1
|
Morrey JD, Siddharthan V. Adjusting susceptibilities of C57BL/6 mice to orthoflaviviruses for evaluation of antiviral drugs by altering the levels of interferon alpha/beta receptor function. J Virol Methods 2025; 331:115053. [PMID: 39426414 DOI: 10.1016/j.jviromet.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The purpose of this study was to optimize the infectivity of four different orthoflaviviruses in mice for evaluating antiviral drugs by using wild-type mice with intact interferon responses, type 1 interferon alpha/beta receptor knockout mice, or by injecting wild type C57BL/6 mice with varying doses of anti-type 1 interferon receptor antibody (MAR1-5A3) to optimize the infectivity and lethality. West Nile virus productively infected wild-type C57BL/6 mice to cause lethality, whereas Usutu virus required a complete absence of type 1 interferon receptor function. Deer tick virus (lineage 2 Powassan virus) and Japanese encephalitis viruses required a dampening of type 1 interferon responses by adjusting the doses of MAR1-5A3 antibody injections. Challenge dose-responsive mortality, weight loss, and viral titers of these two viruses were observed if the type 1 interferon responses were dampened with MAR1-5A3. Conversely, without MAR1-5A3 injections, these disease phenotypes were not viral challenge dose-responsive. From these different interferon-responsive models, the appropriate lethality was identified to determine that 7-deaza-2'-C-methyladenosine has high efficacy for West Nile and Usutu viruses, and low efficacy for deer tick and Japanese encephalitis viruses.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84321-5600, USA.
| | - Venkatraman Siddharthan
- Institute for Antiviral Research, Utah State University, 5600 Old Main Hill, Logan, UT 84321-5600, USA
| |
Collapse
|
2
|
Balint E, Feng E, Giles EC, Ritchie TM, Qian AS, Vahedi F, Montemarano A, Portillo AL, Monteiro JK, Trigatti BL, Ashkar AA. Bystander activated CD8 + T cells mediate neuropathology during viral infection via antigen-independent cytotoxicity. Nat Commun 2024; 15:896. [PMID: 38316762 PMCID: PMC10844499 DOI: 10.1038/s41467-023-44667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.
Collapse
Affiliation(s)
- Elizabeth Balint
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth C Giles
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tyrah M Ritchie
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amelia Montemarano
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ana L Portillo
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Monteiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Souza INO, Andrade BS, Frost PS, Neris RLS, Gavino-Leopoldino D, Da Poian AT, Assunção-Miranda I, Figueiredo CP, Clarke JR, Neves GA. Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behav Brain Res 2023; 451:114519. [PMID: 37263423 DOI: 10.1016/j.bbr.2023.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.
Collapse
Affiliation(s)
- Isis N O Souza
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil; School of Pharmacy, Universidade Federal do Rio de Janeiro, Brazil
| | - Brenda S Andrade
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula S Frost
- School of Pharmacy, Universidade Federal do Rio de Janeiro, Brazil
| | - Romulo L S Neris
- Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Julia R Clarke
- School of Pharmacy, Universidade Federal do Rio de Janeiro, Brazil
| | - Gilda A Neves
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Jeong GU, Lee S, Kim DY, Lyu J, Yoon GY, Kim KD, Ku KB, Ko J, Kwon YC. Zika Virus Infection Induces Interleukin-1β-Mediated Inflammatory Responses by Macrophages in the Brain of an Adult Mouse Model. J Virol 2023; 97:e0055623. [PMID: 37191498 PMCID: PMC10308908 DOI: 10.1128/jvi.00556-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
During the 2015-2016 Zika virus (ZIKV) epidemic, ZIKV-associated neurological diseases were reported in adults, including microcephaly, Guillain-Barre syndrome, myelitis, meningoencephalitis, and fatal encephalitis. However, the mechanisms underlying the neuropathogenesis of ZIKV infection are not yet fully understood. In this study, we used an adult ZIKV infection mouse model (Ifnar1-/-) to investigate the mechanisms underlying neuroinflammation and neuropathogenesis. ZIKV infection induced the expression of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, gamma interferon, and tumor necrosis factor alpha, in the brains of Ifnar1-/- mice. RNA-seq analysis of the infected mouse brain also revealed that genes involved in innate immune responses and cytokine-mediated signaling pathways were significantly upregulated at 6 days postinfection. Furthermore, ZIKV infection induced macrophage infiltration and activation and augmented IL-1β expression, whereas microgliosis was not observed in the brain. Using human monocyte THP-1 cells, we confirmed that ZIKV infection promotes inflammatory cell death and increases IL-1β secretion. In addition, expression of the complement component C3, which is associated with neurodegenerative diseases and known to be upregulated by proinflammatory cytokines, was induced by ZIKV infection through the IL-1β-mediated pathway. An increase in C5a produced by complement activation in the brains of ZIKV-infected mice was also verified. Taken together, our results suggest that ZIKV infection in the brain of this animal model augments IL-1β expression in infiltrating macrophages and elicits IL-1β-mediated inflammation, which can lead to the destructive consequences of neuroinflammation. IMPORTANCE Zika virus (ZIKV) associated neurological impairments are an important global health problem. Our results suggest that ZIKV infection in the mouse brain can induce IL-1β-mediated inflammation and complement activation, thereby contributing to the development of neurological disorders. Thus, our findings reveal a mechanism by which ZIKV induces neuroinflammation in the mouse brain. Although we used adult type I interferon receptor IFNAR knockout (Ifnar1-/-) mice owing to the limited mouse models of ZIKV pathogenesis, our conclusions contributed to the understanding ZIKV-associated neurological diseases to develop treatment strategies for patients with ZIKV infection based on these findings.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sumin Lee
