1
|
Qin Y, Miyake T, Muramoto K, Maekawa T, Nishina Y, Wang Y, Shimizu T, Tani M. Fibroblast Activation Protein-α Expression in Cancer-Associated Fibroblasts Shows the Poor Survival of Colorectal Cancer via Immune-Mediated Pathways : Implications of FAP in Cancer-Associated Fibroblasts Link Immune Dysregulation to Adverse Survival in Colorectal Cancer. Ann Surg Oncol 2025; 32:1941-1952. [PMID: 39623187 DOI: 10.1245/s10434-024-16593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 02/12/2025]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) and immune cells, the key components of the tumor microenvironment (TME), play critical roles in oncogenesis. Despite the recognized function of fibroblast activation protein-α (FAP), a specific biomarker of CAFs in cancer progression, its role in the survival of patients with colorectal cancer (CRC) and tumor immune microenvironment (TIME) remains unclear. METHODS We investigated 180 pathological sections obtained from 178 consecutive patients with CRC who underwent surgical resection at Shiga University of Medical Science Hospital between January 2013 and December 2015. FAP expression levels and CD3 and CD8 densities at the invasive margin and center of tumor were assessed using immunohistochemical (IHC) staining. Furthermore, we used single-cell RNA sequencing (scRNA-seq) of CAFs in a separate cohort of 10 untreated patients with CRC derived from the Gene Expression Omnibus database. RESULTS According to IHC evaluation, high FAP expression in patients with CRC showed a correlation with reduced tumor-infiltrating lymphocyte (TIL) distribution and poor survival. Based on the FAP transcription levels obtained through scRNA-seq analysis, CAFs were grouped into high and low FAP expression groups. Elevated FAP expression was correlated with decreased expression of T- and B-cell biomarkers, suggesting an association with an immunosuppressive TME promotion. Several genes associated with cancer-related immune-mediated pathways (CXCL12, COL11A1, CCL11, and COL10A1) were significantly upregulated in FAP-positive CAFs. CONCLUSIONS This study highlights the effects of FAP expression on survival of patients with CRC, its interaction with TILs, and relevant signaling pathways, and underscores potential immunotherapeutic targets for future investigation.
Collapse
Affiliation(s)
- Yubo Qin
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
- Department of Emergency Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan.
| | - Keiji Muramoto
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Takeru Maekawa
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yusuke Nishina
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Ying Wang
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Tomoharu Shimizu
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
2
|
Ghorbaninezhad F, Nour MA, Farzam OR, Saeedi H, Vanan AG, Bakhshivand M, Jafarlou M, Hatami-Sadr A, Baradaran B. The tumor microenvironment and dendritic cells: Developers of pioneering strategies in colorectal cancer immunotherapy? Biochim Biophys Acta Rev Cancer 2025; 1880:189281. [PMID: 39929377 DOI: 10.1016/j.bbcan.2025.189281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Colorectal cancer (CRC) is the world's third most frequent cancer, and both its incidence and fatality rates are rising. Despite various therapeutic approaches, neither its mortality rate nor its recurrence frequency has decreased significantly. Additionally, conventional treatment approaches, such as chemotherapy and radiotherapy, have several side effects and risks for patients with CRC. Accordingly, the need for alternative and effective treatments for CRC patients is critical. Immunotherapy that utilizes dendritic cells (DCs) harnesses the patient's immune system to combat cancer cells effectively. DCs are the most potent antigen-presenting cells (APCs), which play a vital role in generating anti-cancer T cell responses. A significant barrier to the immune system's ability to eliminate CRC is the establishment of a potent immunosuppressive tumor milieu by malignant cells. Since DCs are frequently defective in this milieu, the tumor setting significantly reduces the effectiveness of DC-based therapy. Determining central mechanisms contributing to tumor growth by unraveling and comprehending the interaction between CRC tumor milieu and DCs may lead to new therapeutic approaches. This study aims to review DC biology and discuss its role in T-cell-mediated anti-tumor immunity, as well as to highlight the immunosuppressive effects of the CRC tumor milieu on the function of DCs. We will also highlight the tumor microenvironment (TME)-related factors that interfere with DC function as a possible therapeutic target to enhance DC-based cell therapy efficacy.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Ghorbani Vanan
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Dimopoulou K, Tiniakos D, Arkadopoulos N, Foukas PG. Landscape of B lymphocytes and plasma cells in digestive tract carcinomas. Ann Gastroenterol 2025; 38:1-11. [PMID: 39802286 PMCID: PMC11724378 DOI: 10.20524/aog.2024.0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 01/16/2025] Open
Abstract
Digestive tract carcinomas are the most commonly occurring cancers worldwide, but their prognosis with traditional treatments remains poor. T lymphocytes are well-recognized as crucial components of effective anti-tumor immunity, and current immunotherapeutic strategies concentrate mainly on T-cell-mediated immunity reinforcement, whereas the role of B lymphocytes and plasma cells (PCs) has been neglected in the past, and it is only recently that these cells have been considered as key players in the tumor microenvironment (TME). In this review, we describe the complex dual role of B lymphocytes and PCs in promoting and inhibiting tumor progression in the TME of digestive tract carcinomas, and we demonstrate their prognostic value. Furthermore, we highlight their controversial function in cancer and nominate them as additional therapeutic targets for the development of new treatment interventions that might alter the dismal prognosis of digestive tract tumors.
