1
|
Esteban-Medina M, de la Oliva Roque VM, Herráiz-Gil S, Peña-Chilet M, Dopazo J, Loucera C. drexml: A command line tool and Python package for drug repurposing. Comput Struct Biotechnol J 2024; 23:1129-1143. [PMID: 38510973 PMCID: PMC10950807 DOI: 10.1016/j.csbj.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
We introduce drexml, a command line tool and Python package for rational data-driven drug repurposing. The package employs machine learning and mechanistic signal transduction modeling to identify drug targets capable of regulating a particular disease. In addition, it employs explainability tools to contextualize potential drug targets within the functional landscape of the disease. The methodology is validated in Fanconi Anemia and Familial Melanoma, two distinct rare diseases where there is a pressing need for solutions. In the Fanconi Anemia case, the model successfully predicts previously validated repurposed drugs, while in the Familial Melanoma case, it identifies a promising set of drugs for further investigation.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Víctor Manuel de la Oliva Roque
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Sara Herráiz-Gil
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U714, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - María Peña-Chilet
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Platform of Big Data, AI and Biostatistics, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Seville, Spain
| | - Carlos Loucera
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| |
Collapse
|
2
|
Venafra V, Sacco F, Perfetto L. SignalingProfiler 2.0 a network-based approach to bridge multi-omics data to phenotypic hallmarks. NPJ Syst Biol Appl 2024; 10:95. [PMID: 39179556 PMCID: PMC11343843 DOI: 10.1038/s41540-024-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024] Open
Abstract
Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease mechanisms and identifying potential drug targets. In this pursuit, computational tools generating mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph algorithms to accelerate the integration and interpretation of multi-omics data. Through a benchmarking process on three proof-of-concept studies, we demonstrate the tool's ability to generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and phenotypic outcomes, in both human and mice contexts. In summary, SignalingProfiler 2.0 addresses the emergent need to derive biologically relevant information from complex multi-omics data by extracting interpretable networks.
Collapse
Affiliation(s)
- Veronica Venafra
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Livia Perfetto
- Department of Biology and Biotechnologies 'C.Darwin', University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
3
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Esteban-Medina M, Loucera C, Rian K, Velasco S, Olivares-González L, Rodrigo R, Dopazo J, Peña-Chilet M. The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery. J Transl Med 2024; 22:139. [PMID: 38321543 PMCID: PMC10848380 DOI: 10.1186/s12967-024-04911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP. METHODS By mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa. RESULTS A mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABARα1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa. CONCLUSIONS The possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Carlos Loucera
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Kinza Rian
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029, Madrid, Spain
- Department of Physiology, University of Valencia (UV), 46100, Burjassot, Spain
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, 46026, Valencia, Spain
| | - Joaquin Dopazo
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029, Madrid, Spain.
| | - Maria Peña-Chilet
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029, Madrid, Spain.
- BigData, AI, Biostatistics & Bioinformatics Platform, Health Research Institute La Fe (IISLaFe), 46026, Valencia, Spain.
| |
Collapse
|
5
|
López-Domínguez R, Villatoro-García JA, Marañón C, Goldman D, Petri M, Carmona-Sáez P, Alarcón-Riquelme M, Toro-Dominguez D. Immune and molecular landscape behind non-response to Mycophenolate Mofetil and Azathioprine in lupus nephritis therapy. RESEARCH SQUARE 2024:rs.3.rs-3783877. [PMID: 38260685 PMCID: PMC10802741 DOI: 10.21203/rs.3.rs-3783877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lupus nephritis (LN) represents one of the most severe complications of systemic lupus erythematosus, leading to end-stage kidney disease in worst cases. Current first-line therapies for LN, including mycophenolate mofetil (MMF) and azathioprine (AZA), fail to induce long-term remission in 60-70% of the patients, evidencing the urgent need to delve into the molecular knowledge-gap behind the non-response to these therapies. A longitudinal cohort of treated LN patients including clinical, cellular and transcriptomic data, was analyzed. Gene-expression signatures behind non-response to different drugs were revealed by differential expression analysis. Drug-specific non-response mechanisms and cell proportion differences were identified. Blood cell subsets mediating non-response were described using single-cell RNASeq data. We show that AZA and MMF non-response implicates different cells and regulatory functions. Mechanistic models were used to suggest add-on therapies to improve their current performance. Our results provide new insights into the molecular mechanisms associated with treatment failures in LN.
