's bacteriostatic or bactericidal capacity varies depending on its composition and the bacterial type of each infection. Nevertheless, not all honey samples possess anti-inflammatory or antibacterial properties and their mechanism of action has not been clearly elucidated. Objectives: We therefore investigated the anti-inflammatory properties of three different honey samples that derived from different geographical areas of Greece and different botanical origins, namely, arbutus, chestnut, and fir; they were compared to manuka honey, previously known for its anti-inflammatory and antibacterial activity. Materials and Methods: To test the anti-inflammatory activity of the different samples, we utilized the in vivo model of LPS-driven inflammation, which induces septic shock without the presence of pathogens. To evaluate the antibacterial action of the same honey preparations, we utilized the cecal-slurry-induced peritonitis model in mice. Since acute inflammation and sepsis reduce the biotransformation capacity of the liver, the expression of key enzymes in the process was also measured. Results: The administration of all Greek honey samples to LPS-stimulated mice revealed a potent anti-inflammatory activity by suppressing the TNFα serum levels and the expression of TNFα and iNOS in the liver at levels comparable to those of the manuka honey, but they had no effect on IL-6 or IL-1β. It was shown that the LPS-induced suppression of CYP1A1 in the liver was reversed by Epirus and Crete fir honey, while, correspondingly, the suppression of CYP2B10 in the liver was reversed by Evros chestnut and Epirus fir honey. The effect of the same honey samples in polymicrobial peritonitis in mice was also evaluated. Even though no effect was observed on the disease severity or peritoneal bacterial load, the bacterial load in the liver was reduced in mice treated with Evros chestnut, Epiros fir, and Crete fir, while the bacterial load in the lungs was reduced in Epirus arbutus, Crete fir, and manuka honey-treated mice. Conclusion: Our findings suggest that these specific Greek honey samples possess distinct anti-inflammatory and antibacterial properties, as evidenced by the reduced production of pro-inflammatory mediators and the impaired translocation of bacteria to tissues in septic mice. Their mode of action was comparable or more potent to those of manuka honey.
Collapse
|
19
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
20
|
Illuminating the signalomics of microbial biofilm on plant surfaces. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Naik PP, Chrysostomou D, Cinteza M, Pokorná A, Cremers NA. When time does not heal all wounds-the use of medical grade honey in wound healing: a case series. J Wound Care 2022; 31:548-558. [PMID: 35797263 DOI: 10.12968/jowc.2022.31.7.548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Hard-to-heal wounds can be caused by persistent infections or an excess of inflammatory cytokines, proteases and oxidants, and can severely impact the quality of life (QoL) of patients. Due to the paucity of effective treatments and increased resistance to antibiotics, new and improved therapies are required to resolve infections and to simultaneously enhance the healing trajectory. Medical grade honey (MGH) may be a novel and effective treatment approach. METHODS In this case series, we have described six cases of hard-to-heal wounds, and discussed the effects of MGH on infection, wound healing and factors influencing patient QoL (pain, odour and exudate). In all cases, the wounds had persisted for a long period, and previous treatments had been ineffective. Most of the patients had comorbidities, and the majority of the wounds were contaminated with (multiresistant) bacteria, both of which contributed to non-healing. All wounds were treated with L-Mesitran (MGH-based wound care products, Triticum Exploitatie BV, the Netherlands) either as monotherapy or as a complementary therapy. RESULTS Hard-to-heal wounds started healing, infection was controlled and QoL was strongly improved (malodour, exudate levels and pain swiftly decreased) after the application of the MGH. All wounds healed relatively quickly, considering the severity of the wounds and general health of the patients. CONCLUSION In this study, MGH was a useful alternative or complementary therapy to antibiotics and expedited the healing of hard-to-heal wounds.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Saudi German Hospitals and Clinics, Department of Dermatology, Hessa Street 331 West, Al Barsha3, Exit 36 Sheikh Zayed Road, Opposite of American School, Dubai, United Arab Emirates
| | - Daniela Chrysostomou
- Wound Clinic Health@45, Linksfield Road 45, Dowerglen, Johannesburg, South Africa
| | - Mirela Cinteza
- SC Podotim Medica SRL, RO41116267, J/35/2118/2019, Moșnița Veche, Jud Timiș, Romania
| | - Andrea Pokorná
- Department of Health Sciences, Faculty of Medicine, Masaryk University, Czech Republic.,College of Polytechnics Jihlava, Jihlava, Czech Republic
| | - Niels Aj Cremers
- Triticum Exploitatie BV, Sleperweg 44, 6222NK Maastricht, the Netherlands.,Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, the Netherlands
| |
Collapse
|
22
|
Sharma A, Verma C, Mukhopadhyay S, Gupta A, Gupta B. Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system. Int J Biol Macromol 2022; 216:303-311. [PMID: 35777513 DOI: 10.1016/j.ijbiomac.2022.06.168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 01/20/2023]
Abstract
Present study aims at developing antimicrobial cotton gauze by dip coating of sodium alginate (SA), glycerol (Gly) and tannic acid (TA) blend. SA blends were prepared with varying concentration of glycerol in the range of 10-40 %. Blended films were fabricated and characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD), tensile studies, and contact angle analysis. The mechanical behavior of films indicated significant decrease in the tensile strength and modulus with the increase in the glycerol content due to the plasticization effect. The hydrophilicity of the blend films increased with increase in the glycerol content. TA was added to the blend as an antimicrobial agent. These blends were coated on the cotton gauze by dip coating method and their characterizations were carried out by the scanning electron microscopy (SEM) which revealed a smooth coating of SA:Gly:TA blend on cotton gauze. Antimicrobial analysis of TA coated gauzes was carried out which showed >95 % viable colony reduction against E. coli and S. aureus. Cytocompatibility studies indicated excellent cell-compatible activity. These results implicated that such coated gauzes are promising candidate that hold the great potential to be utilized as infection-resistant material in the health care sector.