Collapse
Affiliation(s)
- Konstantina Dimopoulou
- Department of Gastroenterology, “Hippokration” General Hospital of Athens, Greece (Konstantina Dimopoulou)
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Dina Tiniakos)
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK (Dina Tiniakos)
| | - Nikolaos Arkadopoulos
- 4 Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Nikolaos Arkadopoulos)
| | - Periklis G. Foukas
- 2 Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Periklis G. Foukas)
| |
Collapse
|
4
|
Gulubova MV, Valkanov SP, Ignatova MMK, Minkov GA. Tertiary lymphoid structures in colorectal cancer - organization and immune cell interactions. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:236-245. [PMID: 39839346 PMCID: PMC11744347 DOI: 10.62347/gryy2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 01/23/2025]
Abstract
Tertiary lymphoid structures (TLS), formerly recognized as Crohn's-like structures, serve as crucial biomarkers for evaluating the progression of colorectal cancer (CRC). Understanding their spatial distribution, cellular composition, and interactions within CRC is paramount for comprehending the immune response in the tumor microenvironment (TME). TLS are comprised of a T-cellular compartment and a B-cellular compartment, the latter encompassing follicular dendritic cells (FDCs), high endothelial venules (HEVs), and lymphatic vessels. While T helper cells predominate in cancer TLS, the specific functions of their subpopulations remain inadequately understood. Notably, T follicular helper (Tfh) cells play a central role in the activation of CD8+ T cells, and both Tfh cells and Tfh-associated genes have been linked to enhanced CRC survival. In stage II CRC TLS, an escalation in the number of FoxP3+ T regulatory cells (Tregs) is regarded as a negative prognostic factor. Moreover, within TLS, T lymphocytes shield B lymphocytes from the immunosuppressive effects of the TME. B lymphocyte activation is succeeded by class recombination (CSR) and somatic hypermutation (SHM). Dendritic cells (DCs) constitute a vital cellular component of the TLS T compartment. During steady state and early stages of CRC, specialized antigen-presenting cells such as DCs migrate to regional lymph nodes through afferent lymphatics. They deliver MHC antigen-derived peptide complexes (tumor antigens) to naïve CD4+ and CD8+ T cells, which subsequently infiltrate the tumor site as antigen-specific T cells. Key DC markers studied in TLS include CD83 and DC-LAMP. Research has indicated that the DC-LAMP gene signature in tumor TLS reflects Th1 cell targeting, cytotoxicity, and T cell activation. This review comprehensively outlines the functions performed by distinct cell subsets within tertiary lymphoid structures (TLS) in tumors.
Collapse
Affiliation(s)
- Maya Vladova Gulubova
- Clinics of Pathology, University Hospital “Prof. Dr. Stoyan Kirkovich”Stara Zagora, Bulgria
- Department of Anatomy, Histology, Embryology and Pathology, Medical Faculty, “Asen Zlatarov University Bourgas”Bourgas, Bulgaria
| | - Stefan P Valkanov
- Clinics of Neurosurgery, University Hospital “Prof. Dr. Stoyan Kirkovich”Stara Zagora, Bulgria
- Department of Surgery, Medical Faculty, Trakia UniversityStara Zagora, Bulgria
| | | | - Georgi A Minkov
- Department of Surgery, Medical Faculty, Trakia UniversityStara Zagora, Bulgria
- Clinics of Surgery, University Hospital “Prof. Dr. Stoyan Kirkovich”Stara Zagora, Bulgria
| |
Collapse
|
5
|
Gao M, Wang M, Zhou S, Hou J, He W, Shu Y, Wang X. Machine learning-based prognostic model of lactylation-related genes for predicting prognosis and immune infiltration in patients with lung adenocarcinoma. Cancer Cell Int 2024; 24:400. [PMID: 39696439 DOI: 10.1186/s12935-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Histone lactylation is a novel epigenetic modification that is involved in a variety of critical biological regulations. However, the role of lactylation-related genes in lung adenocarcinoma has yet to be investigated. METHODS RNA-seq data and clinical information of LUAD were downloaded from TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed to identify differentially expressed genes (DEGs) between the two clusters, and risk prediction models were constructed by Cox regression analysis and LASSO analysis. Kaplan-Meier (KM) survival analysis, ROC curves and nomograms were used to validate the accuracy of the models. We also explored the differences in risk scores in terms of immune cell infiltration, immune cell function, TMB, TIDE, and anticancer drug sensitivity. In addition, single-cell clustering and trajectory analysis were performed to further understand the significance of lactylation-related genes. We further analyzed lactate content and glucose uptake in lung adenocarcinoma cells and tissues. Changes in LUAD cell function after knockdown of lactate dehydrogenase (LDHA) by CCK-8, colony formation and transwell assays. Finally, we analyzed the expression of KRT81 in LUAD tissues and cell lines using qRT-PCR, WB, and IHC. Changes in KRT81 function in LUAD cells were detected by CCK-8, colony formation, wound healing, transwell, and flow cytometry. A nude mouse xenograft model and a KrasLSL-G12D in situ lung adenocarcinoma mouse model were used to elucidate the role of KRT81 in LUAD. RESULTS After identifying 26 lactylation-associated DEGs, we constructed 10 lactylation-associated lung adenocarcinoma prognostic models with prognostic value for LUAD patients. A high score indicates a poor prognosis. There were significant differences between the high-risk and low-risk groups in the phenotypes of immune cell infiltration rate, immune cell function, gene mutation frequency, and anticancer drug sensitivity. TMB and TIDE scores were higher in high-risk score patients than in low-risk score patients. MS4A1 was predominantly expressed in B-cell clusters and was identified to play a key role in B-cell differentiation. We further found that lactate content was abnormally elevated in lung adenocarcinoma cells and cancer tissues, and glucose uptake by lung adenocarcinoma cells was significantly increased. Down-regulation of LDHA inhibits tumor cell proliferation, migration and invasion. Finally, we verified that the model gene KRT81 is highly expressed in LUAD tissues and cell lines. Knockdown of KRT81 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. KRT81 may play a tumorigenic role in LUAD through the EMT and PI3K/AKT pathways. In vivo, KRT81 knockdown inhibited tumor growth. CONCLUSION We successfully constructed a new prognostic model for lactylation-related genes. Lactate content and glucose uptake are significantly higher in lung adenocarcinoma cells and cancer tissues. In addition, KRT81 was validated at cellular and animal levels as a possible new target for the treatment of LUAD, and this study provides a new perspective for the individualized treatment of LUAD.