Collapse
Affiliation(s)
- Raúl López-Domínguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada
| | - Juan Antonio Villatoro-García
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada
| | - Concepción Marañón
- Department of Medical Genomics, Center for Genomics and Oncological Research (GENYO)
| | | | | | - Pedro Carmona-Sáez
- Department of Bioinformatics, Center for Genomics and Oncological Research (GENYO)
| | | | - Daniel Toro-Dominguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada
| |
Collapse
|
6
|
Nibali L, Stephen AS, Allaker RP, Di Pino A, Terranova V, Pisano M, Di Marca S, Ferrara V, Scicali R, Purrello F, Donos N, Regolo M, Malatino L. Associations between Host Genetic Variants and Subgingival Microbiota in Patients with the Metabolic Syndrome. Int J Mol Sci 2023; 24:16649. [PMID: 38068972 PMCID: PMC10706808 DOI: 10.3390/ijms242316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Host genetic variants may affect oral biofilms, playing a role in the periodontitis-systemic disease axis. This is the first study to assess the associations between host genetic variants and subgingival microbiota in patients with metabolic syndrome (MetS); 103 patients with MetS underwent medical and periodontal examinations and had blood and subgingival plaque samples taken. DNA was extracted and processed, assessing a panel of selected single nucleotide polymorphisms (SNPs) first (hypothesis testing) and then expanding to a discovery phase. The subgingival plaque microbiome from these patients was profiled. Analysis of associations between host genetic and microbial factors was performed and stratified for periodontal diagnosis. Specific SNPs within RUNX2, CAMTA1 and VDR genes were associated with diversity metrics with no genome-wide associations detected for periodontitis severity or Mets components at p < 10-7. Severe periodontitis was associated with pathogenic genera and species. Some SNPs correlated with specific bacterial genera as well as with microbial taxa, notably VDR (rs12717991) with Streptococcus mutans and RUNX2 (rs3749863) with Porphyromonas gingivalis. In conclusion, variation in host genotypes may play a role in the dysregulated immune responses characterizing periodontitis and thus the oral microbiome, suggesting that systemic health-associated host traits further interact with oral health and the microbiome.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK;
| | - Abish S. Stephen
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Robert P. Allaker
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Valentina Terranova
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Marcella Pisano
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Salvatore Di Marca
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Nikolaos Donos
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Matteo Regolo
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
- Academic Unit of Internal Medicine, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| | - Lorenzo Malatino
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
- Academic Unit of Internal Medicine, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| |
Collapse
|
7
|
Payá-Milans M, Peña-Chilet M, Loucera C, Esteban-Medina M, Dopazo J. Functional Profiling of Soft Tissue Sarcoma Using Mechanistic Models. Int J Mol Sci 2023; 24:14732. [PMID: 37834179 PMCID: PMC10572617 DOI: 10.3390/ijms241914732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain; (M.P.-M.); (M.P.-C.); (C.L.); (M.E.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Seville, Spain
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
- FPS/ELIXIR-ES, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
8
|
Çubuk C, Loucera C, Peña-Chilet M, Dopazo J. Crosstalk between Metabolite Production and Signaling Activity in Breast Cancer. Int J Mol Sci 2023; 24:7450. [PMID: 37108611 PMCID: PMC10138666 DOI: 10.3390/ijms24087450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The reprogramming of metabolism is a recognized cancer hallmark. It is well known that different signaling pathways regulate and orchestrate this reprogramming that contributes to cancer initiation and development. However, recent evidence is accumulating, suggesting that several metabolites could play a relevant role in regulating signaling pathways. To assess the potential role of metabolites in the regulation of signaling pathways, both metabolic and signaling pathway activities of Breast invasive Carcinoma (BRCA) have been modeled using mechanistic models. Gaussian Processes, powerful machine learning methods, were used in combination with SHapley Additive exPlanations (SHAP), a recent methodology that conveys causality, to obtain potential causal relationships between the production of metabolites and the regulation of signaling pathways. A total of 317 metabolites were found to have a strong impact on signaling circuits. The results presented here point to the existence of a complex crosstalk between signaling and metabolic pathways more complex than previously was thought.
