1
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Raouf Z, Steinway SN, Scheese D, Lopez CM, Duess JW, Tsuboi K, Sampah M, Klerk D, El Baassiri M, Moore H, Tragesser C, Prindle T, Wang S, Wang M, Jang HS, Fulton WB, Sodhi CP, Hackam DJ. Colitis-Induced Small Intestinal Hypomotility Is Dependent on Enteroendocrine Cell Loss in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:53-70. [PMID: 38438014 PMCID: PMC11127033 DOI: 10.1016/j.jcmgh.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS The abdominal discomfort experienced by patients with colitis may be attributable in part to the presence of small intestinal dysmotility, yet mechanisms linking colonic inflammation with small-bowel motility remain largely unexplored. We hypothesize that colitis results in small intestinal hypomotility owing to a loss of enteroendocrine cells (EECs) within the small intestine that can be rescued using serotonergic-modulating agents. METHODS Male C57BL/6J mice, as well as mice that overexpress (EECOVER) or lack (EECDEL) NeuroD1+ enteroendocrine cells, were exposed to dextran sulfate sodium (DSS) colitis (2.5% or 5% for 7 days) and small intestinal motility was assessed by 70-kilodalton fluorescein isothiocyanate-dextran fluorescence transit. EEC number and differentiation were evaluated by immunohistochemistry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, and quantitative reverse-transcriptase polymerase chain reaction. Mice were treated with the 5-hydroxytryptamine receptor 4 agonist prucalopride (5 mg/kg orally, daily) to restore serotonin signaling. RESULTS DSS-induced colitis was associated with a significant small-bowel hypomotility that developed in the absence of significant inflammation in the small intestine and was associated with a significant reduction in EEC density. EEC loss occurred in conjunction with alterations in the expression of key serotonin synthesis and transporter genes, including Tph1, Ddc, and Slc6a4. Importantly, mice overexpressing EECs revealed improved small intestinal motility, whereas mice lacking EECs had worse intestinal motility when exposed to DSS. Finally, treatment of DSS-exposed mice with the 5-hydroxytryptamine receptor 4 agonist prucalopride restored small intestinal motility and attenuated colitis. CONCLUSIONS Experimental DSS colitis induces significant small-bowel dysmotility in mice owing to enteroendocrine loss that can be reversed by genetic modulation of EEC or administering serotonin analogs, suggesting novel therapeutic approaches for patients with symptomatic colitis.
Collapse
Affiliation(s)
- Zachariah Raouf
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steve N Steinway
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carla M Lopez
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Johannes W Duess
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maame Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daphne Klerk
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mahmoud El Baassiri
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah Moore
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cody Tragesser
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Menghan Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hee-Seong Jang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
3
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
4
|
Hoffman SE, Dowrey TW, Villacorta Martin C, Bi K, Titchen B, Johri S, DelloStritto L, Patel M, Mackichan C, Inga S, Chen J, Grimaldi G, Napolitano S, Wakiro I, Wu J, Yeung J, Rotem A, Sicinska E, Shannon E, Clancy T, Wang J, Denning S, Brais L, Besson NR, Pfaff KL, Huang Y, Kao KZ, Rodig S, Hornick JL, Vigneau S, Park J, Kulke MH, Chan J, Van Allen EM, Murphy GJ. Intertumoral lineage diversity and immunosuppressive transcriptional programs in well-differentiated gastroenteropancreatic neuroendocrine tumors. SCIENCE ADVANCES 2023; 9:eadd9668. [PMID: 37756410 PMCID: PMC10530100 DOI: 10.1126/sciadv.add9668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Neuroendocrine tumors (NETs) are rare cancers that most often arise in the gastrointestinal tract and pancreas. The fundamental mechanisms driving gastroenteropancreatic (GEP)-NET growth remain incompletely elucidated; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcriptomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation, and fate determination stages. Tumor and lymphoid compartments sparsely expressed immunosuppressive targets commonly investigated in clinical trials, such as the programmed cell death protein-1/programmed death ligand-1 axis. However, infiltrating myeloid cell types within both primary and metastatic GEP-NETs were enriched for genes encoding other immune checkpoints, including VSIR (VISTA), HAVCR2 (TIM3), LGALS9 (Gal-9), and SIGLEC10. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine therapeutics.