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Do Yeon Kim
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medical Chemistry and Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jaemyun Lyu
- Arontier Co., Ltd., Seoul, Republic of Korea
| | - Gun Young Yoon
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyun-Do Kim
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Keun Bon Ku
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Junsu Ko
- Arontier Co., Ltd., Seoul, Republic of Korea
| | - Young-Chan Kwon
- Department of Convergent Research for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medical Chemistry and Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
da Silva Sanches PR, Sanchez-Velazquez R, Batista MN, Carneiro BM, Bittar C, De Lorenzo G, Rahal P, Patel AH, Cilli EM. Antiviral Evaluation of New Synthetic Bioconjugates Based on GA-Hecate: A New Class of Antivirals Targeting Different Steps of Zika Virus Replication. Molecules 2023; 28:4884. [PMID: 37446546 PMCID: PMC10343505 DOI: 10.3390/molecules28134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Re-emerging arboviruses represent a serious health problem due to their rapid vector-mediated spread, mainly in urban tropical areas. The 2013-2015 Zika virus (ZIKV) outbreak in South and Central America has been associated with cases of microcephaly in newborns and Guillain-Barret syndrome. We previously showed that the conjugate gallic acid-Hecate (GA-FALALKALKKALKKLKKALKKAL-CONH2)-is an efficient inhibitor of the hepatitis C virus. Here, we show that the Hecate peptide is degraded in human blood serum into three major metabolites. These metabolites conjugated with gallic acid were synthesized and their effect on ZIKV replication in cultured cells was evaluated. The GA-metabolite 5 (GA-FALALKALKKALKKL-COOH) was the most efficient in inhibiting two ZIKV strains of African and Asian lineage at the stage of both virus entry (virucidal and protective) and replication (post-entry). We also demonstrate that GA-metabolite 5 does not affect cell growth after 7 days of continuous treatment. Thus, this study identifies a new synthetic antiviral compound targeting different steps of ZIKV replication in vitro and with the potential for broad reactivity against other flaviviruses. Our work highlights a promising strategy for the development of new antivirals based on peptide metabolism and bioconjugation.
Collapse
Affiliation(s)
- Paulo Ricardo da Silva Sanches
- School of Pharmaceutical Science, São Paulo State University, Araraquara 14800-903, SP, Brazil
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
- Institute of Chemistry, São Paulo State University, Araraquara 14800-900, SP, Brazil
| | - Ricardo Sanchez-Velazquez
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Mariana Nogueira Batista
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; (M.N.B.)
| | - Bruno Moreira Carneiro
- School of Health Science, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Cintia Bittar
- School of Health Science, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Giuditta De Lorenzo
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Paula Rahal
- Institute of Bioscience, Humanities and Exact Science, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil;
| | - Arvind H. Patel
- MRC—University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G12 8QQ, UK; (R.S.-V.); (G.D.L.); (A.H.P.)
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-900, SP, Brazil
| |
Collapse
|
6
|
Wang X, Wang G, Yang H, Fu S, He Y, Li F, Wang H, Wang Z. A mouse model of peripheral nerve injury induced by Japanese encephalitis virus. PLoS Negl Trop Dis 2022; 16:e0010961. [PMID: 36441775 PMCID: PMC9731479 DOI: 10.1371/journal.pntd.0010961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/08/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the most important cause of acute encephalitis in Eastern/Southern Asia. Infection with this virus also induces peripheral nerve injury. However, the disease pathogenesis is still not completely understood. Reliable animal models are needed to investigate the molecular pathogenesis of this condition. We studied the effect of Japanese encephalitis virus infection in C57BL/6 mice after a subcutaneous challenge. Limb paralysis was determined in mice using behavioral tests, including a viral paralysis scale and the hanging wire test, as well as by changes in body weight. Nerve conduction velocity and electromyography testing indicated the presence of demyelinating neuropathy of the sciatic nerve. Pathological changes in neural tissues were examined by immunofluorescence and transmission electron microscopy, which confirmed that the predominant pathologic change was demyelination. Although Western blots confirmed the presence of the virus in neural tissue, additional studies demonstrated that an immune-induced inflammatory response resulted in severe never injury. Immunofluorescence confirmed the presence of Japanese encephalitis virus in the brains of infected mice, and an inflammatory reaction was observed with hematoxylin-eosin staining as well. However, these observations were inconsistent at the time of paralysis onset. In summary, our results demonstrated that Japanese encephalitis virus infection could cause inflammatory demyelination of the peripheral nervous system in C57BL/6 mice.