Collapse
Affiliation(s)
- Ankita Sharma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Amlan Gupta
- Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
23
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
24
|
You R, Kwon OY, Woo HJ, Lee SH. Hovenia Monofloral Honey can Attenuate Enterococcus faecalis Mediated Biofilm Formation and Inflammation. Food Sci Anim Resour 2022; 42:84-97. [PMID: 35028576 PMCID: PMC8728505 DOI: 10.5851/kosfa.2021.e65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022] Open
Abstract
We evaluated the anti-biofilm formation and anti-inflammatory activity of Hovenia
monofloral honey (HMH) against Enterococcus faecalis.
Co-culture of HMH with E. faecalis attenuated the biofilm
formation of E. faecalis on a polystyrene surface. In addition,
HMH effectively eradicated the established E. faecalis biofilm.
HMH significantly attenuated E. faecalis growth but did not
affect the production of extracellular polymeric substances on E.
faecalis, indicating that reduction of E. faecalis
biofilm is a result of HMH-mediated killing of E. faecalis.
Furthermore, we found that HMH can effectively attenuate E.
faecalis-induced expression of a proinflammatory interleukin-8
(IL-8) in HT-29 cells. Interestingly, treatment of HMH significantly attenuated
the E. faecalis-mediated expression of Toll-like receptor-2
(TLR-2) and its adaptor molecules, myeloid differentiation primary response 88
(MyD88), in HT-29 cells. In addition, E. faecalis-induced
mitogen-activated protein kinases (MAPKs) phosphorylation was significantly
attenuated by HMH administration. Furthermore, HMH-mediated anti-inflammatory
efficacy (0.2 mg/mL of HMHs) had an equal extent of inhibitory efficacy as 5
μM of MyD88 inhibitor to attenuate E. faecalis-mediated
IL-8 expression in HT-29 cells. These results suggest that HMH could effectively
inhibit E. faecalis-mediated gastrointestinal inflammation
through regulating the TLR-2/MyD88/MAPKs signaling pathways. Collectively, our
data suggest that HMH could be developed as a potential natural agent to control
E. faecalis-mediated biofilm formation and
inflammation.
Collapse
Affiliation(s)
- Ri You
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Oh Yun Kwon
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun Joo Woo
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Seung Ho Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
25
|
Liaqat I, Gulab B, Hanif U, Sultan A, Sadiqa A, Zafar U, Afzaal M, Naseem S, Akram S, Saleem G. Honey Potential as Antibiofilm, Antiquorum Sensing and Dispersal Agent against Multispecies Bacterial Biofilm. J Oleo Sci 2022; 71:425-434. [DOI: 10.5650/jos.ess21199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, GC University
| | - Babar Gulab
- Microbiology Lab, Department of Zoology, GC University
| | | | | | - Ayesha Sadiqa
- Department of Chemistry, University of Engineering and Technology
| | - Urooj Zafar
- Department of Microbiology, University of Karachi
| | | | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campu
| | - Sumia Akram
- Division of Science and Technology, University of Education
| | - Gulbeena Saleem
- Department of Pathology, University of Veterinary and Animal Sciences
| |
Collapse
|
26
|
Amly DA, Hajardhini P, Jonarta AL, Yulianto HDK, Susilowati H. Enhancement of pyocyanin production by subinhibitory concentration of royal jelly in Pseudomonas aeruginosa. F1000Res 2021; 10:14. [PMID: 34540201 PMCID: PMC8424461 DOI: 10.12688/f1000research.27915.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of
P. aeruginosa. Methods:Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC
10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of
P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in
P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.
Collapse
Affiliation(s)
- Dina Auliya Amly
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Puspita Hajardhini
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Alma Linggar Jonarta
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| |
Collapse
|
27
|
Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Bazaid AS, Aldarhami A, Gattan H, Aljuhani B. Saudi Honey: A Promising Therapeutic Agent for Treating Wound Infections. Cureus 2021; 13:e18882. [PMID: 34804730 PMCID: PMC8599116 DOI: 10.7759/cureus.18882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment of wounds, especially chronic ones, is a major challenge in healthcare, with serious clinical and economic burdens. Multiple treatment approaches, including the usage of silver and iodine, have dramatically improved wound healing and reduced the incidence of infection. However, once infected by drug-resistant bacteria, treatment of wounds becomes a serious complication, with limited availability of effective antibiotic drugs, leading to high morbidity and mortality. Therefore, alternative therapeutic agents are required to address this gap in wound management. The introduction of manuka honey as a therapeutic agent against infected wounds was the result of extensive research about its activity against both planktonic and biofilm bacterial growth. Likewise, several types of Saudi honey (e.g., Sidr and Talh) showed promising in vitro and in vivo antimicrobial activity against wound pathogens. This short review summarizes literature that investigated the activity of common types of Saudi honey in relation to wound infections and explores their clinical utility.