Collapse
Affiliation(s)
- Cankut Çubuk
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- FPS, ELIXIR-es, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- FPS, ELIXIR-es, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| |
Collapse
|
9
|
ESCCdb: A Comprehensive Database and Key Regulator Exploring Platform Based on Cross Dataset Comparisons for Esophageal Squamous Cell Carcinoma. Comput Struct Biotechnol J 2023; 21:2119-2128. [PMID: 36968016 PMCID: PMC10036886 DOI: 10.1016/j.csbj.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Esophageal cancer is the seventh most prevalent and the sixth most lethal cancer. Esophageal squamous cell carcinoma (ESCC) is one of the major esophageal cancer subtypes that accounts for 87 % of the total cases. However, its molecular mechanism remains unclear. Here, we present an integrated database for ESCC called ESCCdb, which includes a total of 56 datasets and published studies from the GEO, Xena or SRA databases and related publications. It helps users to explore a particular gene with multiple graphical and interactive views with one click. The results comprise expression changes across 20 datasets, copy number alterations in 11 datasets, somatic mutations from 12 papers, related drugs derived from DGIdb, related pathways, and gene correlations. ESCCdb enables directly cross-dataset comparison of a gene's mutations, expressions and copy number changes in multiple datasets. This allows users to easily assess the alterations in ESCC. Furthermore, survival analysis, drug-gene relationships, and results from whole-genome CRISPR/Cas9 screening can help users determine the clinical relevance, derive functional inferences, and identify potential drugs. Notably, ESCCdb also enables the exploration of the correlation structure and identification of potential key regulators for a process. Finally, we identified 789 consistently differential expressed genes; we summarized recurrently mutated genes and genes affected by significant copy number alterations. These genes may be stable biomarkers or important players during ESCC development. ESCCdb fills the gap between massive omics data and users' needs for integrated analysis and can promote basic and clinical ESCC research. The database is freely accessible at http://cailab.labshare.cn/ESCCdb.
Collapse
|
10
|
López-Sánchez M, Loucera C, Peña-Chilet M, Dopazo J. Discovering potential interactions between rare diseases and COVID-19 by combining mechanistic models of viral infection with statistical modeling. Hum Mol Genet 2022; 31:2078-2089. [PMID: 35022696 PMCID: PMC9239744 DOI: 10.1093/hmg/ddac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.
Collapse
Affiliation(s)
- Macarena López-Sánchez
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain.,FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| |
Collapse
|
11
|
A Computational Platform Integrating a Mechanistic Model of Crohn's Disease for Predicting Temporal Progression of Mucosal Damage and Healing. Adv Ther 2022; 39:3225-3247. [PMID: 35581423 PMCID: PMC9239932 DOI: 10.1007/s12325-022-02144-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Physicians are often required to make treatment decisions for patients with Crohn's disease on the basis of limited objective information about the state of the patient's gastrointestinal tissue while aiming to achieve mucosal healing. Tools to predict changes in mucosal health with treatment are needed. We evaluated a computational approach integrating a mechanistic model of Crohn's disease with a responder classifier to predict temporal changes in mucosal health. METHODS A hybrid mechanistic-statistical platform was developed to predict biomarker and tissue health time courses in patients with Crohn's disease. Eligible patients from the VERSIFY study (n = 69) were classified into archetypical response cohorts using a decision tree based on early treatment data and baseline characteristics. A virtual patient matching algorithm assigned a digital twin to each patient from their corresponding response cohort. The digital twin was used to forecast response to treatment using the mechanistic model. RESULTS The responder classifier predicted endoscopic remission and mucosal healing for treatment with vedolizumab over 26 weeks, with overall sensitivities of 80% and 75% and overall specificities of 69% and 70%, respectively. Predictions for changes in tissue damage over time in the validation set (n = 31), a measure of the overall performance of the platform, were considered good (at least 70% of data points matched), fair (at least 50%), and poor (less than 50%) for 71%, 23%, and 6% of patients, respectively. CONCLUSION Hybrid computational tools including mechanistic components represent a promising form of decision support that can predict outcomes and patient progress in Crohn's disease.