Collapse
Affiliation(s)
- Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Mengmeng Wang
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Siding Zhou
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jiaqi Hou
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Wenbo He
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| | - Xiaolin Wang
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
6
|
Lv J, Zhang X, Zhou M, Yan J, Chao G, Zhang S. Tertiary lymphoid structures in colorectal cancer. Ann Med 2024; 56:2400314. [PMID: 39575712 PMCID: PMC11616745 DOI: 10.1080/07853890.2024.2400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are ectopic clusters of immune cells found in non-lymphoid tissues, particularly within the tumor microenvironment (TME). These structures resemble secondary lymphoid organs and have been identified in various solid tumors, including colorectal cancer (CRC), where they are associated with favorable prognosis. The role of TLS in modulating the immune response within the TME and their impact on cancer prognosis has garnered increasing attention in recent years. OBJECTIVE This review aims to summarize the current understanding of TLS in CRC, focusing on their formation, function, and potential as prognostic markers and therapeutic targets. We explore the mechanisms by which TLS influence the immune response within the TME and their correlation with clinical outcomes in CRC patients. METHODS We conducted a comprehensive review of recent studies that investigated the presence and role of TLS in CRC. The review includes data from histopathological analyses, immunohistochemical studies, and clinical trials, examining the association between TLS density, composition, and CRC prognosis. Additionally, we explored emerging therapeutic strategies targeting TLS formation and function within the TME. RESULTS The presence of TLS in CRC is generally associated with an improved prognosis, particularly in early-stage disease. TLS formation is driven by chronic inflammation and is characterized by the organization of B and T cell zones, high endothelial venules (HEVs), and follicular dendritic cells (FDCs). The density and maturity of TLS are linked to better patient outcomes, including reduced recurrence rates and increased survival. Furthermore, the interplay between TLS and immune checkpoint inhibitors (ICIs) suggests potential therapeutic implications for enhancing anti-tumor immunity in CRC. CONCLUSIONS TLS represent a significant prognostic marker in CRC, with their presence correlating with favorable clinical outcomes. Ongoing research is required to fully understand the mechanisms by which TLS modulate the immune response within the TME and to develop effective therapies that harness their potential. The integration of TLS-focused strategies in CRC treatment could lead to improved patient management and outcomes.
Collapse
Affiliation(s)
- Jianyu Lv
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mi Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Junbin Yan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
7
|
Li Y, Du Y, Wang M, Ai D. CSER: a gene regulatory network construction method based on causal strength and ensemble regression. Front Genet 2024; 15:1481787. [PMID: 39371416 PMCID: PMC11449711 DOI: 10.3389/fgene.2024.1481787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Gene regulatory networks (GRNs) reveal the intricate interactions between and among genes, and understanding these interactions is essential for revealing the molecular mechanisms of cancer. However, existing algorithms for constructing GRNs may confuse regulatory relationships and complicate the determination of network directionality. Methods We propose a new method to construct GRNs based on causal strength and ensemble regression (CSER) to overcome these issues. CSER uses conditional mutual inclusive information to quantify the causal associations between genes, eliminating indirect regulation and marginal genes. It considers linear and nonlinear features and uses ensemble regression to infer the direction and interaction (activation or regression) from regulatory to target genes. Results Compared to traditional algorithms, CSER can construct directed networks and infer the type of regulation, thus demonstrating higher accuracy on simulated datasets. Here, using real gene expression data, we applied CSER to construct a colorectal cancer GRN and successfully identified several key regulatory genes closely related to colorectal cancer (CRC), including ADAMDEC1, CLDN8, and GNA11. Discussion Importantly, by integrating immune cell and microbial data, we revealed the complex interactions between the CRC gene regulatory network and the tumor microenvironment, providing additional new biomarkers and therapeutic targets for the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
| | | | | | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
8
|
Xin S, Wen S, He P, Zhao Y, Zhao H. Density of tertiary lymphoid structures and their correlation with prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1423775. [PMID: 39192984 PMCID: PMC11347756 DOI: 10.3389/fimmu.2024.1423775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS), ordered structure of tumor-infiltrating immune cells in tumor immune microenvironment (TIME), play an important role in the development and anti-tumor immunity of various cancers, including liver, colon, and gastric cancers. Previous studies have demonstrated that the presence of TLS in intra-tumoral (IT), invasive margin (IM), and peri-tumoral (PT) regions of the tumors at various maturity statuses. However, the density of TLS in different regions of non-small cell lung cancer (NSCLC) has not been extensively studied. Methods TLS and tumor-infiltrating immune cells were assessed using immunohistochemistry (IHC) staining in 82 