Collapse
Affiliation(s)
- Abdulrahman S Bazaid
- Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, SAU
| | - Abdu Aldarhami
- Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, SAU
| | - Hattan Gattan
- Medical Laboratory Sciences, King Abdulaziz University, Jeddah, SAU
| | | |
Collapse
|
29
|
Antonova O, Calvo J, Seifert A. Rapid Detection of Thermal Treatment of Honey by Chemometrics-Assisted FTIR Spectroscopy. Foods 2021; 10:foods10112892. [PMID: 34829173 PMCID: PMC8623053 DOI: 10.3390/foods10112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Honey, as a nutritious natural sweetener produced by honeybees, offers a unique biochemical composition with great benefit to human health. Transportation and storage conditions as well as violations of processing can lead to decomposition of vitamins, destruction of the integrity of the antioxidant components and enzymes, and further biochemical changes with impact on nutritional quality. We developed a fast detection method of adulterations or changes of honey caused by thermal exposure, which does not require any sample pretreatment. By Fourier-transform infrared spectroscopy, supported by chemometrics methods, we investigated three types of raw honey before and after heat treatment for varying exposure times at different temperatures. Applying principal component analysis and linear discriminant analysis to the preprocessed spectroscopic data, allowed us to discriminate raw honey from thermally altered ones even at low temperatures of 40 °C with high accuracies ≥90%.
Collapse
Affiliation(s)
- Olga Antonova
- CIC nanoGUNE BRTA, 20018 San Sebastián, Spain;
- Correspondence: ; Tel.: +34-64-442-8382
| | - Javier Calvo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
| | - Andreas Seifert
- CIC nanoGUNE BRTA, 20018 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
30
|
Fratianni F, d'Acierno A, Ombra MN, Amato G, De Feo V, Ayala-Zavala JF, Coppola R, Nazzaro F. Fatty Acid Composition, Antioxidant, and in vitro Anti-inflammatory Activity of Five Cold-Pressed Prunus Seed Oils, and Their Anti-biofilm Effect Against Pathogenic Bacteria. Front Nutr 2021; 8:775751. [PMID: 34869542 PMCID: PMC8636901 DOI: 10.3389/fnut.2021.775751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Sweet almond (Prunus amygdalus dulcis) oil is one of the most famous cold-pressed seed oils. However, other species of Prunus can provide oils with healthy properties. We analyzed the fatty acid (FA) composition, as well as the antioxidant, the in vitro anti-inflammatory properties, and the antibiofilm activity of five commercial vegetable cold-pressed seed oils of apricot, peach, plum, cherry, and black cherry. Methods: Gas Chromatography-Mass Spectrometry was performed for the analysis of FAs The antioxidant property of the oils was carried using different tests [2, 2-diphenyl-1-picrylhydrazyl (DPPH assay)], Ferric Reducing Antioxidant Power (FRAP), and the 2, 20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+). The denaturation assay performed on bovine serum albumin (BSA) was used to evaluate the in vitro anti-inflammatory activity. The anti-biofilm activity was assessed using five pathogenic strains, namely, Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus, through the crystal violet test and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), used to evaluate the metabolism of the microbial cells present within the biofilm. Results: Oleic acid and linoleic acids were the most abundant FAs. Black cherry seed oil exhibited the best antioxidant activity, but in general, the amount of oil needed to inhibit the activity of 1 ml of DPPH assay at 50% did not exceed 10 μg. The extract concentration for the 50% inhibition of the denaturation of the protein (IC50) did not exceed 4.4 μg. Linoleic and stearic acids affected the antioxidant activity of the oils; oleic acid, linolenic, and palmitoleic acids exhibited beneficial effects in preserving the BSA denaturation, as shown by the correlation data. The oils were able to inhibit the biofilm formation of the pathogens (up to 71.40% of inhibition) as well as act against their mature biofilm, although with different strengths, with values up to 61.54%. Concurrently, they also acted on the pathogen metabolism. Conclusion: The oils represent a valuable source of some healthy FAs. They showed potential antioxidant and anti-inflammatory in vitro activity, in addition, their potential effect on the biofilm can offer important ideas for research and reflection on their use as functional foods and/or ingredients.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| | - Antonio d'Acierno
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| | - Maria Neve Ombra
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council of Italy (CNR), Avellino, Italy
| |
Collapse
|
31
|
Fratianni F, Ombra MN, d’Acierno A, Caputo L, Amato G, De Feo V, Coppola R, Nazzaro F. Polyphenols Content and In Vitro α-Glycosidase Activity of Different Italian Monofloral Honeys, and Their Effect on Selected Pathogenic and Probiotic Bacteria. Microorganisms 2021; 9:1694. [PMID: 34442773 PMCID: PMC8398212 DOI: 10.3390/microorganisms9081694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
We evaluated the polyphenol content and the α-glucosidase activity exhibited by different monofloral honeys of Italian origin. Their capacity to act on different pathogenic (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) as well as probiotic bacteria (Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus rhamnosus) was also assessed. Total polyphenols varied between 110.46 μg/g of fresh product (rhododendron honey) and 552.29 μg/g of fresh product (strawberry tree honey). Such result did not correspond to a parallel inhibitory α-glycosidase activity that, in each case was never higher than 33 μg/mL. Honeys were differently capable to fight the biofilm formation of the pathogens (inhibition up to 93.27%); they inhibited the in vitro adhesive process (inhibition up to 84.27%), and acted on mature biofilm (with values up to 76.64%). Their effect on bacterial metabolism was different too. Honeys were ineffective to inhibit E. coli mature biofilm nor to act on its metabolism. The action of the honey on probiotic strains seemed almost always stimulate their growth. Thus, these monofloral honeys might exhibit effects on human health and act positively as prebiotics.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via de Sanctis snc, 86100 Campobasso, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| |