Collapse
Affiliation(s)
- Samantha E. Hoffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Todd W. Dowrey
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Kevin Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Breanna Titchen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Shreya Johri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | | | - Miraj Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Colin Mackichan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stephanie Inga
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Judy Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Grace Grimaldi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Sara Napolitano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Isaac Wakiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jingyi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jason Yeung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Asaf Rotem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas Clancy
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiping Wang
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Denning
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Naomi R. Besson
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ying Huang
- Molecular Pathology Core Laboratory, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Katrina Z. Kao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastien Vigneau
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthew H. Kulke
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Jennifer Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - George J. Murphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
5
|
Le Ciclé C, Pacini V, Rama N, Tauszig-Delamasure S, Airaud E, Petit F, de Beco S, Cohen-Tannoudji J, L'hôte D. The Neurod1/4-Ntrk3-Src pathway regulates gonadotrope cell adhesion and motility. Cell Death Discov 2023; 9:327. [PMID: 37658038 PMCID: PMC10474047 DOI: 10.1038/s41420-023-01615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Pituitary gonadotrope cells are essential for the endocrine regulation of reproduction in vertebrates. These cells emerge early during embryogenesis, colonize the pituitary glands and organize in tridimensional networks, which are believed to be crucial to ensure proper regulation of fertility. However, the molecular mechanisms regulating the organization of gonadotrope cell population during embryogenesis remain poorly understood. In this work, we characterized the target genes of NEUROD1 and NEUROD4 transcription factors in the immature gonadotrope αT3-1 cell model by in silico functional genomic analyses. We demonstrated that NEUROD1/4 regulate genes belonging to the focal adhesion pathway. Using CRISPR/Cas9 knock-out approaches, we established a double NEUROD1/4 knock-out αT3-1 cell model and demonstrated that NEUROD1/4 regulate cell adhesion and cell motility. We then characterized, by immuno-fluorescence, focal adhesion number and signaling in the context of NEUROD1/4 insufficiency. We demonstrated that NEUROD1/4 knock-out leads to an increase in the number of focal adhesions associated with signaling abnormalities implicating the c-Src kinase. We further showed that the neurotrophin tyrosine kinase receptor 3 NTRK3, a target of NEUROD1/4, interacts physically with c-Src. Furthermore, using motility rescue experiments and time-lapse video microscopy, we demonstrated that NTRK3 is a major regulator of gonadotrope cell motility. Finally, using a Ntrk3 knock-out mouse model, we showed that NTRK3 regulates gonadotrope cells positioning in the developing pituitary, in vivo. Altogether our study demonstrates that the Neurod1/4-Ntrk3-cSrc pathway is a major actor of gonadotrope cell mobility, and thus provides new insights in the regulation of gonadotrope cell organization within the pituitary gland.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Vincent Pacini
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008, Lyon, France
| | - Servane Tauszig-Delamasure
- Institut NeuroMyoGène - CNRS UMR 5310 - Inserm U1217 de Lyon - UCBL Lyon 1, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Eloïse Airaud
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Florence Petit
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Simon de Beco
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - David L'hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
6
|
Ansari I, Solé-Boldo L, Ridnik M, Gutekunst J, Gilliam O, Korshko M, Liwinski T, Jickeli B, Weinberg-Corem N, Shoshkes-Carmel M, Pikarsky E, Elinav E, Lyko F, Bergman Y. TET2 and TET3 loss disrupts small intestine differentiation and homeostasis. Nat Commun 2023; 14:4005. [PMID: 37414790 PMCID: PMC10326054 DOI: 10.1038/s41467-023-39512-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
TET2/3 play a well-known role in epigenetic regulation and mouse development. However, their function in cellular differentiation and tissue homeostasis remains poorly understood. Here we show that ablation of TET2/3 in intestinal epithelial cells results in a murine phenotype characterized by a severe homeostasis imbalance in the small intestine. Tet2/3-deleted mice show a pronounced loss of mature Paneth cells as well as fewer Tuft and more Enteroendocrine cells. Further results show major changes in DNA methylation at putative enhancers, which are associated with cell fate-determining transcription factors and functional effector genes. Notably, pharmacological inhibition of DNA methylation partially rescues the methylation and cellular defects. TET2/3 loss also alters the microbiome, predisposing the intestine to inflammation under homeostatic conditions and acute inflammation-induced death. Together, our results uncover previously unrecognized critical roles for DNA demethylation, possibly occurring subsequently to chromatin opening during intestinal development, culminating in the establishment of normal intestinal crypts.