NSCLC patients. Tumor samples were divided into three subregions as IT, IM and PT regions, and TLS were identified as early/primary TLS (E-TLS) or secondary/follicular TLS (F-TLS). The distribution of TLS in different maturity statuses, along with their correlation with clinicopathological characteristics and prognostic value, was assessed. Nomograms were used to predict the probability of 1-, 3-, and 5-year overall survival (OS) in patients with NSCLC. Results The density of TLS and proportion of F-TLS in the IT region (90.2%, 0.45/mm2, and 61.0%, respectively) were significantly higher than those in the IM region (72.0%, 0.18/mm2, and 39.0%, respectively) and PT region (67.1%, 0.16/mm2, and 40.2%, respectively). A lower density of TLS, especially E-TLS in the IM region, was correlated with better prognosis in NSCLC patients. CD20+ B cells, CD3+ T cells, CD8+ cytotoxic T cells, and CD68+ macrophages were significantly overexpressed in the IM region. CD20+ B cells and CD3+ T cells in the IM region were significantly correlated with the density of E-TLS, while no statistically significant correlation was found with F-TLS. The E-TLS density in the IM region and TNM stage were independent prognostic factors for NSCLC patients. The nomogram showed good prognostic ability. Conclusions A higher density of E-TLS in the IM region was associated with a worse prognosis in NSCLC patients, potentially due to the inhibition of TLS maturation caused by the increased density of suppressive immune cells at the tumor invasion front.
Collapse
Affiliation(s)
- Shuyue Xin
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wen
- Department of Pathology, The Friendship Hospital of Dalian, Dalian, China
| | - Peipei He
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yulong Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Zaakouk M, Longworth A, Hunter K, Jiman S, Kearns D, El-Deftar M, Shaaban AM. Detailed Profiling of the Tumor Microenvironment in Ethnic Breast Cancer, Using Tissue Microarrays and Multiplex Immunofluorescence. Int J Mol Sci 2024; 25:6501. [PMID: 38928207 PMCID: PMC11203983 DOI: 10.3390/ijms25126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer poses a global health challenge, yet the influence of ethnicity on the tumor microenvironment (TME) remains understudied. In this investigation, we examined immune cell infiltration in 230 breast cancer samples, emphasizing diverse ethnic populations. Leveraging tissue microarrays (TMAs) and core samples, we applied multiplex immunofluorescence (mIF) to dissect immune cell subtypes across TME regions. Our analysis revealed distinct immune cell distribution patterns, particularly enriched in aggressive molecular subtypes triple-negative and HER2-positive tumors. We observed significant correlations between immune cell abundance and key clinicopathological parameters, including tumor size, lymph node involvement, and patient overall survival. Notably, immune cell location within different TME regions showed varying correlations with clinicopathologic parameters. Additionally, ethnicities exhibited diverse distributions of cells, with certain ethnicities showing higher abundance compared to others. In TMA samples, patients of Chinese and Caribbean origin displayed significantly lower numbers of B cells, TAMs, and FOXP3-positive cells. These findings highlight the intricate interplay between immune cells and breast cancer progression, with implications for personalized treatment strategies. Moving forward, integrating advanced imaging techniques, and exploring immune cell heterogeneity in diverse ethnic cohorts can uncover novel immune signatures and guide tailored immunotherapeutic interventions, ultimately improving breast cancer management.
Collapse
Affiliation(s)
- Mohamed Zaakouk
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Aisling Longworth
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Kelly Hunter
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
| | - Suhaib Jiman
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Daniel Kearns
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Mervat El-Deftar
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| |
Collapse
|
10
|
Xu J, Lu W, Yang J, Liu X. B cells present a double-sided effect in digestive system tumors: a review for tumor microenvironment. Transl Gastroenterol Hepatol 2024; 9:46. [PMID: 39091659 PMCID: PMC11292093 DOI: 10.21037/tgh-23-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past few years, there has been an increasing interest in investigating tumor-infiltrating lymphocytes. B lymphocytes (B cells) are extensively distributed within tertiary lymphoid structure (TLS) as multifaceted subgroups and are intimately linked to the anti-tumor properties of TLS, as well as the survival and prognostication of individuals. While the investigation of T lymphocytes in the TLS has advanced to the level of clinical practice, the study of B cells remains limited. The principal impediment to the utilization of B cells in immunotherapy is their notable dual impact on tumors. Compared with tumors in other parts and systems, the function of B cells in the microenvironment of digestive system tumors to promote tumors proliferation, differentiation and migration cannot be ignored. Therefore, this review collects the studies of B cell subsets in tumor microenvironments, particularly related single cell sequencing research. The multifaceted role and function of B cells are investigated in esophageal, liver, colorectal, gastric and pancreatic cancers. And through the identification of B cell subsets and specific markers, this review attempts to explain the reasons why B cells produce different tumor-promoting effects in those tumors. The insights gleaned from this review may provide potential help and support the development of B cell-based immunotherapies.