Collapse
|
32
|
Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of Honey in Advanced Wound Care. Molecules 2021; 26:4784. [PMID: 34443372 PMCID: PMC8398244 DOI: 10.3390/molecules26164784] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Honey is a natural product rich in several phenolic compounds, enzymes, and sugars with antioxidant, anticarcinogenic, anti-inflammatory, and antimicrobial potential. Indeed, the development of honey-based adhesives for wound care and other biomedical applications are topics being widely investigated over the years. Some of the advantages of the use of honey for wound-healing solutions are the acceleration of dermal repair and epithelialization, angiogenesis promotion, immune response promotion and the reduction in healing-related infections with pathogenic microorganisms. This paper reviews the main role of honey on the development of wound-healing-based applications, the main compounds responsible for the healing capacity, how the honey origin can influence the healing properties, also highlighting promising results in in vitro and in vivo trials. The challenges in the use of honey for wound healing are also covered and discussed. The delivery methodology (direct application, incorporated in fibrous membranes and hydrogels) is also presented and discussed.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José María Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Miguel Sousa Dias
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Letícia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| |
Collapse
|
33
|
El-Senduny FF, Hegazi NM, Abd Elghani GE, Farag MA. Manuka honey, a unique mono-floral honey. A comprehensive review of its bioactives, metabolism, action mechanisms, and therapeutic merits. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Holubová A, Chlupáčová L, Cetlová L, Cremers NAJ, Pokorná A. Medical-Grade Honey as an Alternative Treatment for Antibiotics in Non-Healing Wounds-A Prospective Case Series. Antibiotics (Basel) 2021; 10:antibiotics10080918. [PMID: 34438968 PMCID: PMC8388796 DOI: 10.3390/antibiotics10080918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Non-healing wounds are usually colonised by various types of bacteria. An alternative to antibiotic treatment in patients with infected wounds with local signs of inflammation may be medical-grade honey (MGH), which favourably affects the healing process with its antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory properties. The objective of this study was to evaluate the effect of MGH therapy on the healing process of non-healing wounds of various aetiologies and different wound colonisations. Prospective, observation–intervention case studies (n = 9) of patients with wounds of various aetiologies (venous leg ulcers, diabetic foot ulcers, surgical wound dehiscence) are presented. All wounds were treated with MGH and the healing trajectory was rigorously and objectively monitored. In all cases, pain, odour, and exudation were quickly resolved, which led to an improvement in the quality of life of patients. Despite the proven bacterial microflora in wounds, antibiotic treatment was not necessary. The effects of MGH alleviated the signs of local infection until their complete elimination. In eight out of nine cases, the non-healing wound was completely healed. MGH has antimicrobial, anti-inflammatory, and antioxidant effects in wounds of various aetiologies and forms an effective alternative for the use of antibiotics for treating locally infected wounds.
Collapse
Affiliation(s)
- Adéla Holubová
- Faculty of Health and Social Sciences, University of Bohemia, 370 11 České Budějovice, Czech Republic
- DiaPodi Care spol. s r.o., 392 01 Soběslav, Czech Republic;
- Correspondence: ; Tel.: +420-774-672-220
| | | | - Lada Cetlová
- Department of Health Sciences, College of Polytechnics Jihlava, 586 01 Jihlava, Czech Republic; (L.C.); (A.P.)
| | | | - Andrea Pokorná
- Department of Health Sciences, College of Polytechnics Jihlava, 586 01 Jihlava, Czech Republic; (L.C.); (A.P.)
- Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
35
|
Promising Antimicrobial Properties of Bioactive Compounds from Different Honeybee Products. Molecules 2021; 26:molecules26134007. [PMID: 34209107 PMCID: PMC8272120 DOI: 10.3390/molecules26134007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.
Collapse
|
36
|
Moghadam MN, Khaledi EM. Antibacterial activity and mechanism of action of some Iranian honeys compared to manuka honey against multidrug-resistant respiratory and urinary infections. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
38
|
Bischofberger AM, Pfrunder Cardozo KR, Baumgartner M, Hall AR. Evolution of honey resistance in experimental populations of bacteria depends on the type of honey and has no major side effects for antibiotic susceptibility. Evol Appl 2021; 14:1314-1327. [PMID: 34025770 PMCID: PMC8127710 DOI: 10.1111/eva.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
With rising antibiotic resistance, alternative treatments for communicable diseases are increasingly relevant. One possible alternative for some types of infections is honey, used in wound care since before 2000 BCE and more recently in licensed, medical-grade products. However, it is unclear whether medical application of honey results in the evolution of bacterial honey resistance and whether this has collateral effects on other bacterial traits such as antibiotic resistance. Here, we used single-step screening assays and serial transfer at increasing concentrations to isolate honey-resistant mutants of Escherichia coli. We only detected bacteria with consistently increased resistance to the honey they evolved in for two of the four tested honey products, and the observed increases were small (maximum twofold increase in IC90). Genomic sequencing and experiments with single-gene knockouts showed a key mechanism by which bacteria increased their honey resistance was by mutating genes involved in detoxifying methylglyoxal, which contributes to the antibacterial activity of Leptospermum honeys. Crucially, we found no evidence that honey adaptation conferred cross-resistance or collateral sensitivity against nine antibiotics from six different classes. These results reveal constraints on bacterial adaptation to different types of honey, improving our ability to predict downstream consequences of wider honey application in medicine.