Collapse
Affiliation(s)
- Ihab Ansari
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Llorenç Solé-Boldo
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Meshi Ridnik
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Oliver Gilliam
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Maria Korshko
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Timur Liwinski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Basel, Switzerland
| | - Birgit Jickeli
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Noa Weinberg-Corem
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Michal Shoshkes-Carmel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Eran Elinav
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
7
|
Zine A, Fritzsch B. Early Steps towards Hearing: Placodes and Sensory Development. Int J Mol Sci 2023; 24:6994. [PMID: 37108158 PMCID: PMC10139157 DOI: 10.3390/ijms24086994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Sensorineural hearing loss is the most prevalent sensory deficit in humans. Most cases of hearing loss are due to the degeneration of key structures of the sensory pathway in the cochlea, such as the sensory hair cells, the primary auditory neurons, and their synaptic connection to the hair cells. Different cell-based strategies to replace damaged inner ear neurosensory tissue aiming at the restoration of regeneration or functional recovery are currently the subject of intensive research. Most of these cell-based treatment approaches require experimental in vitro models that rely on a fine understanding of the earliest morphogenetic steps that underlie the in vivo development of the inner ear since its initial induction from a common otic-epibranchial territory. This knowledge will be applied to various proposed experimental cell replacement strategies to either address the feasibility or identify novel therapeutic options for sensorineural hearing loss. In this review, we describe how ear and epibranchial placode development can be recapitulated by focusing on the cellular transformations that occur as the inner ear is converted from a thickening of the surface ectoderm next to the hindbrain known as the otic placode to an otocyst embedded in the head mesenchyme. Finally, we will highlight otic and epibranchial placode development and morphogenetic events towards progenitors of the inner ear and their neurosensory cell derivatives.
Collapse
Affiliation(s)
- Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Neurogenin 2 and Neuronal Differentiation 1 Control Proper Development of the Chick Trigeminal Ganglion and Its Nerve Branches. J Dev Biol 2023; 11:jdb11010008. [PMID: 36810460 PMCID: PMC9953625 DOI: 10.3390/jdb11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The trigeminal ganglion contains the cell bodies of sensory neurons comprising cranial nerve V, which relays information related to pain, touch, and temperature from the face and head to the brain. Like other cranial ganglia, the trigeminal ganglion is composed of neuronal derivatives of two critical embryonic cell types, neural crest and placode cells. Neurogenesis within the cranial ganglia is promoted by Neurogenin 2 (Neurog2), which is expressed in trigeminal placode cells and their neuronal derivatives, and transcriptionally activates neuronal differentiation genes such as Neuronal Differentiation 1 (NeuroD1). Little is known, however, about the role of Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. To address this, we depleted Neurog2 and NeuroD1 from trigeminal placode cells with morpholinos and demonstrated that Neurog2 and NeuroD1 influence trigeminal ganglion development. While knockdown of both Neurog2 and NeuroD1 affected innervation of the eye, Neurog2 and NeuroD1 had opposite effects on ophthalmic nerve branch organization. Taken together, our results highlight, for the first time, functional roles for Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. These studies shed new light on the molecular mechanisms underlying trigeminal ganglion formation and may also provide insight into general cranial gangliogenesis and diseases of the peripheral nervous system.
Collapse
|
9
|
Konrad KD, Song JL. NeuroD1 localizes to the presumptive ganglia and gut of the sea urchin larvae. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000682. [PMID: 36468156 PMCID: PMC9709636 DOI: 10.17912/micropub.biology.000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 01/25/2023]
Abstract
NeuroD is a transcription factor (TF) that plays a dual role in vertebrate neurogenesis and glucose homeostasis in the pancreas. We identified a NeuroD antibody developed against human that cross-reacts with the sea urchin NeuroD1. NeuroD1 protein localizes to the presumptive ganglia and neurofilament structures in the ciliary band of the sea urchin larvae. In addition, we also observed NeuroD1 in the perinuclear region in the sea urchin gut which is analogous to the mammalian pancreas. These results suggest that NeuroD1 may play an evolutionarily conserved role in the invertebrate sea urchin.