Collapse
Affiliation(s)
- Jiaren Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Zheng J, Jin H, Tu Y. Differences in circulating lymphocyte subpopulations among patients with inflammatory polyps, colorectal adenomas and colorectal cancer. Arab J Gastroenterol 2024; 25:129-134. [PMID: 38413325 DOI: 10.1016/j.ajg.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2023] [Accepted: 12/31/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND STUDY AIMS Colorectal cancer (CRC) may develop from focal changes within benign or precancerous polyps. The immune system's failure to detect and eradicate tumor cells due to immune surveillance evasion, allows cancer to develop and spread. This study aims to analyze the differences in circulating lymphocyte subpopulations in patients with colorectal inflammatory polyps, colorectal adenomas and CRC. PATIENTS AND METHODS We retrospectively reviewed patients from September 2016 to December 2019 at the Shaoxing Second Hospital. Using flow cytometry, the subset distribution and immunophenotype of T cells, CD4+ T cells, CD8+ T cells, B cells and NK cells were investigated in peripheral blood mononuclear cell samples. The counts of lymphocytes were determined by white blood cell counts. RESULTS In total, 518 patients were included in this study. The counts of lymphocytes, T cells and NK cells in patients with inflammatory polyps, colorectal adenomas and CRC were lower than controls. The counts and percentages of CD8+ T cells in patients with inflammatory polyps, colorectal adenomas and CRC were lower than controls. The counts of CD4+ T cells were lower in patients with CRC than inflammatory polyps. The percentages of CD4+ T cells in patients with inflammatory polyps, colorectal adenomas and CRC were higher than controls, but lower in the CRC than inflammatory polyps, colorectal adenomas. The counts and percentages of B cells were lower in CRC patients than colorectal adenomas patients. In addition, the percentages of B cells were higher in patients with inflammatory polyps and colorectal adenomas than in controls. CONCLUSIONS The decrease in counts of lymphocyte, T cells, CD8+ T cells and NK cells in patients may be related to the dysplasia of epithelial cells. Furthermore, the B cells and CD4+ T cells may be related to the malignant growth of the dysplastic epithelial cells.
Collapse
Affiliation(s)
- Jialai Zheng
- Departments of Molecular Medicine, Shaoxing Second Hospital, Shaoxing, Zhejiang, China.
| | - Haiyong Jin
- Departments of Laboratory Medicine, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Yongtao Tu
- Departments of Molecular Medicine, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
12
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
13
|
Faragó A, Zvara Á, Tiszlavicz L, Hunyadi-Gulyás É, Darula Z, Hegedűs Z, Szabó E, Surguta SE, Tóvári J, Puskás LG, Szebeni GJ. Lectin-Based Immunophenotyping and Whole Proteomic Profiling of CT-26 Colon Carcinoma Murine Model. Int J Mol Sci 2024; 25:4022. [PMID: 38612832 PMCID: PMC11012250 DOI: 10.3390/ijms25074022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
A murine colorectal carcinoma (CRC) model was established. CT26 colon carcinoma cells were injected into BALB/c mice's spleen to study the primary tumor and the mechanisms of cell spread of colon cancer to the liver. The CRC was verified by the immunohistochemistry of Pan Cytokeratin and Vimentin expression. Immunophenotyping of leukocytes isolated from CRC-bearing BALB/c mice or healthy controls, such as CD19+ B cells, CD11+ myeloid cells, and CD3+ T cells, was carried out using fluorochrome-labeled lectins. The binding of six lectins to white blood cells, such as galectin-1 (Gal1), siglec-1 (Sig1), Sambucus nigra lectin (SNA), Aleuria aurantia lectin (AAL), Phytolacca americana lectin (PWM), and galectin-3 (Gal3), was assayed. Flow cytometric analysis of the splenocytes revealed the increased binding of SNA, and AAL to CD3 + T cells and CD11b myeloid cells; and increased siglec-1 and AAL binding to CD19 B cells of the tumor-bearing mice. The whole proteomic analysis of the established CRC-bearing liver and spleen versus healthy tissues identified differentially expressed proteins, characteristic of the primary or secondary CRC tissues. KEGG Gene Ontology bioinformatic analysis delineated the established murine CRC characteristic protein interaction networks, biological pathways, and cellular processes involved in CRC. Galectin-1 and S100A4 were identified as upregulated proteins in the primary and secondary CT26 tumor tissues, and these were previously reported to contribute to the poor prognosis of CRC patients. Modelling the development of liver colonization of CRC by the injection of CT26 cells into the spleen may facilitate the understanding of carcinogenesis in human CRC and contribute to the development of novel therapeutic strategies.
