1
|
Rizvi Z, Reddy GS, Gorde SM, Pundir P, Das D, Sijwali PS. Plasmodium falciparum contains functional SCF and CRL4 ubiquitin E3 ligases, and CRL4 is critical for cell division and membrane integrity. PLoS Pathog 2024; 20:e1012045. [PMID: 38416790 PMCID: PMC10927090 DOI: 10.1371/journal.ppat.1012045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/11/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Protein ubiquitination is essential for cellular homeostasis and regulation of several processes, including cell division and genome integrity. Ubiquitin E3 ligases determine substrate specificity for ubiquitination, and Cullin-RING E3 ubiquitin ligases (CRLs) make the largest group among the ubiquitin E3 ligases. Although conserved and most studied in model eukaryotes, CRLs remain underappreciated in Plasmodium and related parasites. To investigate the CRLs of human malaria parasite Plasmodium falciparum, we generated parasites expressing tagged P. falciparum cullin-1 (PfCullin-1), cullin-2 (PfCullin-2), Rbx1 (PfRbx1) and Skp1 (PfSkp1). PfCullin-1 and PfCullin-2 were predominantly expressed in erythrocytic trophozoite and schizont stages, with nucleocytoplasmic localization and chromatin association, suggesting their roles in different cellular compartments and DNA-associated processes. Immunoprecipitation, in vitro protein-protein interaction, and ubiquitination assay confirmed the presence of a functional Skp1-Cullin-1-Fbox (PfSCF) complex, comprising of PfCullin-1, PfRbx1, PfSkp1, PfFBXO1, and calcyclin binding protein. Immunoprecipitation, sequence analysis, and ubiquitination assay indicated that PfCullin-2 forms a functional human CRL4-like complex (PfCRL4), consisting of PfRbx1, cleavage and polyadenylation specificity factor subunit_A and WD40 repeat proteins. PfCullin-2 knock-down at the protein level, which would hinder PfCRL4 assembly, significantly decreased asexual and sexual erythrocytic stage development. The protein levels of several pathways, including protein translation and folding, lipid biosynthesis and transport, DNA replication, and protein degradation were significantly altered upon PfCullin-2 depletion, which likely reflects association of PfCRL4 with multiple pathways. PfCullin-2-depleted schizonts had poorly delimited merozoites and internal membraned structures, suggesting a role of PfCRL4 in maintaining membrane integrity. PfCullin-2-depleted parasites had a significantly lower number of nuclei/parasite than the normal parasites, indicating a crucial role of PfCRL4 in cell division. We demonstrate the presence of functional CRLs in P. falciparum, with crucial roles for PfCRL4 in cell division and maintaining membrane integrity.
Collapse
Affiliation(s)
- Zeba Rizvi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - G. Srinivas Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP, India
| | - Somesh M. Gorde
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP, India
| | - Priyanka Pundir
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Divya Das
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Puran Singh Sijwali
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP, India
| |
Collapse
|
2
|
Rosenthal MR, Ng CL. High-content imaging as a tool to quantify and characterize malaria parasites. CELL REPORTS METHODS 2023; 3:100516. [PMID: 37533635 PMCID: PMC10391350 DOI: 10.1016/j.crmeth.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/18/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023]
Abstract
In 2021, Plasmodium falciparum was responsible for 619,000 reported malaria-related deaths. Resistance has been detected to every clinically used antimalarial, urging the development of novel antimalarials with uncompromised mechanisms of actions. High-content imaging allows researchers to collect and quantify numerous phenotypic properties at the single-cell level, and machine learning-based approaches enable automated classification and clustering of cell populations. By combining these technologies, we developed a method capable of robustly differentiating and quantifying P. falciparum asexual blood stages. These phenotypic properties also allow for the quantification of changes in parasite morphology. Here, we demonstrate that our analysis can be used to quantify schizont nuclei, a phenotype that previously had to be enumerated manually. By monitoring stage progression and quantifying parasite phenotypes, our method can discern stage specificity of new compounds, thus providing insight into the compound's mode of action.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biology, University of Omaha, Omaha, NE 68182, USA
| |
Collapse
|
3
|
A Plasmodium falciparum RING Finger E3 Ubiquitin Ligase Modifies the Roles of PfMDR1 and PfCRT in Parasite Drug Responses. Antimicrob Agents Chemother 2023; 67:e0082122. [PMID: 36625569 PMCID: PMC9933707 DOI: 10.1128/aac.00821-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.