Collapse
Affiliation(s)
| | - Jia L. Song
- University of Delaware
,
Correspondence to: Jia L. Song (
)
| |
Collapse
|
10
|
Angotzi AR, Leal E, Puchol S, Cerdá-Reverter JM, Morais S. Exploring the potential for an evolutionarily conserved role of the taste 1 receptor gene family in gut sensing mechanisms of fish. ANIMAL NUTRITION 2022; 11:293-308. [PMID: 36263402 PMCID: PMC9563615 DOI: 10.1016/j.aninu.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
In this study, we investigated the transcriptional spatio-temporal dynamics of the taste 1 receptor (T1R) gene family repertoire in seabream (Sparus aurata [sa]), during larval ontogeny and in adult tissues. In early larval development, saT1R expression arises heterochronously, i.e. the extraoral taste-related perception in the gastrointestinal tract (GIT) anticipates first exogenous feeding (at 9 days post hatching [dph]), followed by the buccal/intraoral perception from 14 dph onwards, supporting the hypothesis that the early onset of the molecular machinery underlying saT1R expression in the GIT is not induced by food but rather genetically hardwired. During adulthood, we characterized the expression patterns of saT1R within specific tissues (n = 4) distributed in oropharingeal, GIT and brain regions substantiating their functional versatility as chemosensory signaling players to a variety of biological functions beyond oral taste sensation. Further, we provided for the first time direct evidences in fish for mRNA co-expression of a subset of saT1R genes (mostly saT1R3, i.e. the common subunit of the heterodimeric T1R complexes for the detection of “sweet” and “umami” substances), with the selected gut peptides ghrelin (ghr), cholecystokinin (cck), hormone peptide yy (pyy) and proglucagon (pg). Each peptide defines the enteroendocrine cells (ECCs) identity, and establishes on morphological basis, a direct link for T1R chemosensing in the regulation of fish digestive processes. Finally, we analyzed the spatial gene expression patterns of 2 taste signaling components functionally homologous to the mammalian G(i)α subunit gustducin, namely saG(i)α1 and saG(i)α2, and demonstrated their co-localization with the saT1R3 in EECs, thus validating their direct involvement in taste-like transduction mechanisms of the fish GIT. In conclusion, data provide new insights in the evolutionary conservation of gut sensing in fish suggesting a conserved role for nutrient sensors modulating entero-endocrine secretion.
Collapse
|
11
|
Singh PNP, Madha S, Leiter AB, Shivdasani RA. Cell and chromatin transitions in intestinal stem cell regeneration. Genes Dev 2022; 36:684-698. [PMID: 35738677 PMCID: PMC9296007 DOI: 10.1101/gad.349412.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known. We addressed these questions by examining gene activity and open chromatin at the resolution of single Neurog3-labeled mouse intestinal crypt cells, hence deconstructing forward and reverse differentiation of the intestinal secretory (Sec) lineage. We show that goblet, Paneth, and enteroendocrine cells arise by multilineage priming in common precursors, followed by selective access at thousands of cell-restricted cis-elements. Selective ablation of the ISC compartment elicits speedy reversal of chromatin and transcriptional features in large fractions of precursor and mature crypt Sec cells without obligate cell cycle re-entry. ISC programs decay and reappear along a cellular continuum lacking discernible discrete interim states. In the absence of gross tissue damage, Sec cells simply reverse their forward trajectories, without invoking developmental or other extrinsic programs, and starting chromatin identities are effectively erased. These findings identify strikingly plastic molecular frameworks in assembly and regeneration of a self-renewing tissue.
