1
|
Maier J, Dore R, Oelkrug R, Glatzel A, Cremer AL, Binder S, Schwaninger M, Oster H, Backes H, Mittag J. Inhibition of Thyroid Hormone Signaling in the Zona Incerta Alters Basal Metabolic Rate, Behavior, and Serum Glucocorticoids in Male Mice. Thyroid 2024; 34:1280-1291. [PMID: 39189416 DOI: 10.1089/thy.2024.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Background: It has long been known that thyroid disease can lead to changes in energy metabolism, thermoregulation, and anxiety behavior. While these actions have been partially attributed to thyroid hormone (TH) receptor α1 (TRα1) action in the brain, the precise neuroanatomical substrates have remain elusive. Methods: We used PET-CT scans to identify brain regions affected by TH. We then inhibited TRα1 signaling specifically in the most affected region, the zona incerta (ZI), a still mysterious region previously implicated in thermogenesis and anxiety. To this end, we used an adeno-associated virus (AAV) expressing a dominant-negative TRα1R384C in wild-type mice and phenotyped the animals. Finally, we used tyrosine hydroxylase-Cre mice to test specifically the contribution of ZI dopaminergic neurons. Results: Our data showed that AAV-mediated inhibition of TRα1 signaling in the ZI lead to increased energy expenditure at thermoneutrality, while body temperature regulation remained unaffected. Moreover, circulating glucocorticoid levels were increased, and a mild habituation problem was observed in the open field test. No effects were observed when TRα1 signaling was selectively inhibited in dopaminergic neurons. Conclusions: Our findings suggest that altered TH signaling in the ZI is not involved in body temperature regulation but can affect basal metabolism and modulates stress responses.
Collapse
Affiliation(s)
- Julia Maier
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Annika Glatzel
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Anna-Lena Cremer
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Sonja Binder
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute for Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Heiko Backes
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Jens Mittag
- Institute for Experimental Endocrinology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Li H, He Y, Chen X, Yang A, Lyu F, Dong Y. Exosomal miR-423-5p Derived from Cerebrospinal Fluid Pulsation Stress-Stimulated Osteoblasts Improves Angiogenesis of Endothelial Cells via DUSP8/ERK1/2 Signaling Pathway. Stem Cells Int 2024; 2024:5512423. [PMID: 38765936 PMCID: PMC11102110 DOI: 10.1155/2024/5512423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Exosomes secreted from osteoblasts (OBs) can regulate the angiogenesis of endothelial cells (ECs); however, whether cerebrospinal fluid pulsation (CSFP) stress, a special mechanical stimulation, can influence the cell's communication in the context of angiogenesis remains unknown. In this study, the effect of exosomes derived from CSFP stress-stimulated OBs on facilitating the angiogenesis of ECs was investigated. First, OBs were cultured in a CSFP bioreactor, and exosomes derived from OBs were isolated and identified. Cell Counting Kit 8 assay, transwell migration assay, wound healing migration assay, and tube formation assay were conducted to assess the effects of CSFP stress-stimulated OBs-derived exosomes (CSFP-Exos) on the angiogenesis of ECs. Then high-throughput RNA sequencing was used to determine the miRNA profiles of Non-CSFP stress-stimulated OBs-derived exosomes (NCSFP-Exos) and CSFP-Exos, and the luciferase reporter gene assay was performed to confirm the binging of miR-423-5p to DUSP8. In addition, the Matrigel plug assay was performed to explore whether exosomal miR-423-5p has the same effects in vivo. Our results suggested that CSFP-Exos can promote the angiogenesis of ECs, and miR-423-5p was enriched in CSFP-Exos. Moreover, miR-423-5p could promote the effect of angiogenesis via directly targeting dual-specificity phosphatase 8 (DUSP8), which inhibited the ERK1/2 signaling pathway. In conclusion, exosomal miR-423-5p derived from CSFP stress-stimulated OBs could promote the angiogenesis of ECs by the DUSP8/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yiqun He
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xujun Chen