Collapse
Grants
- 2020-1.1.6-JÖVŐ-2021-00003 National Research, Development, and Innovation Office
- 2019-1.1.1-PIACI-KFI-2019-00444 National Research, Development, and Innovation Office (NKFI), Hungary
- 142877 FK22 National Research, Development, and Innovation Office (NKFI), Hungary
- 2019-1.1.1-PIACI-KFI-2019-00444 National Research, Development, and Innovation Office (NKFI), Hungary
- National Research, Development, and Innovation Office (NKFI), Hungary KFI_16-1-2017-0105
- 2022-1.2.6-TÉT-IPARI-TR-2022-00023 National Research, Development, and Innovation Office, Hungary
- BO/00582/22/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences
- 2022-2.1.1-NL-2022-00010 National Laboratories Excellence program
- TKP2021-EGA-44 Hungarian Thematic Excellence Programme
- grant K147410. Project no. 1018567 Hungarian Scientific Research Fund
Collapse
Affiliation(s)
- Anna Faragó
- Astridbio Technologies Ltd., Wimmer Fülöp utca 1, H6728 Szeged, Hungary;
- University of Szeged, Albert Szent-Györgyi Medical School, Doctoral School of Multidisciplinary Medical Sciences, Dóm tér 9, H6720 Szeged, Hungary
| | - Ágnes Zvara
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, H6725 Szeged, Hungary;
| | - Éva Hunyadi-Gulyás
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Laboratory of Proteomics Research, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Zsuzsanna Darula
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Laboratory of Proteomics Research, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- The Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Single Cell Omics Advanced Core Facility, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Zoltán Hegedűs
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Laboratory of Bioinformatics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H7624 Pécs, Hungary
| | - Enikő Szabó
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, H1122 Budapest, Hungary; (S.E.S.); (J.T.)
| | - József Tóvári
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, H1122 Budapest, Hungary; (S.E.S.); (J.T.)
| | - László G. Puskás
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Avidin Ltd., Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
- Avicor Ltd., Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Astridbio Technologies Ltd., Wimmer Fülöp utca 1, H6728 Szeged, Hungary;
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, H6725 Szeged, Hungary
| |
Collapse
|
14
|
Sadasivan SM, Loveless IM, Chen Y, Gupta NS, Sanii R, Bobbitt KR, Chitale DA, Williamson SR, Rundle AG, Rybicki BA. Patterns of B-cell lymphocyte expression changes in pre- and post-malignant prostate tissue are associated with prostate cancer progression. Cancer Med 2024; 13:e7118. [PMID: 38523528 PMCID: PMC10961600 DOI: 10.1002/cam4.7118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 03/26/2024] Open
Abstract
BACKROUND Inflammation characterized by the presence of T and B cells is often observed in prostate cancer, but it is unclear how T- and B-cell levels change during carcinogenesis and whether such changes influence disease progression. METHODS The study used a retrospective sample of 73 prostate cancer cases (45 whites and 28 African Americans) that underwent surgery as their primary treatment and had a benign prostate biopsy at least 1 year before diagnosis. CD3+, CD4+, and CD20+ lymphocytes were quantified by immunohistochemistry in paired pre- and post-diagnostic benign prostate biopsy and tumor surgical specimens, respectively. Clusters of similar trends of expression across two different timepoints and three distinct prostate regions-benign biopsy glands (BBG), tumor-adjacent benign glands (TAG), and malignant tumor glandular (MTG) regions-were identified using Time-series Anytime Density Peaks Clustering (TADPole). A Cox proportional hazards model was used to estimate the hazard ratio (HR) of time to biochemical recurrence associated with region-specific lymphocyte counts and regional trends. RESULTS The risk of biochemical recurrence was significantly reduced in men with an elevated CD20+ count in TAG (HR = 0.81, p = 0.01) after adjusting for covariates. Four distinct patterns of expression change across the BBG-TAG-MTG regions were identified for each marker. For CD20+, men with low expression in BBG and higher expression in TAG compared to MTG had an adjusted HR of 3.06 (p = 0.03) compared to the reference group that had nominal differences in CD20+ expression across all three regions. The two CD3+ expression patterns that featured lower CD3+ expression in the BBG compared to the TAG and MTG regions had elevated HRs ranging from 3.03 to 4.82 but did not reach statistical significance. CONCLUSIONS Longitudinal and spatial expression patterns of both CD3+ and CD20+ suggest that increased expression in benign glands during prostate carcinogenesis is associated with an aggressive disease course.
Collapse
Affiliation(s)
- Sudha M. Sadasivan
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Ian M. Loveless
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Yalei Chen
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Nilesh S. Gupta
- Department of PathologyHenry Ford HospitalDetroitMichiganUSA
| | - Ryan Sanii
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | - Kevin R. Bobbitt
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| | | | | | - Andrew G. Rundle
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Benjamin A. Rybicki
- Department of Public Health SciencesHenry Ford HospitalHenry Ford Health + Michigan State University Health SciencesDetroitMichiganUSA
| |
Collapse
|
15
|
Gherman A, Bolundut D, Ecea R, Balacescu L, Curcean S, Dina C, Balacescu O, Cainap C. Molecular Subtypes, microRNAs and Immunotherapy Response in Metastatic Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:397. [PMID: 38541123 PMCID: PMC10972200 DOI: 10.3390/medicina60030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 11/12/2024]
Abstract
Currently, only a limited set of molecular traits are utilized to direct treatment for metastatic CRC (mCRC). The molecular classification of CRC depicts tumor heterogeneity based on gene expression patterns and aids in comprehending the biological characteristics of tumor formation, growth and prognosis. Additionally, it assists physicians in tailoring the therapeutic approach. Microsatellite instability (MSI-H)/deficient mismatch repair proteins (MMRd) status has become a ubiquitous biomarker in solid tumors, caused by mutations or methylation of genes and, in turn, the accumulation of mutations and antigens that subsequently induce an immune response. Immune checkpoint inhibitors (ICI) have recently received approval for the treatment of mCRC with MSI-H/MMRd status. However, certain individuals experience either initial or acquired resistance. The tumor-programmed cell death ligand 1 (PD-L1) has been linked to the ability of CRC to evade the immune system and promote its growth. Through comprehensive research conducted via the PUBMED database, the objectives of this paper were to review the molecular characteristics linked to tumor response in metastatic CRC in light of improved patients' outcomes following ICI therapies as seen in clinical trials and to identify particular microRNAs that can modulate the expression of specific oncoproteins, such as PD-L1, and disrupt the mechanisms that allow the immune system to be evaded.