Collapse
Affiliation(s)
| | | | | | - Alex R. Hall
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
39
|
Maillard JY, Kampf G, Cooper R. Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC Antimicrob Resist 2021; 3:dlab027. [PMID: 34223101 PMCID: PMC8209993 DOI: 10.1093/jacamr/dlab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long before the nature of infection was recognized, or the significance of biofilms in delayed healing was understood, antimicrobial agents were being used in wound care. In the last 70 years, antibiotics have provided an effective means to control wound infection, but the continued emergence of antibiotic-resistant strains and the documented antibiotic tolerance of biofilms has reduced their effectiveness. A range of wound dressings containing an antimicrobial (antibiotic or non-antibiotic compound) has been developed. Whereas standardized methods for determining the efficacy of non-antibiotic antimicrobials in bacterial suspension tests were developed in the early twentieth century, standardized ways of evaluating the efficacy of antimicrobial dressings against microbial suspensions and biofilms are not available. Resistance to non-antibiotic antimicrobials and cross-resistance with antibiotics has been reported, but consensus on breakpoints is absent and surveillance is impossible. Antimicrobial stewardship is therefore in jeopardy. This review highlights these difficulties and in particular the efficacy of current non-antibiotic antimicrobials used in dressings, their efficacy, and the challenges of translating in vitro efficacy data to the efficacy of dressings in patients. This review calls for a unified approach to developing standardized methods of evaluating antimicrobial dressings that will provide an improved basis for practitioners to make informed choices in wound care.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Günter Kampf
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Germany
| | - Rose Cooper
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| |
Collapse
|
40
|
Joshi RV, Gunawan C, Mann R. We Are One: Multispecies Metabolism of a Biofilm Consortium and Their Treatment Strategies. Front Microbiol 2021; 12:635432. [PMID: 33584635 PMCID: PMC7876221 DOI: 10.3389/fmicb.2021.635432] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The ecological and medical significance of bacterial biofilms have been well recognized. Biofilms are harder to control than their planktonic free-living counterparts and quite recently, the focus of the study has shifted to the multispecies consortia, which represent the vast majority of real-case infection scenarios. Studies have begun to explore the complex interspecies interactions within these biofilms. However, only little attention is currently given to the role of cellular metabolites in the cell-to-cell communication. The concentration gradients of metabolic substrates and products affect the spatial growth of bacteria in multispecies biofilm. This, if looked into more deeply, can lead to identification of potential therapies targeting the specific metabolites and hence the coordinated protection in the bacterial community. Herein, we review the interspecies communications, including their metabolic cross-talking, in multispecies biofilm, to signify the importance of such interactions on the initial formation and subsequent growth of these biofilms. Multispecies biofilms with their species heterogeneity are more resilient to antimicrobial agents than their single species biofilm counterparts and this characteristic is of particular interest when dealing with pathogenic bacteria. In this Review, we also discuss the treatment options available, to include current and emerging avenues to combat pathogenic multispecies biofilms in the clinical, environmental, as well as industrial settings.
Collapse
Affiliation(s)
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Kannan S, Solomon A, Krishnamoorthy G, Marudhamuthu M. Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci Rep 2021; 11:1102. [PMID: 33441765 PMCID: PMC7806599 DOI: 10.1038/s41598-020-79976-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
In the present study lipopeptide biosurfactant with high emulsification capacity produced by human skin bacterium Paenibacillus thiaminolyticus was purified and subjected to FTIR and NMR spectral analysis which gave evidence of the active characteristics of the surfactant. To augment the antivirulent potential further, the mixer of copper and copper oxide nanoparticles (CuNPs) was synthesized, and characterized by UV–Visible spectroscopy, SEM-EDAX, TEM, and Zeta analysis. Here, we attempted to enhance the antimicrobial and antibiofilm activity with the assistance of encapsulated preparation of lipopeptide and CuNPs in multilamellar liposomes. The proposed mechanism of action of lipopeptide and CuNPs liposomal preparation negatively influences the cell metabolism, secreted virulence such as staphyloxanthin, pyocyanin, and extracellular polysaccharides. The significant decline in the growth of MRSA and P. aeruginosa in both planktonic form and biofilm by lipopeptide and CuNPs treatment were visualized using scanning electron microscopy and High content screening imaging system. In vivo studies revealed that treatment with lipopeptide and CuNPs in multilamellar liposomes extended the lifespan of infected Caenorhabditis elegans by about 75%. Therefore, this study typifies lipopeptide and CuNPs could credibly be a substantial substitute over conventional antibiotics in averting the biofilm associated pathogenesis of MRSA and P. aeruginosa.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Anitta Solomon
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Govindan Krishnamoorthy
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India.
| |
Collapse
|
42
|
Amly DA, Hajardhini P, Jonarta AL, Yulianto HDK, Susilowati H. Enhancement of pyocyanin production by subinhibitory concentration of royal jelly in Pseudomonas aeruginosa. F1000Res 2021; 10:14. [PMID: 34540201 PMCID: PMC8424461 DOI: 10.12688/f1000research.27915.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/17/2023] Open
Abstract
Background:Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of P. aeruginosa. Methods:Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC 10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.