Collapse
|
12
|
Millán-Esteban D, Peña-Chilet M, García-Casado Z, Manrique-Silva E, Requena C, Bañuls J, López-Guerrero JA, Rodríguez-Hernández A, Traves V, Dopazo J, Virós A, Kumar R, Nagore E. Mutational Characterization of Cutaneous Melanoma Supports Divergent Pathways Model for Melanoma Development. Cancers (Basel) 2021; 13:5219. [PMID: 34680367 PMCID: PMC8533762 DOI: 10.3390/cancers13205219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
According to the divergent pathway model, cutaneous melanoma comprises a nevogenic group with a propensity to melanocyte proliferation and another one associated with cumulative solar damage (CSD). While characterized clinically and epidemiologically, the differences in the molecular profiles between the groups have remained primarily uninvestigated. This study has used a custom gene panel and bioinformatics tools to investigate the potential molecular differences in a thoroughly characterized cohort of 119 melanoma patients belonging to nevogenic and CSD groups. We found that the nevogenic melanomas had a restricted set of mutations, with the prominently mutated gene being BRAF. The CSD melanomas, in contrast, showed mutations in a diverse group of genes that included NF1, ROS1, GNA11, and RAC1. We thus provide evidence that nevogenic and CSD melanomas constitute different biological entities and highlight the need to explore new targeted therapies.
Collapse
Affiliation(s)
- David Millán-Esteban
- School of Medicine, Universidad Católica de València San Vicente Mártir, 46001 Valencia, Spain;
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, 41013 Sevilla, Spain; (M.P.-C.); (J.D.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - Zaida García-Casado
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - Esperanza Manrique-Silva
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| | - Celia Requena
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - José Bañuls
- Department of Dermatology, El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain;
| | - Jose Antonio López-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - Aranzazu Rodríguez-Hernández
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| | - Víctor Traves
- Department of Pathological Anatomy, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, 41013 Sevilla, Spain; (M.P.-C.); (J.D.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
- Fundación Progreso y Salud-ELIXIR-es, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Amaya Virós
- Skin Cancer and Aging Lab, Cancer Research UK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK;
| | - Rajiv Kumar
- Division of Functional Genome Analysis, Deutsches Krebsforschüngzentrum, 69120 Heidelberg, Germany;
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, 142 20 Prague, Czech Republic
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany
| | - Eduardo Nagore
- School of Medicine, Universidad Católica de València San Vicente Mártir, 46001 Valencia, Spain;
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| |
Collapse
|
13
|
Miloradovic D, Pavlovic D, Jankovic MG, Nikolic S, Papic M, Milivojevic N, Stojkovic M, Ljujic B. Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Front Cell Dev Biol 2021; 9:709183. [PMID: 34540831 PMCID: PMC8446652 DOI: 10.3389/fcell.2021.709183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.
Collapse
Affiliation(s)
- Dragana Miloradovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sandra Nikolic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- SPEBO Medical Fertility Hospital, Leskovac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
14
|
Rian K, Hidalgo MR, Çubuk C, Falco MM, Loucera C, Esteban-Medina M, Alamo-Alvarez I, Peña-Chilet M, Dopazo J. Genome-scale mechanistic modeling of signaling pathways made easy: A bioconductor/cytoscape/web server framework for the analysis of omic data. Comput Struct Biotechnol J 2021; 19:2968-2978. [PMID: 34136096 PMCID: PMC8170118 DOI: 10.1016/j.csbj.2021.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-scale mechanistic models of pathways are gaining importance for genomic data interpretation because they provide a natural link between genotype measurements (transcriptomics or genomics data) and the phenotype of the cell (its functional behavior). Moreover, mechanistic models can be used to predict the potential effect of interventions, including drug inhibitions. Here, we present the implementation of a mechanistic model of cell signaling for the interpretation of transcriptomic data as an R/Bioconductor package, a Cytoscape plugin and a web tool with enhanced functionality which includes building interpretable predictors, estimation of the effect of perturbations and assessment of the effect of mutations in complex scenarios.
Collapse
Affiliation(s)
- Kinza Rian
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Laboratory of Innovative Technologies (LTI), National School of Applied Sciences in Tangier, UAE, Morocco
| | - Marta R. Hidalgo
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Cankut Çubuk
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Matias M. Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla 41013, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - Marina Esteban-Medina
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - Inmaculada Alamo-Alvarez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla 41013, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla 41013, Spain
- Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain
- Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain
| |
Collapse
|
15
|
Mercatelli D, Holding AN, Giorgi FM. Web tools to fight pandemics: the COVID-19 experience. Brief Bioinform 2021; 22:690-700. [PMID: 33057582 PMCID: PMC7665357 DOI: 10.1093/bib/bbaa261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023] Open
Abstract
The current outbreak of COVID-19 has generated an unprecedented scientific response worldwide, with the generation of vast amounts of publicly available epidemiological, biological and clinical data. Bioinformatics scientists have quickly produced online methods to provide non-computational users with the opportunity of analyzing such data. In this review, we report the results of this effort, by cataloguing the currently most popular web tools for COVID-19 research and analysis. Our focus was driven on tools drawing data from the fields of epidemiology, genomics, interactomics and pharmacology, in order to provide a meaningful depiction of the current state of the art of COVID-19 online resources.
