1
|
Mokrzycki J, Franus W, Panek R, Sobczyk M, Rusiniak P, Szerement J, Jarosz R, Marcińska-Mazur L, Bajda T, Mierzwa-Hersztek M. Zeolite Composite Materials from Fly Ash: An Assessment of Physicochemical and Adsorption Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2142. [PMID: 36984022 PMCID: PMC10051483 DOI: 10.3390/ma16062142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Waste fly ash, with both low (with the addition of vermiculite) and high contents of unburned coal, were subjected to hydrothermal syntheses aiming to obtain zeolite composite materials-zeolite + vermiculite (NaX-Ver) and zeolite + unburned carbon (NaX-C). The composites were compared with parent zeolite obtained from waste fly ash with a low content of unburned carbon (NaX-FA). In this study, the physicochemical characteristics of the obtained materials were evaluated. The potential application of the investigated zeolites for the adsorption of ammonium ions from aqueous solutions was determined. Composite NaX-Ver and parent zeolite NaX-FA were characterized by comparable adsorption capacities toward ammonium ions of 38.46 and 40.00 mg (NH4+) g-1, respectively. The nearly 2-fold lower adsorption capacity of composite NaX-C (21.05 mg (NH4+) g-1) was probably a result of the lower availability of ion exchange sites within the material. Adsorbents were also regenerated using 1 M NaCl solution at a pH of 10 and subjected to 3 cycles of adsorption-desorption experiments, which proved only a small reduction in adsorption properties. This study follows the current trend of waste utilization (fly ash) and the removal of pollutants from aqueous solutions with respect to their reuse, which remains in line with the goals of the circular economy.
Collapse
Affiliation(s)
- Jakub Mokrzycki
- Department of Coal Chemistry and Environmental Sciences, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Rafał Panek
- Department of Construction Materials Engineering and Geoengineering, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Maciej Sobczyk
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
| | - Piotr Rusiniak
- Department of Hydrogeology and Engineering Geology, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
| | - Justyna Szerement
- Department of Radiochemistry and Environmental Chemistry, Maria Curie–Skłodowska University, 3 Maria Curie–Skłodowska Square, 20-031 Lublin, Poland
| | - Renata Jarosz
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
| | - Lidia Marcińska-Mazur
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
| | - Monika Mierzwa-Hersztek
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Cracow, Poland
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21 Av., 31-120 Cracow, Poland
| |
Collapse
|
2
|
Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. WATER 2022. [DOI: 10.3390/w14060939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increasing food demand has resulted in an ever increasing demand for nitrogen fertilizers. Ammonium is the main constituent of these fertilizers and is a threat to aquatic environments around the world. With a focus on the treatment of drinking water, the scope of this study was to investigate the influence of key parameters on the suitability of granular natural zeolites as adsorbents for ammonium. Sorption experiments were performed in artificial matrices by varying the grain size, contact time, ammonium concentration, pH, content of competing ions, and regeneration solutions used. Additionally, natural matrices and the point of zero charge (pzc) were investigated. With an initial ammonium concentration of 10 mgN/L, the grain size was shown to have no significant effect on the sorption efficiency (97–98%). The experimental data obtained was best described by the Langmuir adsorption model (R2 = 0.99). Minor effects on sorption were observed at different pH values and in the presence of competing anions. In addition, the pHPZC was determined to be between pH 6.24 and pH 6.47. Potassium ions were shown to be better than sodium ions for the regeneration of previously loaded zeolites, potassium is also the main competitor to ammonium sorption. The use of tap, bank filtrate, river, and groundwater matrices decreased the ammonium sorption capacity of granular natural zeolites by up to 8%. Based on our results, granular natural zeolites are promising cost-effective adsorbents for drinking water treatment, especially in threshold and developing countries.
Collapse
|
3
|
An Investigation into the Adsorption of Ammonium by Zeolite-Magnetite Composites. MINERALS 2022. [DOI: 10.3390/min12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The discharging of ammonium from industrial, domestic, and livestock sewage has caused eutrophication of the water environment. The objectives of this study are to synthesize magnetic zeolite (M-Zeo) by an eco-friendly, economical, and easy procedure and to investigate its suitability as an adsorbent to remove ammonium from an aqueous solution. Based on characterization from XRD, BET, and SEM-EDS, Fe3O4 was proved to successfully load on natural zeolite. The effect of pH, temperatures, reacting times, initial ammonium concentrations, and regeneration cycles on ammonium adsorption was examined by batch experiments. The ammonium adsorption process can be best described by the Freundlich isotherm and the maximum adsorptive capacity of 172.41 mg/g was obtained. Kinetic analysis demonstrated that the pseudo-second-order kinetic model gave the best description on the adsorption. The value of pH is a key factor and the maximum adsorption capacity was obtained at pH 8. By using a rapid sodium chloride regeneration method, the regeneration ratio was up to 97.03% after five regeneration cycles, suggesting that M-Zeo can be recycled and magnetically recovered. Thus, the economic-efficient, great ammonium affinity, and excellent regeneration characteristics of M-Zeo had an extensively promising utilization on ammonium treatment from liquid.