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Aolei Yang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Schriever SC, Kabra DG, Pfuhlmann K, Baumann P, Baumgart EV, Nagler J, Seebacher F, Harrison L, Irmler M, Kullmann S, Corrêa-da-Silva F, Giesert F, Jain R, Schug H, Castel J, Martinez S, Wu M, Häring HU, de Angelis MH, Beckers J, Müller TD, Stemmer K, Wurst W, Rozman J, Nogueiras R, De Angelis M, Molkentin JD, Krahmer N, Yi CX, Schmidt MV, Luquet S, Heni M, Tschöp MH, Pfluger PT. Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. J Clin Invest 2021; 130:6093-6108. [PMID: 32780722 DOI: 10.1172/jci136363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Recent genome-wide association studies (GWAS) identified DUSP8, encoding a dual-specificity phosphatase targeting mitogen-activated protein kinases, as a type 2 diabetes (T2D) risk gene. Here, we reveal that Dusp8 is a gatekeeper in the hypothalamic control of glucose homeostasis in mice and humans. Male, but not female, Dusp8 loss-of-function mice, either with global or corticotropin-releasing hormone neuron-specific deletion, had impaired systemic glucose tolerance and insulin sensitivity when exposed to high-fat diet (HFD). Mechanistically, we found impaired hypothalamic-pituitary-adrenal axis feedback, blunted sympathetic responsiveness, and chronically elevated corticosterone levels driven by hypothalamic hyperactivation of Jnk signaling. Accordingly, global Jnk1 ablation, AAV-mediated Dusp8 overexpression in the mediobasal hypothalamus, or metyrapone-induced chemical adrenalectomy rescued the impaired glucose homeostasis of obese male Dusp8-KO mice, respectively. The sex-specific role of murine Dusp8 in governing hypothalamic Jnk signaling, insulin sensitivity, and systemic glucose tolerance was consistent with functional MRI data in human volunteers that revealed an association of the DUSP8 rs2334499 risk variant with hypothalamic insulin resistance in men. Further, expression of DUSP8 was increased in the infundibular nucleus of T2D humans. In summary, our findings suggest the GWAS-identified gene Dusp8 as a novel hypothalamic factor that plays a functional role in the etiology of T2D.
Collapse
Affiliation(s)
- Sonja C Schriever
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dhiraj G Kabra
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd., Vadodara, India
| | - Katrin Pfuhlmann
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Peter Baumann
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, School of Medicine, Technical University of Munich, Munich, Germany
| | - Emily V Baumgart
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Fabian Seebacher
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Luke Harrison
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Kullmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
| | - Felipe Corrêa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Ruchi Jain
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Lund University Diabetes Centre, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
| | - Hannah Schug
- SYNLAB Analytics and Services, Switzerland AG, Dielsdorf, Switzerland
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Moya Wu
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jan Rozman
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ruben Nogueiras
- Department of Physiology, Instituto de Investigación Sanitaria, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Mathias V Schmidt
- Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany.,Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases and
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes and.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Baumann P, Schriever SC, Kullmann S, Zimprich A, Peter A, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Wurst W, Tschöp MH, Heni M, Hölter SM, Pfluger PT. Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain Behav 2021; 11:e01928. [PMID: 33131190 PMCID: PMC7821601 DOI: 10.1002/brb3.1928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dusp8 is the first GWAS-identified gene that is predominantly expressed in the brain and has previously been linked with the development of diabetes type 2 in humans. In this study, we unravel how Dusp8 is involved in the regulation of sucrose reward behavior. METHODS Female, chow-fed global Dusp8 WT and KO mice were tested in an observer-independent IntelliCage setup for self-administrative sucrose consumption and preference followed by a progressive ratio task with restricted sucrose access to monitor seeking and motivation behavior. Sixty-three human carriers of the major C and minor T allele of DUSP8 SNP rs2334499 were tested for their perception of food cues by collecting a rating score for sweet versus savory high caloric food. RESULTS Dusp8 KO mice showed a comparable preference for sucrose, but consumed more sucrose compared to WT mice. In a progressive ratio task, Dusp8 KO females switched to a "trial and error" strategy to find sucrose while control Dusp8 WT mice kept their previously established seeking pattern. Nonetheless, the overall motivation to consume sucrose, and the levels of dopaminergic neurons in the brain areas NAcc and VTA were comparable between genotypes. Diabetes-risk allele carriers of DUSP8 SNP rs2334499 preferred sweet high caloric food compared to the major allele carriers, rating scores for savory food remained comparable between groups. CONCLUSION Our data suggest a novel role for Dusp8 in the perception of sweet high caloric food as well as in the control of sucrose consumption and foraging in mice and humans.
Collapse
Affiliation(s)
- Peter Baumann
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|