Collapse
|
16
|
Garrido-Rodriguez M, Lopez-Lopez D, Ortuno FM, Peña-Chilet M, Muñoz E, Calzado MA, Dopazo J. A versatile workflow to integrate RNA-seq genomic and transcriptomic data into mechanistic models of signaling pathways. PLoS Comput Biol 2021; 17:e1008748. [PMID: 33571195 PMCID: PMC7904194 DOI: 10.1371/journal.pcbi.1008748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/24/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022] Open
Abstract
MIGNON is a workflow for the analysis of RNA-Seq experiments, which not only efficiently manages the estimation of gene expression levels from raw sequencing reads, but also calls genomic variants present in the transcripts analyzed. Moreover, this is the first workflow that provides a framework for the integration of transcriptomic and genomic data based on a mechanistic model of signaling pathway activities that allows a detailed biological interpretation of the results, including a comprehensive functional profiling of cell activity. MIGNON covers the whole process, from reads to signaling circuit activity estimations, using state-of-the-art tools, it is easy to use and it is deployable in different computational environments, allowing an optimized use of the resources available.
Collapse
Affiliation(s)
- Martín Garrido-Rodriguez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Daniel Lopez-Lopez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Sevilla, Spain
| | - Francisco M. Ortuno
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Sevilla, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, Spain
| | - Eduardo Muñoz
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A. Calzado
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Joaquin Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Sevilla, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
17
|
Rian K, Esteban-Medina M, Hidalgo MR, Çubuk C, Falco MM, Loucera C, Gunyel D, Ostaszewski M, Peña-Chilet M, Dopazo J. Mechanistic modeling of the SARS-CoV-2 disease map. BioData Min 2021; 14:5. [PMID: 33478554 PMCID: PMC7817765 DOI: 10.1186/s13040-021-00234-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Here we present a web interface that implements a comprehensive mechanistic model of the SARS-CoV-2 disease map. In this framework, the detailed activity of the human signaling circuits related to the viral infection, covering from the entry and replication mechanisms to the downstream consequences as inflammation and antigenic response, can be inferred from gene expression experiments. Moreover, the effect of potential interventions, such as knock-downs, or drug effects (currently the system models the effect of more than 8000 DrugBank drugs) can be studied. This freely available tool not only provides an unprecedentedly detailed view of the mechanisms of viral invasion and the consequences in the cell but has also the potential of becoming an invaluable asset in the search for efficient antiviral treatments.
Collapse
Affiliation(s)
- Kinza Rian
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
| | - Marina Esteban-Medina
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Cankut Çubuk
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
| | - Matias M Falco
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Carlos Loucera
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - Devrim Gunyel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - María Peña-Chilet
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain.
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain.
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain.
| | - Joaquín Dopazo
- Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain.
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Sevilla, Spain.
- Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain.
- Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain.
| |
Collapse
|
18
|
Bojic S, Falco MM, Stojkovic P, Ljujic B, Gazdic Jankovic M, Armstrong L, Markovic N, Dopazo J, Lako M, Bauer R, Stojkovic M. Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes. Stem Cells 2020; 38:1321-1325. [PMID: 32614127 DOI: 10.1002/stem.3244] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Increased pollution by plastics has become a serious global environmental problem, but the concerns for human health have been raised after reported presence of microplastics (MPs) and nanoplastics (NPs) in food and beverages. Unfortunately, few studies have investigate the potentially harmful effects of MPs/NPs on early human development and human health. Therefore, we used a new platform to study possible effects of polystyrene NPs (PSNPs) on the transcription profile of preimplantation human embryos and human induced pluripotent stem cells (hiPSCs). Two pluripotency genes, LEFTY1 and LEFTY2, which encode secreted ligands of the transforming growth factor-beta, were downregulated, while CA4 and OCLM, which are related to eye development, were upregulated in both samples. The gene set enrichment analysis showed that the development of atrioventricular heart valves and the dysfunction of cellular components, including extracellular matrix, were significantly affected after exposure of hiPSCs to PSNPs. Finally, using the HiPathia method, which uncovers disease mechanisms and predicts clinical outcomes, we determined the APOC3 circuit, which is responsible for increased risk for ischemic cardiovascular disease. These results clearly demonstrate that better understanding of NPs bioactivities and its implications for human health is of extreme importance. Thus, the presented platform opens further aspects to study interactions between different environmental and intracellular pollutions with the aim to decipher the mechanism and origin of human diseases.