Collapse
Affiliation(s)
- Dina Auliya Amly
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Puspita Hajardhini
- Master of Dental Sciences Program, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Alma Linggar Jonarta
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heribertus Dedy Kusuma Yulianto
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| | - Heni Susilowati
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Sleman, Yogyakarta, 55281, Indonesia
| |
Collapse
|
43
|
Weigelt MA, McNamara SA, Sanchez D, Hirt PA, Kirsner RS. Evidence-Based Review of Antibiofilm Agents for Wound Care. Adv Wound Care (New Rochelle) 2021; 10:13-23. [PMID: 32496980 PMCID: PMC7698998 DOI: 10.1089/wound.2020.1193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Significance: Biofilms in vivo are small densely packed aggregations of microbes that are highly resistant to host immune responses and treatment. They attach to each other and to nearby surfaces. Biofilms are difficult to study and identify in a clinical setting as their quantification necessitates the use of advanced microscopy techniques such as confocal laser scanning microscopy. Nonetheless, it is likely that biofilms contribute to the pathophysiology of chronic skin wounds. Reducing, removing, or preventing biofilms is thus a logical approach to help clinicians heal chronic wounds. Recent Advances: Wound care products have demonstrated varying degrees of efficacy in destroying biofilms in in vitro and preclinical models, as well as in some clinical studies. Critical Issues: Controlled studies exploring the beneficial role of biofilm eradication and its relationship to healing in patients with chronic wounds are limited. This review aims to discuss the mode of action and clinical significance of currently available antibiofilm products, including surfactants, dressings, and others, with a focus on levels of evidence for efficacy in disrupting biofilms and ability to improve wound healing outcomes. Future Directions: Few available products have good evidence to support antibiofilm activity and wound healing benefits. Novel therapeutic strategies are on the horizon. More high-quality clinical studies are needed. The development of noninvasive techniques to quantify biofilms will facilitate increased ease of research about biofilms in wounds and how to combat them.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie A. McNamara
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daniela Sanchez
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Penelope A. Hirt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
44
|
Shirlaw O, Billah Z, Attar B, Hughes L, Qasaymeh RM, Seidel V, Efthimiou G. Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9120911. [PMID: 33334017 PMCID: PMC7765399 DOI: 10.3390/antibiotics9120911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Heather honey was tested for its effect on the formation of biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Enteriditis and Acinetobacter baumanii in comparison with Manuka honey. At 0.25 mg/mL, Heather honey inhibited biofilm formation in S. aureus, A. baumanii, E. coli, S. Enteriditis and P. aeruginosa, but promoted the growth of E. faecalis and K. pneumoniae biofilms. Manuka honey inhibited biofilm formation in K. pneumoniae, E. faecalis, and S. Enteriditis, A. baumanii, E. coli and P. aeruginosa, but promoted S. aureus biofilm formation. Molecular docking with Autodock Vina was performed to calculate the predictive binding affinities and ligand efficiencies of Manuka and Heather honey constituents for PaDsbA1, the main enzyme controlling the correct folding of virulence proteins in Pseudomonas aeruginosa. A number of constituents, including benzoic acid and methylglyoxal, present in Heather and/or Manuka honey, revealed high ligand efficiencies for the target enzyme. This helps support, to some extent, the decrease in P. aeruginosa biofilm formation observed for such honeys.
Collapse
Affiliation(s)
- Oscar Shirlaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Zara Billah
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Baraa Attar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Lisa Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Rana M. Qasaymeh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
- Correspondence: (V.S.); (G.E.)
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, Hardy Building, University of Hull, Hull HU6 7RX, UK
- Correspondence: (V.S.); (G.E.)
| |
Collapse
|
45
|
Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics (Basel) 2020; 9:antibiotics9120866. [PMID: 33291554 PMCID: PMC7761815 DOI: 10.3390/antibiotics9120866] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms hinder wound healing. Medical-grade honey (MGH) is a promising therapy because of its broad-spectrum antimicrobial activity and the lack of risk for resistance. This study investigated the inhibitory and eradicative activity against multidrug-resistant Pseudomonas aeruginosa biofilms by different established MGH-based wound care formulations. Six different natural wound care products (Medihoney, Revamil, Mebo, Melladerm, L-Mesitran Ointment, and L-Mesitran Soft) were tested in vitro. Most of them contain MGH only, whereas some were supplemented. L-Mesitran Soft demonstrated the most potent antimicrobial activity (6.08-log inhibition and 3.18-log eradication). Other formulations ranged between 0.89-log and 4.80-log inhibition and 0.65-log and 1.66-log eradication. Therefore, the contribution of different ingredients of L-Mesitran Soft was investigated in more detail. The activity of the same batch of raw MGH (1.38-log inhibition and 2.35-log eradication), vitamins C and E (0.95-log inhibition and 0.94-log eradication), and all ingredients except MGH (1.69-log inhibition and 0.75-log eradication) clearly support a synergistic activity of components within the L-Mesitran Soft formulation. Several presented clinical cases illustrate its clinical antimicrobial efficacy against Pseudomonas aeruginosa biofilms. In conclusion, MGH is a potent treatment for Pseudomonas biofilms. L-Mesitran Soft has the strongest antimicrobial activity, which is likely due to the synergistic activity mediated by its supplements.