Collapse
Affiliation(s)
- Pratik N P Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shariq Madha
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The intestinal enteroendocrine cells (EECs) are specialized hormone-secreting cells that respond to both circulating and luminal cues. Collectively, EECs constitute the largest endocrine organ of the body and signal to a multitude of targets including locally to neighboring intestinal cells, enteric neurons, as well as systemically to other organs, such as the pancreas and brain. To accomplish their wide range of downstream signaling effects, EECs secrete multiple hormones; however, the mechanisms that influence EEC development in the embryo and differentiation in adults are not well defined. RECENT FINDINGS This review highlights the recent discoveries in EEC differentiation and function while also discussing newly revealed roles of transcription factors and signaling networks involved in the allocation of EEC subtypes that were discovered using a combination of novel intestinal model systems and genetic sequencing. We also discuss the potential of these new experimental models that study the mechanisms regulating EEC function and development both to uncover novel therapeutic targets. SUMMARY Several EEC hormones are being used to treat various metabolic disorders, such as type 2 diabetes and obesity. Therefore, understanding the signaling pathways and gene regulatory networks that facilitate EEC formation is paramount to the development of novel therapies.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Division of Endocrinology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| |
Collapse
|
13
|
Verma P, Mohanty N, Pruseth B, Sahoo S, Katiyar A, Singh H, Jena SK, Das RR, Som TK, Sahoo SK, Nanda P, Ghosh A. Identification of Candidate Immune System MicroRNAs Differentially Found in Colostrum and Milk Exosomes. Microrna 2022; 11:216-226. [PMID: 35786199 DOI: 10.2174/2211536611666220630102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The fetus grows in a sterile womb environment. After birth, the newborn immune system has two immediate hurdles to clear. First immediate suppression of the womb compatible immune system and turn on the immune system of the newborn that can counter the antigenic world. The underlying mechanism of immune fluctuation by milk microRNAs (miRNAs) can be crucial for the treatment of critical or premature newborn. METHODS We collected fourteen samples of each colostrum and mature milk from lactating mothers, four samples of each were used for microarray analysis, and the other ten were used for miRNA expression profiling by real-time PCR. RESULTS From the microarray, 154 differentially expressed miRNAs were identified, whereas 49 miRNAs were revealed as immune-related miRNAs based on a literature study. Among the 49 miRNAs, 33 were already shown as strongly validated immune-related miRNAs (validated by qPCR, Western Blot, and Luciferase assay) and were considered for further analysis. Twenty-two miRNA expressions were analysed by real-time PCR as their Ct values were within considerable limits. Twelve numbers of miRNAs were significantly downregulated in mature milk compared to colostrum, which were again subjected to bioinformatics analysis to predict the biological mechanisms behind the differentially expressed miRNAs. CONCLUSION This study shed light on the human milk exosome miRNA expression dynamics during lactation and their possible role in the gradual skewing of the newborns' immune system. The information is crucial for the development and onset of sepsis in premature newborns in the NICU.
Collapse
Affiliation(s)
- Poonam Verma
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Niharika Mohanty
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Babita Pruseth
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Sonali Sahoo
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Amit Katiyar
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi-110029, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi-110029, India
| | - Saubhagya Kumar Jena
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Rashmi Ranjan Das
- Department of Paediatrics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Tapas Kumar Som
- Department of Neonatology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | | | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
14
|
NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron 2021; 109:4094-4108.e5. [PMID: 34875233 DOI: 10.1016/j.neuron.2021.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The regenerative capacity of neurons is limited in the central nervous system (CNS), with irreversible neuronal loss upon insult. In contrast, microglia exhibit extraordinary capacity for repopulation. Matsuda et al. (2019) recently reported NeuroD1-induced microglia-to-neuron conversion, aiming to provide an "unlimited" source to regenerate neurons. However, the extent to which NeuroD1 can exert cross-lineage reprogramming of microglia (myeloid lineage) to neurons (neuroectodermal lineage) is unclear. In this study, we unexpectedly found that NeuroD1 cannot convert microglia to neurons in mice. Instead, NeuroD1 expression induces microglial cell death. Moreover, lineage tracing reveals non-specific leakage of similar lentiviruses as previously used for microglia-to-neuron conversion, which confounds the microglia-to-neuron observation. In summary, we demonstrated that NeuroD1 cannot induce microglia-to-neuron cross-lineage reprogramming. We here propose rigid principles for verifying glia-to-neuron conversion. This Matters Arising paper is in response to Matsuda et al. (2019), published in Neuron.