Collapse
Affiliation(s)
- Sanja Bojic
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Faculty of Medical Sciences, Human Genetics, University of Kragujevac, Serbia
| | - Matias M Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Seville, Spain.,Bioinformatics in Rare Diseases (BiER), Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Seville, Spain
| | | | - Biljana Ljujic
- Faculty of Medical Sciences, Human Genetics, University of Kragujevac, Serbia
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Joaquin Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Seville, Spain.,Bioinformatics in Rare Diseases (BiER), Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Seville, Spain.,Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Seville, Spain
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roman Bauer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Miodrag Stojkovic
- SPEBO Medical Fertility Hospital, Leskovac, Serbia.,Faculty of Medical Sciences, Human Genetics, University of Kragujevac, Serbia
| |
Collapse
|
19
|
Çubuk C, Can FE, Peña-Chilet M, Dopazo J. Mechanistic Models of Signaling Pathways Reveal the Drug Action Mechanisms behind Gender-Specific Gene Expression for Cancer Treatments. Cells 2020; 9:E1579. [PMID: 32610626 PMCID: PMC7408716 DOI: 10.3390/cells9071579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the existence of differences in gene expression across numerous genes between males and females having been known for a long time, these have been mostly ignored in many studies, including drug development and its therapeutic use. In fact, the consequences of such differences over the disease mechanisms or the drug action mechanisms are completely unknown. Here we applied mechanistic mathematical models of signaling activity to reveal the ultimate functional consequences that gender-specific gene expression activities have over cell functionality and fate. Moreover, we also used the mechanistic modeling framework to simulate the drug interventions and unravel how drug action mechanisms are affected by gender-specific differential gene expression. Interestingly, some cancers have many biological processes significantly affected by these gender-specific differences (e.g., bladder or head and neck carcinomas), while others (e.g., glioblastoma or rectum cancer) are almost insensitive to them. We found that many of these gender-specific differences affect cancer-specific pathways or in physiological signaling pathways, also involved in cancer origin and development. Finally, mechanistic models have the potential to be used for finding alternative therapeutic interventions on the pathways targeted by the drug, which lead to similar results compensating the downstream consequences of gender-specific differences in gene expression.
Collapse
Affiliation(s)
- Cankut Çubuk
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.Ç.); (F.E.C.); (M.P.-C.)
- Division of Genetics and Epidemiology, Institute of Cancer Research, London SW7 3RP, UK
- William Harvey Research Institute, Queen Mary University, London EC1M 6BQ, UK
| | - Fatma E. Can
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.Ç.); (F.E.C.); (M.P.-C.)
- Department of Biostatistics, Faculty of Medicine, Izmir Katip Celebi University, 35620 Balatçık, Turkey
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.Ç.); (F.E.C.); (M.P.-C.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.Ç.); (F.E.C.); (M.P.-C.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), 41013 Sevilla, Spain
- FPS-ELIXIR-ES, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
20
|
Rahit KMTH, Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel) 2020; 11:E239. [PMID: 32106447 PMCID: PMC7140819 DOI: 10.3390/genes11030239] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite advances in high-throughput sequencing that have revolutionized the discovery of gene defects in rare Mendelian diseases, there are still gaps in translating individual genome variation to observed phenotypic outcomes. While we continue to improve genomics approaches to identify primary disease-causing variants, it is evident that no genetic variant acts alone. In other words, some other variants in the genome (genetic modifiers) may alleviate (suppress) or exacerbate (enhance) the severity of the disease, resulting in the variability of phenotypic outcomes. Thus, to truly understand the disease, we need to consider how the disease-causing variants interact with the rest of the genome in an individual. Here, we review the current state-of-the-field in the identification of genetic modifiers in rare Mendelian diseases and discuss the potential for future approaches that could bridge the existing gap.
Collapse
Affiliation(s)
- K. M. Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|