Collapse
|
46
|
Qu Y, McGiffin D, Kure C, McLean J, Duncan C, Peleg AY. In vitro Evaluation of Medihoney Antibacterial Wound Gel as an Anti-biofilm Agent Against Ventricular Assist Device Driveline Infections. Front Microbiol 2020; 11:605608. [PMID: 33329497 PMCID: PMC7719625 DOI: 10.3389/fmicb.2020.605608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives: In adult ventricular assist device (VAD) programs in Australian hospitals, Medihoney Antibacterial Wound Gel (MAWG) is routinely used at the skin exit-site of VAD drivelines to prevent infections; however, its effectiveness remains unclear. Our aim was to assess antimicrobial activity of Medihoney wound gel, using in vitro models that mimic clinical biofilms grown at the driveline exit-site. Methods: Antimicrobial susceptibility testing of MAWG was performed for 24 clinical isolates grown under planktonic conditions, and four representative strains grown as biofilms. Different antimicrobial mechanisms of MAWG were assessed respectively for their relative contribution to its anti-biofilm activity. A colony biofilm assay and a drip-flow biofilm reactor assay mimicking the driveline exit-site environment were used to evaluate the activity of MAWG against biofilm growth at the driveline exit-site. Results: MAWG demonstrated species-specific activity against planktonic cultures [minimum inhibitory concentrations (MICs), 5-20% weight/volume (W/V) for Staphylococcus species, 20->40% (W/V) for Pseudomonas aeruginosa and Candida species]. Higher concentrations [MICs, 30->80% (W/V)] were able to inhibit biofilm growth, but failed to eradicate pre-established biofilms. The anti-biofilm properties of MAWG were multi-faceted, with the often-advertised "active" ingredient methylglyoxal (MGO) playing a less important role. The colony biofilm assay and the drip-flow biofilm reactor assay suggested that MAWG was unable to kill biofilms pre-established in a driveline exit-site environment, or effectively prevent planktonic cells from forming adherent monolayers and further developing mature biofilms. Conclusion: Our work suggests a suboptimal effectiveness of MAWG in preventing driveline infections due to biofilm development.
Collapse
Affiliation(s)
- Yue Qu
- Infection and Immunity Theme, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Christina Kure
- Department of Cardiothoracic Surgery, The Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Janelle McLean
- Transplant Services, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Courtney Duncan
- Transplant Services, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Theme, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: Another Alternative in the Fight against Antibiotic-Resistant Bacteria? Antibiotics (Basel) 2020; 9:antibiotics9110774. [PMID: 33158063 PMCID: PMC7694208 DOI: 10.3390/antibiotics9110774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance has become a challenging situation worldwide. The increasing emergence of multidrug-resistant pathogens stresses the need for developing alternative or complementary antimicrobial strategies, which has led the scientific community to study substances, formulas or active ingredients used before the antibiotic era. Honey has been traditionally used not only as a food, but also with therapeutic purposes, especially for the topical treatment of chronic-infected wounds. The intrinsic characteristics and the complex composition of honey, in which different substances with antimicrobial properties are included, make it an antimicrobial agent with multiple and different target sites in the fight against bacteria. This, together with the difficulty to develop honey-resistance, indicates that it could become an effective alternative in the treatment of antibiotic-resistant bacteria, against which honey has already shown to be effective. Despite all of these assets, honey possesses some limitations, and has to fulfill a number of requirements in order to be used for medical purposes.
Collapse
Affiliation(s)
- Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José M. Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mário Sousa-Pimenta
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal;
| | - M. Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, Campus de Vegazana, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Leticia M. Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
- Correspondence: ; Tel.: +351-273303342
| |
Collapse
|
48
|
Mokhtar JA, McBain AJ, Ledder RG, Binsuwaidan R, Rimmer V, Humphreys GJ. Exposure to a Manuka Honey Wound Gel Is Associated With Changes in Bacterial Virulence and Antimicrobial Susceptibility. Front Microbiol 2020; 11:2036. [PMID: 32973735 PMCID: PMC7466559 DOI: 10.3389/fmicb.2020.02036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
The use of manuka honey for the topical treatment of wounds has increased worldwide owing to its broad spectrum of activity towards bacteria in both planktonic and biofilm growth modes. Despite this, the potential consequences of bacterial exposure to manuka honey, as may occur during the treatment of chronic wounds, are not fully understood. Here, we describe changes in antimicrobial susceptibility and virulence in a panel of bacteria, including wound isolates, following repeated exposure (ten passages) to sub-inhibitory concentrations of a manuka honey based wound gel. Changes in antibiotic sensitivity above 4-fold were predominantly related to increased vancomycin sensitivity in the staphylococci. Interestingly, Staphylococcus epidermidis displayed phenotypic resistance to erythromycin following passaging, with susceptibility profiles returning to baseline in the absence of further honey exposure. Changes in susceptibility to the tested wound gel were moderate (≤ 1-fold) when compared to the respective parent strain. In sessile communities, increased biofilm eradication concentrations over 4-fold occurred in a wound isolate of Pseudomonas aeruginosa (WIBG 2.2) as evidenced by a 7-fold reduction in gentamicin sensitivity following passaging. With regards to pathogenesis, 4/8 bacteria exhibited enhanced virulence following honey wound gel exposure. In the pseudomonads and S. epidermidis, this occurred in conjunction with increased haemolysis and biofilm formation, whilst P. aeruginosa also exhibited increased pyocyanin production. Where virulence attenuation was noted in a passaged wound isolate of S. aureus (WIBG 1.6), this was concomitant to delayed coagulation and reduced haemolytic potential. Overall, passaging in the presence of a manuka honey wound gel led to changes in antimicrobial sensitivity and virulence that varied between test bacteria.