Collapse
Affiliation(s)
- Xiaoli Wang
- The NO.1 People’s Hospital of Shizuishan, Shizuishan, China
- Ningxia Medical University, Yinchuan, China
| | | | - Huan Yang
- Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shihong Fu
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying He
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fan Li
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanyu Wang
- Department of Arbovirus, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (HYW); (ZHW)
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
- * E-mail: (HYW); (ZHW)
| |
Collapse
|
7
|
Balint E, Montemarano A, Feng E, Ashkar AA. From Mosquito Bites to Sexual Transmission: Evaluating Mouse Models of Zika Virus Infection. Viruses 2021; 13:v13112244. [PMID: 34835050 PMCID: PMC8625727 DOI: 10.3390/v13112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following the recent outbreak of Zika virus (ZIKV) infections in Latin America, ZIKV has emerged as a global health threat due to its ability to induce neurological disease in both adults and the developing fetus. ZIKV is largely mosquito-borne and is now endemic in many parts of Africa, Asia, and South America. However, several reports have demonstrated persistent ZIKV infection of the male reproductive tract and evidence of male-to-female sexual transmission of ZIKV. Sexual transmission may broaden the reach of ZIKV infections beyond its current geographical limits, presenting a significant threat worldwide. Several mouse models of ZIKV infection have been developed to investigate ZIKV pathogenesis and develop effective vaccines and therapeutics. However, the majority of these models focus on mosquito-borne infection, while few have considered the impact of sexual transmission on immunity and pathogenesis. This review will examine the advantages and disadvantages of current models of mosquito-borne and sexually transmitted ZIKV and provide recommendations for the effective use of ZIKV mouse models.
Collapse
|
8
|
Siddharthan V, Wang H, de Oliveira AL, Dai X, Morrey JD. Memantine treatment reduces the incidence of flaccid paralysis in a zika virus mouse model of temporary paralysis with similarities to Guillain-Barré syndrome. Antivir Chem Chemother 2021; 28:2040206620950143. [PMID: 34161179 PMCID: PMC7432970 DOI: 10.1177/2040206620950143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinical evidence suggests that Zika virus contributes to Guillain-Barré syndrome that
causes temporary paralysis. We utilized a recently described Zika virus mouse model of
temporary flaccid paralysis to address the hypothesis that treatment with an
N-methyl-D-aspartate receptor antagonist, memantine, can reduce the
incidence of paralysis. Aged interferon alpha/beta-receptor knockout mice were used
because of their sublethal susceptibility to Zika virus infection. Fifteen to twenty-five
percent of mice infected with a Puerto Rico strain of Zika virus develop acute flaccid
paralysis beginning at days 8–9 and peaked at days 10–12. Mice recover from paralysis
within a week of onset. In two independent studies, twice daily oral administration of
memantine at 60 mg/kg/day on days 4 through 9 after viral challenge significantly reduced
the incidence of paralysis. No efficacy was observed with treatments from days 9 through
12. Memantine treatment in cell culture or mice did not affect viral titers. These data
indicate that early treatment of memantine before onset of paralysis is efficacious, but
treatments beyond the onset of paralysis were not efficacious. The effect of this
N-methyl-D-aspartate receptor antagonist on the incidence of Zika virus-induced paralysis
may provide guidance for investigations on the mechanism of paralysis.
Collapse
Affiliation(s)
- Venkatraman Siddharthan
- Department of Animal, Dairy, and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Hong Wang
- Department of Animal, Dairy, and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | | | - Xin Dai
- Utah Agricultural Experiment Station, College of Agriculture, Utah State University, Logan, UT, USA
| | - John D Morrey
- Department of Animal, Dairy, and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| |
Collapse
|
9
|
Castanospermine reduces Zika virus infection-associated seizure by inhibiting both the viral load and inflammation in mouse models. Antiviral Res 2020; 183:104935. [PMID: 32949636 PMCID: PMC7492813 DOI: 10.1016/j.antiviral.2020.104935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) outbreaks have been reported worldwide, including a recent occurrence in Brazil where it spread rapidly, and an association with increased cases of microcephaly was observed in addition to neurological issues such as GBS that were reported during previous outbreaks. Following infection of neuronal tissues, ZIKV can cause inflammation, which may lead to neuronal abnormalities, including seizures and paralysis. Therefore, a drug containing both anti-viral and immunosuppressive properties would be of great importance in combating ZIKV related neurological abnormalities. Castanospermine (CST) is potentially a right candidate drug as it reduced viral load and brain inflammation with the resulting appearance of delayed neuronal disorders, including seizures and paralysis in an Ifnar1−/− mouse. Anti-ZIKV activity of castanospermine (CST) In vivo and in vitro. CST reduces ZIKV induced inflammation of brain. CST delays the ZIKV induced seizure and improves neuronal disorders such as motor function. CST gives marginal improvement in survivability in Ifnar1−/− mice.
Collapse
|