Collapse
Affiliation(s)
- Alexandra Gherman
- 10th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.G.); (C.C.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| | - Dinu Bolundut
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| | - Radu Ecea
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| | - Loredana Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Sebastian Curcean
- 10th Department of Radiation Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department of Radiation Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Constantin Dina
- Department of Anatomy, Faculty of Medicine, Ovidius University, 124 Mamaia Boulevard, 900527 Constanta, Romania
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Calin Cainap
- 10th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.G.); (C.C.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (D.B.); (R.E.)
| |
Collapse
|
16
|
Hong W, Zhang Y, Wang S, Zheng D, Hsu S, Zhou J, Fan J, Zeng Z, Wang N, Ding Z, Yu M, Gao Q, Du S. Deciphering the immune modulation through deep transcriptomic profiling and therapeutic implications of DNA damage repair pattern in hepatocellular carcinoma. Cancer Lett 2024; 582:216594. [PMID: 38135208 DOI: 10.1016/j.canlet.2023.216594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
AIMS DNA damage repair (DDR) plays a pivotal role in hepatocellular carcinoma (HCC), driving oncogenesis, progression, and therapeutic response. However, the mechanisms of DDR mediated immune cells and immuno-modulatory pathways in HCC are yet ill-defined. METHODS Our study introduces an innovative deep machine learning framework for precise DDR assessment, utilizing single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Single-cell RNA sequencing data were obtained and in total 85,628 cells of primary or post-immunotherapy cases were analyzed. Large-scale HCC datasets, including 1027 patients in house together with public datasets, were used for 101 machine-learning models and a novel DDR feature was derived at single-cell resolution (DDRscore). Druggable targets were predicted using the reverse phase protein array (RPPA) proteomic profiling of 169 HCC patients and RNA-seq data from 22 liver cancer cell lines. RESULTS Our investigation reveals a dynamic interplay of DDR with natural killer cells and B cells in the primary HCC microenvironment, shaping a tumor-promoting immune milieu through metabolic programming. Analysis of HCC post-immunotherapy demonstrates elevated DDR levels that induces epithelial-mesenchymal transition and fibroblast-like transformation, reshaping the fibrotic tumor microenvironment. Conversely, attenuated DDR promotes antigen cross-presentation by dendritic cells and CD8+ T cells, modulating the inflammatory tumor microenvironment. Regulatory network analysis identifies the CXCL10-CXCR3 axis as a key determinant of immunotherapeutic response in low DDR HCC, potentially regulated by transcription factors GATA3, REL, and TBX21. Using machine learning techniques by combining bulk RNA-seq data in house together with public datasets, we introduce DDRscore, a robust consensus DDR scoring system to predict overall survival and resistance to PD-1 therapy in HCC patients. Finally, we identify BRAF as a potential therapeutic target for high DDRscore patients. CONCLUSION Our comprehensive findings advance our understanding of DDR and the tumor microenvironment in HCC, providing insights into immune regulatory mechanisms mediated via DDR pathways.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, Shandong, 250000, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, Shandong, 250000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
17
|
Charkowick SV, Huda TI, Patel DN, Yeagley M, Arturo JF, Cios KJ, Gozlan EC, Chobrutskiy A, Chobrutskiy BI, Blanck G. IGL CDR3 Hydropathy and Antigen Chemical Complementarity Associated with Greater Disease-Free Survival in Lung Adenocarcinoma: Implications for Gender Disparities. Biochem Genet 2024; 62:530-546. [PMID: 37392243 DOI: 10.1007/s10528-023-10437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
With lung cancer remaining a challenging disease, new approaches to biomarker discovery and therapy development are needed. Recent immunogenomics, adaptive immune receptor approaches have indicated that it is very likely that B cells play an important role in mediating better overall outcomes. As such, we assessed physicochemical features of lung adenocarcinoma resident IGL complementarity determining region-3 (CDR3) amino acid (AA) sequences and determined that hydrophobic CDR3 AA sequences were associated with a better disease-free survival (DFS) probability. Further, using a recently developed chemical complementarity scoring algorithm particularly suitable for the evaluation of large patient datasets, we determined that IGL CDR3 chemical complementarity with certain cancer testis antigens was associated with better DFS. Chemical complementarity scores for IGL CDR3-MAGEC1 represented a gender bias, with an overrepresentation of males among the higher IGL-CDR3-CTA complementarity scores that were in turn associated with better DFS (logrank p < 0.065). Overall, this study pointed towards potential biomarkers for prognoses that, in some cases are likely gender-specific; and towards biomarkers for guiding therapy, e.g., IGL-based opportunities for antigen targeting in the lung cancer setting.