Collapse
|
4
|
Mikelionienė A, Vaičiukynienė D, Kantautas A, Radzevičius A, Zarębska K. Preparation of Sorbents Containing Straetlingite Phase from Zeolitic By-Product and Their Performance for Ammonium Ion Removal. Molecules 2021; 26:3020. [PMID: 34069499 PMCID: PMC8160715 DOI: 10.3390/molecules26103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, straetlingite-based sorbents were used for NH4+ ion removal from a synthetic aqueous solution and from the wastewater of an open recirculation African catfish farming system. This study was performed using column experiments with four different filtration rates (2, 5, 10, and 15 mL/min). It was determined that breakthrough points and sorption capacity could be affected by several parameters such as flow rate and mineral composition of sorption materials. In the synthetic aqueous solution, NH4+ removal reached the highest sorption capacity, i.e., 0.341 mg/g with the S30 sorbent at a filtration rate of 10 mL/min and an initial concentration of 10 mg/L of NH4+ ions. It is important to emphasize that, in this case, the Ce/C0 ratio of 0.9 was not reached after 420 min of sorption. It was also determined that the NH4+ sorption capacity was influenced by phosphorus. In the wastewater, the NH4+ sorption capacity was almost seven times lower than that in the synthetic aqueous solution. However, it should be highlighted that the P sorption capacity reached 0.512 mg/g. According to these results, it can be concluded that straetlingite-based sorbents can be used for NH4+ ion removal from a synthetic aqueous solution, as well as for both NH4+ and P removal from industrial wastewater. In the wastewater, a significantly higher sorption capacity of the investigated sorbents was detected for P than for NH4+.
Collapse
Affiliation(s)
- Agnė Mikelionienė
- Faculty of Water and Land Management Agriculture Academy, Vytautas Magnus University, Studentu 11, LT-53361 Akademija, Lithuania; (A.M.); (A.R.)
| | - Danutė Vaičiukynienė
- Faculty of Water and Land Management Agriculture Academy, Vytautas Magnus University, Studentu 11, LT-53361 Akademija, Lithuania; (A.M.); (A.R.)
| | - Aras Kantautas
- Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu 48, LT-51367 Kaunas, Lithuania;
| | - Algirdas Radzevičius
- Faculty of Water and Land Management Agriculture Academy, Vytautas Magnus University, Studentu 11, LT-53361 Akademija, Lithuania; (A.M.); (A.R.)
| | - Katarzyna Zarębska
- Faculty of Energy and Fuels, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland;
| |
Collapse
|
5
|
The Influence of Zeolitic By-Product Containing Ammonium Ions on Properties of Hardened Cement Paste. MINERALS 2021. [DOI: 10.3390/min11020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluid catalytic cracking (FCC) catalysts, used in the petroleum industry, are sources of zeolitic by-products. These by-products are often used as sorbents for the removal of ammonium ions from wastewater. After a period of use, the zeolitic by-product loses its sorption properties and is no longer effective. The problem is the use of zeolitic by-product with ammonium ions. In this study, a zeolitic by-product containing ammonium ions and high contents of active SiO2 and Al2O3 was used as a supplementary cementitious material (SCM). Cement pastes containing 0.5%, 1%, 3%, 5%, and 10% of the by-product were prepared, and the compressive strength and density of the pastes were evaluated. Incorporation of the zeolitic by-product increased the cement strength by 17% and 32% after 7 and 28 days of hydration, respectively. Thus, incorporation of the zeolitic by-product with ammonium ions as an SCM has a complex effect on an ordinary Portland cement (OPC) system. Ammonium chloride accelerated cement setting after 7 days of hydration, and the pozzolanic reaction positively affected strength development after 28 days of hydration. The reaction products caused the cement to have a compact microstructure. The zeolitic by-product containing absorbed ammonium ions can be successfully reused to replace ordinary Portland cement in cement pastes.