Collapse
|
4
|
Sanchez CP, Manson EDT, Moliner Cubel S, Mandel L, Weidt SK, Barrett MP, Lanzer M. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0110122. [PMID: 35867395 PMCID: PMC9431119 DOI: 10.1128/spectrum.01101-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The chloroquine resistance transporter, PfCRT, is an essential factor during intraerythrocytic development of the human malaria parasite Plasmodium falciparum. PfCRT resides at the digestive vacuole of the parasite, where hemoglobin taken up by the parasite from its host cell is degraded. PfCRT can acquire several mutations that render PfCRT a drug transporting system expelling compounds targeting hemoglobin degradation from the digestive vacuole. The non-drug related function of PfCRT is less clear, although a recent study has suggested a role in oligopeptide transport based on studies conducted in a heterologous expression system. The uncertainty about the natural function of PfCRT is partly due to a lack of a null mutant and a dearth of functional assays in the parasite. Here, we report on the generation of a conditional PfCRT knock-down mutant in P. falciparum. The mutant accumulated oligopeptides 2 to at least 8 residues in length under knock-down conditions, as shown by comparative global metabolomics. The accumulated oligopeptides were structurally diverse, had an isoelectric point between 4.0 and 5.4 and were electrically neutral or carried a single charge at the digestive vacuolar pH of 5.2. Fluorescently labeled dipeptides and live cell imaging identified the digestive vacuole as the compartment where oligopeptides accumulated. Our findings suggest a function of PfCRT in oligopeptide transport across the digestive vacuolar membrane in P. falciparum and associated with it a role in nutrient acquisition and the maintenance of the colloid osmotic balance. IMPORTANCE The chloroquine resistance transporter, PfCRT, is important for the survival of the human malaria parasite Plasmodium falciparum. It increases the tolerance to many antimalarial drugs, and it is essential for the development of the parasite within red blood cells. While we understand the role of PfCRT in drug resistance in ever increasing detail, the non-drug resistance functions are still debated. Identifying the natural substrate of PfCRT has been hampered by a paucity of functional assays to test putative substrates in the parasite system and the absence of a parasite mutant deficient for the PfCRT encoding gene. By generating a conditional PfCRT knock-down mutant, together with comparative metabolomics and uptake studies using fluorescently labeled oligopeptides, we could show that PfCRT is an oligopeptide transporter. The oligopeptides were structurally diverse and were electrically neutral or carried a single charge. Our data support a function of PfCRT in oligopeptide transport.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Stefan K. Weidt
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
- The Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Narwal SK, Nayak B, Mehra P, Mishra S. Protein kinase 9 is not required for completion of the Plasmodium berghei life cycle. Microbiol Res 2022; 260:127051. [DOI: 10.1016/j.micres.2022.127051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
6
|
Tehlan A, Bhowmick K, Kumar A, Subbarao N, Dhar SK. The tetrameric structure of Plasmodium falciparum phosphoglycerate mutase is critical for optimal enzymatic activity. J Biol Chem 2022; 298:101713. [PMID: 35150741 PMCID: PMC8913309 DOI: 10.1016/j.jbc.2022.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
The glycolytic enzyme phosphoglycerate mutase (PGM) is of utmost importance for overall cellular metabolism and has emerged as a novel therapeutic target in cancer cells. This enzyme is also conserved in the rapidly proliferating malarial parasite Plasmodium falciparum, which have a similar metabolic framework as cancer cells and rely on glycolysis as the sole energy-yielding process during intraerythrocytic development. There is no redundancy among the annotated PGM enzymes in Plasmodium, and PfPGM1 is absolutely required for the parasite survival as evidenced by conditional knockdown in our study. A detailed comparison of PfPGM1 with its counterparts followed by in-depth structure-function analysis revealed unique attributes of this parasitic protein. Here, we report for the first time the importance of oligomerization for the optimal functioning of the enzyme in vivo, as earlier studies in eukaryotes only focused on the effects in vitro. We show that single point mutation of the amino acid residue W68 led to complete loss of tetramerization and diminished catalytic activity in vitro. Additionally, ectopic expression of the WT PfPGM1 protein enhanced parasite growth, whereas the monomeric form of PfPGM1 failed to provide growth advantage. Furthermore, mutation of the evolutionarily conserved residue K100 led to a drastic reduction in enzymatic activity. The indispensable nature of this parasite enzyme highlights the potential of PfPGM1 as a therapeutic target against malaria, and targeting the interfacial residues critical for oligomerization can serve as a focal point for promising drug development strategies that may not be restricted to malaria only.
Collapse
Affiliation(s)
- Ankita Tehlan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Amarjeet Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067.
| |
Collapse
|
7
|
Briquet S, Gissot M, Silvie O. A toolbox for conditional control of gene expression in apicomplexan parasites. Mol Microbiol 2021; 117:618-631. [PMID: 34564906 PMCID: PMC9293482 DOI: 10.1111/mmi.14821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023]
Abstract
Apicomplexan parasites encompass diverse pathogens for humans and animals, including the causative agents of malaria and toxoplasmosis, Plasmodium spp. and Toxoplasma gondii. Genetic manipulation of these parasites has become central to explore parasite biology, unravel gene function and identify new targets for therapeutic strategies. Tremendous progress has been achieved over the past years with the advent of next generation sequencing and powerful genome editing methods. In particular, various methods for conditional gene expression have been developed in both Plasmodium and Toxoplasma to knockout or knockdown essential genes, or for inducible expression of master developmental regulators or mutant versions of proteins. Conditional gene expression can be achieved at three distinct levels. At the DNA level, inducible site‐specific recombinases allow conditional genome editing. At the RNA level, regulation can be achieved during transcription, using stage‐specific or regulatable promoters, or post‐transcriptionally through alteration of mRNA stability or translation. At the protein level, several systems have been developed for inducible degradation or displacement of a protein of interest. In this review, we provide an overview of current systems for conditional control of gene expression in Plasmodium and Toxoplasma parasites, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, CIIL, Univ. Lille, Lille, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| |
Collapse
|