Collapse
|
15
|
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases. J Mol Med (Berl) 2021; 99:1335-1347. [PMID: 34196767 DOI: 10.1007/s00109-021-02107-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Gene transcription is strictly controlled by transcriptional complexes, which are assemblies of transcription factors, transcriptional regulators, and co-regulators. Mammalian genomes encode two C-terminal-binding proteins (CtBPs), CtBP1 and CtBP2, which are both well-known transcriptional corepressors of oncogenic processes. Their overexpression in tumors is associated with malignant behavior, such as uncontrolled cell proliferation, migration, and invasion, as well as with an increase in the epithelial-mesenchymal transition. CtBPs coordinate with other transcriptional regulators, such as histone deacetylases (HDACs) and histone acetyltransferases (p300 and CBP [CREBP-binding protein]) that contain the PXDLS motif, and with transcription factors to assemble transcriptional complexes that dock onto the promoters of genes to initiate gene transcription. Emerging evidence suggests that CtBPs function as both corepressors and coactivators in different biological processes ranging from apoptosis to inflammation and osteogenesis. Therapeutic targeting of CtBPs or the interactions required to form transcriptional complexes has also shown promising effects in preventing disease progression. This review summarizes the most recent progress in the study of CtBP functions and therapeutic inhibitors in different biological processes. This knowledge may enable a better understanding of the complexity of the roles of CtBPs, while providing new insights into therapeutic strategies that target CtBPs.
Collapse
|
16
|
Li YY, Wang H, Zhang YY. Neuronal Differentiation 1 gene Ala45Thr polymorphism and type 2 diabetes mellitus: A meta-analysis of 7,940 subjects. Nutr Metab Cardiovasc Dis 2021; 31:1809-1821. [PMID: 33893004 DOI: 10.1016/j.numecd.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Previous studies have shown that there was a possible relationship between human Neuronal Differentiation 1 (NEUROD1) gene Ala45Thr polymorphism and type 2 diabetes mellitus (T2DM) susceptibility. Nevertheless, no public opinion has been formed because of the conflicting results in the past studies. In order to illuminate the potential association of human NEUROD1 gene Ala45Thr polymorphism and T2DM, the present meta-analysis was conducted. METHODS AND RESULTS In the current meta-analysis, 7940 subjects from 14 individual studies were included. The fixed or random effects models were used to evaluate the pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). The current meta-analysis found a significant association between NEUROD1 gene Ala45Thr polymorphism and T2DM under allelic (OR: 1.21, 95% CI: 1.04-1.41, P = 0.01), dominant (OR: 0.819, 95% CI: 0.734-0.913, P = 3.31 × 10-4), heterozygous (OR:1.199, 95% CI: 1.068-1.346, P = 0.002), and additive (OR: 1.33, 95% CI: 1.09-1.62, P = 0.004) genetic models. CONCLUSIONS NEUROD1 gene Ala45Thr polymorphism was significantly related to T2DM, especially in the Asian population. More particularly, the Thr45 allele carriers of the NEUROD1 gene may be more susceptible to T2DM.
Collapse
Affiliation(s)
- Yan-Yan Li
- Clinical Research Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Hui Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yang-Yang Zhang
- Department of General Practice, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
17
|
Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021; 10:47. [PMID: 34131657 PMCID: PMC8170689 DOI: 10.12703/r/10-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
19
|
Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, Ashley N, Khamis D, Fowler D, Morrissey E, Cunningham C, Johnson PRV, Koohy H, Simmons A. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 2021; 184:810-826.e23. [PMID: 33406409 PMCID: PMC7864098 DOI: 10.1016/j.cell.2020.12.016] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer’s patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work. Multimodal atlas of human intestinal development maps 101 cell types onto tissue Charts developmental origins of diverse cellular compartments and their progenitors Functional diversity of fibroblasts in stem cell, vasculature, and GALT formation Resource applied to interrogate pathology of in utero intestinal diseases
Collapse
Affiliation(s)
- David Fawkner-Corbett
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK; Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ana Sousa Gerós
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Tarun Gupta
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Neil Ashley
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Doran Khamis
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Darren Fowler
- Paediatric Pathology, Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Edward Morrissey
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Chris Cunningham
- Colorectal Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Paul R V Johnson
- Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
20
|
Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, Xu PX, Phillips S, Young SM, Eberl DF, Fritzsch B. Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Res Rev 2020; 59:101042. [PMID: 32173536 PMCID: PMC7261488 DOI: 10.1016/j.arr.2020.101042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.
Collapse
Affiliation(s)
- Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA
| | - Karen L Elliott
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Kathy Cheah
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Pin-Xian Xu
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Stacia Phillips
- Department of Biochemistry, Hong Kong University, Hong Kong, China
| | - Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, USA; Department of Otolaryngology, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Daniel F Eberl
- Department of Biology, CLAS, University of Iowa, Iowa City, USA
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, USA.
| |
Collapse
|