Collapse
|
6
|
Doekhi-Bennani Y, Leilabady NM, Fu M, Rietveld LC, van der Hoek JP, Heijman SGJ. Simultaneous removal of ammonium ions and sulfamethoxazole by ozone regenerated high silica zeolites. WATER RESEARCH 2021; 188:116472. [PMID: 33027697 DOI: 10.1016/j.watres.2020.116472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Continuous development of industry and civilization has led to changes in composition, texture and toxicity of waste water due to the wide range of pollutants being present. Considering that the conventional wastewater treatment methods are insufficient for removing micropollutants and nutrients to a high level, other, alternative, treatment methods should be used to polish wastewater treatment plant effluents. In this study we developed an alternative, polishing concept for removal of ammonium and micropollutants that could potentially be incorporated in existing wastewater treatment plants. We demonstrated a method to use high silica MOR zeolite granules as an adsorbent for simultaneous removal of the micropollutant sulfamethoxazole (SMX) and ammonium (NH4+) ions from aqueous solutions. At an initial NH4+ concentration of 10 mg/L the high silica zeolite mordenite (MOR) granules removed 0.42 mg/g of NH4+, similar to the removal obtained by commonly used natural zeolite Zeolita (0.44 mg/g). However, at higher NH4+ concentrations the Zeolita performed better. In addition, the Langmuir isotherm model showed a higher maximum adsorption capacity of Zeolita (qmax, 4.08 mg/g), which was about two times higher than that of MOR (2.11). The adsorption capacity of MOR towards SMX, at both low (2 µg/L) and high (50 mg/L) initial concentrations, was high and even increased in the presence of NH4+ ions. The used adsorbent could be regenerated with ozone and reused in consecutive adsorption-regeneration cycles with marginal decrease in the total adsorption capacity.
Collapse
Affiliation(s)
- Yasmina Doekhi-Bennani
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands.
| | - Nazila Mir Leilabady
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Mingyan Fu
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Luuk C Rietveld
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Jan Peter van der Hoek
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands; Waternet, Department Research & Innovation, P.O. Box 94370, 1090 GJ Amsterdam, the Netherlands
| | - Sebastiaan G J Heijman
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| |
Collapse
|
7
|
Vaičiukynienė D, Nizevičienė D, Mikelionienė A, Radzevičius A. Utilization of ZeoliticWaste in Alkali-Activated Biomass Bottom Ash Blends. Molecules 2020; 25:molecules25133053. [PMID: 32635331 PMCID: PMC7412219 DOI: 10.3390/molecules25133053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
This study aims to investigate the effects of ammonium-bearing zeolitic waste (FCC) on alkali-activated biomass bottom ash (BBA). FCC was obtained from the oil-cracking process in petroleum plants. In this study, two types of production waste were used: biomass bottom ash and ammonium-bearing zeolitic waste. These binary alkali-activated FCC/BBA blends were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) methods. The compressive strength of the hardened samples was evaluated. The results show that the samples made from alkali-activated BBA biomass bottom ash had low (8.5 MPa) compressive strength, which could be explained with low reactive BBA and insufficient quantities of silicon and aluminum compounds. The reactivity of BBA was improved with incorporating zeolitic waste as an aluminosilicate material. This zeolitic waste was first used for ammonium sorption; then, it was incorporated in alkali-activated samples. Additional amounts of hydrated products formed, such as calcium silicate hydrate, calcium aluminum silicate hydrate and calcium sodium aluminum silicate hydrate. The silicon and aluminum compound, which varied in zeolitic waste, changed the mineral composition and microstructure of alkali-activated binder systems. NH4Cl, which was incorporated in the zeolitic waste, did not negatively affect the compressive strength of the alkali-activated BBA samples. This investigation proved that waste materials can be reused by producing alkali-activated binders.
Collapse
Affiliation(s)
- Danutė Vaičiukynienė
- Faculty of Water and Land Management, Vytautas Magnus University Agriculture Academy, Studentu st. 11, LT-53361 Akademija, Lithuania; (A.M.); (A.R.)
- Correspondence: ; Tel.: +370-37-300-453
| | - Dalia Nizevičienė
- Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Studentu st. 48, LT-51367 Kaunas, Lithuania;
| | - Agnė Mikelionienė
- Faculty of Water and Land Management, Vytautas Magnus University Agriculture Academy, Studentu st. 11, LT-53361 Akademija, Lithuania; (A.M.); (A.R.)
| | - Algirdas Radzevičius
- Faculty of Water and Land Management, Vytautas Magnus University Agriculture Academy, Studentu st. 11, LT-53361 Akademija, Lithuania; (A.M.); (A.R.)
| |
Collapse
|