Collapse
Affiliation(s)
- Jawahir A Mokhtar
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester, United Kingdom.,Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Reem Binsuwaidan
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Victoria Rimmer
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Frydman GH, Olaleye D, Annamalai D, Layne K, Yang I, Kaafarani HMA, Fox JG. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Sci Rep 2020; 10:13229. [PMID: 32764604 PMCID: PMC7414039 DOI: 10.1038/s41598-020-70186-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Manuka honey (MH) is currently used as a wound treatment and suggested to be effective in Methicillin-resistant Staphylococcus aureus (MRSA) elimination. We sought to optimize the synthesis of MH microneedles (MHMs) while maintaining the MH therapeutic effects. MHMs were synthesized using multiple methods and evaluated with in vitro assays. MHMs demonstrated excellent bactericidal activity against MRSA at concentrations ≥ 10% of honey, with vacuum-prepared honey appearing to be the most bactericidal, killing bacterial concentrations as high as 8 × 107 CFU/mL. The wound-healing assay demonstrated that, at concentrations of 0.1%, while the cooked honey had incomplete wound closure, the vacuum-treated honey trended towards faster wound closure. In this study, we demonstrate that the method of MHM synthesis is crucial to maintaining MH properties. We optimized the synthesis of MHMs and demonstrated their potential utility in the treatment of MRSA infections as well as in wound healing. This is the first report of using MH as a substrate for the formation of dissolvable microneedles. This data supports the need for further exploration of this new approach in a wound-healing model and opens the door for the future use of MH as a component of microneedle scaffolds.
Collapse
Affiliation(s)
- Galit H Frydman
- Division of Comparative Medicine and Division of Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 3rd Floor Rm 383, Cambridge, MA, 02139, USA. .,BioMEMs Resource Center, Massachusetts General Hospital, Charlestown, MA, USA. .,Division of Trauma, Emergency Surgery & Surgical Critical Care and Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| | - David Olaleye
- Division of Comparative Medicine and Division of Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 3rd Floor Rm 383, Cambridge, MA, 02139, USA.,BioMEMs Resource Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Damodaran Annamalai
- Division of Comparative Medicine and Division of Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 3rd Floor Rm 383, Cambridge, MA, 02139, USA
| | - Kim Layne
- Division of Comparative Medicine and Division of Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 3rd Floor Rm 383, Cambridge, MA, 02139, USA
| | - Illina Yang
- Division of Comparative Medicine and Division of Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 3rd Floor Rm 383, Cambridge, MA, 02139, USA
| | - Haytham M A Kaafarani
- Division of Trauma, Emergency Surgery & Surgical Critical Care and Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James G Fox
- Division of Comparative Medicine and Division of Biomedical Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, 3rd Floor Rm 383, Cambridge, MA, 02139, USA
| |
Collapse
|
50
|
Brosseau G, Pagé N, de Jaham C, del Castillo JRE. Medical honey for canine nasal intertrigo: A randomized, blinded, placebo-controlled, adaptive clinical trial to support antimicrobial stewardship in veterinary dermatology. PLoS One 2020; 15:e0235689. [PMID: 32760092 PMCID: PMC7410251 DOI: 10.1371/journal.pone.0235689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
Intertrigo is a skin fold dermatitis often requiring recurrent treatment with topical antiseptics or antibiotics, which can select antimicrobial resistance. To minimize this risk, we tested the effectiveness of medical-grade Manuka honey at treating intertrigo as compared to a placebo hydrogel. We additionally characterized the culturable microbial flora of intertrigo and recorded any adverse effect with either treatment. During this randomized, placebo-controlled, double-blinded, adaptive group-sequential trial, the owners washed the affected sites on their dog with water, dried and applied a thin film of either the honey or the placebo product once daily for 21 days. Cytological and lesional composite scores, owner-assessed pruritus, and microbial cultures were assessed prior to treatment and on Day-22. The fixed effects of time, treatment, and animal-related variables on the pruritus and on each composite score, accounting for random dog effect, were estimated separately with generalized linear mixed models for repeated count outcomes (α = 0.05). The null hypothesis of equal treatment effects was rejected at the first interim analysis. The placebo (n = 16 dogs) outperformed the medical honey (n = 13 dogs) at improving both the cytological score (Treatment×Time = -0.35±0.17; P = 0.04) and clinical score (Treatment×Time = -0.28±0.13; P = 0.04). A microbial burden score higher than 4 increased the severity of the cytological score (dichotomous score: 0.29±0.11; P = 0.01), which in turn increased the severity of the clinical score and pruritus score. For every unit increase in cytological score, the linear predictor of clinical score increased by 0.042±0.019 (P = 0.03), and the one of pruritus score increased by 0.12±0.05 (P = 0.01). However, medical honey outperformed the placebo at alleviating the dog's owner-assessed pruritus after statistically controlling for masking effects (Time = -0.94±0.24; P = 0.002; and Treatment×Time = 0.80±0.36; P = 0.04). Unilateral tests of the least-square mean estimates revealed that honey only significantly improved the pruritus (Hommel-adjusted P = 0.003), while the placebo only improved the cytological and clinical scores (Hommel-adjusted P = 0.01 and 0.002, respectively). Taken together, these results question the value of Manuka honey at treating nasal intertrigo in dogs.
Collapse
Affiliation(s)
- Gabrielle Brosseau
- Department of Dermatology, Centre Vétérinaire DMV, Montreal, Quebec, Canada
| | - Nadia Pagé
- Department of Dermatology, Centre Vétérinaire DMV, Montreal, Quebec, Canada
| | - Caroline de Jaham
- Department of Dermatology, Centre Vétérinaire DMV, Montreal, Quebec, Canada
| | - Jérôme R. E. del Castillo
- Quebec’s Animal Pharmacology Research Group (GREPAQ), Department of Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|