Collapse
Affiliation(s)
- Shaun V Charkowick
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Juan F Arturo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, FL, 33612, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
Edin S, Gylling B, Li X, Stenberg Å, Löfgren-Burström A, Zingmark C, van Guelpen B, Ljuslinder I, Ling A, Palmqvist R. Opposing roles by KRAS and BRAF mutation on immune cell infiltration in colorectal cancer - possible implications for immunotherapy. Br J Cancer 2024; 130:143-150. [PMID: 38040818 PMCID: PMC10781968 DOI: 10.1038/s41416-023-02483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The immune response has important clinical value in colorectal cancer (CRC) in both prognosis and response to immunotherapy. This study aims to explore tumour immune cell infiltration in relation to clinically well-established molecular markers of CRC. METHODS Multiplex immunohistochemistry and multispectral imaging was used to evaluate tumour infiltration of cytotoxic T cells (CD8+), Th1 cells (T-bet+), T regulatory cells (FoxP3+), B cells (CD20+), and macrophages (CD68+) in a cohort of 257 CRC patients. RESULTS We found the expected association between higher immune-cell infiltration and microsatellite instability. Also, whereas BRAF-mutated tumours displayed increased immune-cell infiltration compared to BRAF wild-type tumours, the opposite was seen for KRAS-mutated tumours, differences that were most prominent for cytotoxic T cells and Th1 cells. The opposing relationships of BRAF and KRAS mutations with tumour infiltration of cytotoxic T cells was validated in an independent cohort of 608 CRC patients. A positive prognostic importance of cytotoxic T cells was found in wild-type as well as KRAS and BRAF-mutated CRCs in both cohorts. CONCLUSION A combined evaluation of MSI status, KRAS and BRAF mutational status, and immune infiltration (cytotoxic T cells) may provide important insights to prognosis and response to immunotherapy in CRC.
Collapse
Affiliation(s)
- Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Åsa Stenberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Ito S, Koshino A, Komura M, Kato S, Otani T, Wang C, Ueki A, Takahashi H, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takiguchi S, Takahashi S, Inaguma S. Characterization of colorectal cancer by hierarchical clustering analyses of five immune cell markers. Pathol Int 2024; 74:13-25. [PMID: 38050808 DOI: 10.1111/pin.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
The present study analyzed the expression of five independent immunohistochemical markers, CD4, CD8, CD66b, CD68, and CD163, on immune cells within the colorectal cancer (CRC) tumor microenvironment (TME). Using hierarchical clustering, patients were successfully classified according to significant associations with clinicopathological features and/or survival. Patients with mismatch repair-proficient (pMMR) CRC were categorized into four groups with survival differences (p = 0.0084): CD4Low , CD4High , MΦHigh , and CD8Low . MΦHigh tumors showed significantly higher expression of CD47 (p < 0.0001), a phagocytosis checkpoint molecule. These tumors contained significantly greater numbers of PD-1+ (p < 0.0001), TIM-3+ (p < 0.0001), and SIRPA+ (p < 0.0001) immune cells. Notably, 10% of the patients with pMMR CRC expressed PD-L1 (CD274) on tumor cells with significantly worse survival (p = 0.00064). The Cox proportional hazards model identified MΦ High (hazard ratio [HR] = 2.02, 95%, p = 0.032), CD8Low (HR = 2.45, p = 0.011), and tumor PD-L1 expression (HR = 2.74, p = 0.0061) as potential risk factors. PD-L1-PD-1 and/or CD47-SIRPA axes targeting immune checkpoint therapies might be considered for patients with pMMR CRC according to their tumor cells and tumor immune microenvironment characteristics.
Collapse
Affiliation(s)
- Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shunsuke Kato
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takahiro Otani
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Surgical Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Pathology, Nagoya City University East Medical Center, Nagoya, Japan
| |
Collapse
|
20
|
Wang S, Chen S, Li H, Ben S, Zhao T, Zheng R, Wang M, Gu D, Liu L. Causal genetic regulation of DNA replication on immune microenvironment in colorectal tumorigenesis: Evidenced by an integrated approach of trans-omics and GWAS. J Biomed Res 2023; 38:37-50. [PMID: 38111199 PMCID: PMC10818172 DOI: 10.7555/jbr.37.20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/20/2023] Open
Abstract
The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis, but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking. To address this gap, we conducted a study aiming to investigate this association and identify relevant biomarkers. We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment, biological activity, and the immune microenvironment. Additionally, we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies (GWASs) involving both East Asian (7062 cases and 195745 controls) and European (24476 cases and 23073 controls) populations. We employed mediation analysis to infer the causal pathway, and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells. Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1 ( FEN1) gene were significantly enriched in colorectal tumor tissues, compared with normal tissues. Moreover, a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer (odds ratio = 0.94, 95% confidence interval: 0.90-0.97, P meta = 4.70 × 10 -9). Importantly, we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors, and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication. In conclusion, this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity, expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tingyu Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Lingxiang Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
21
|
Zhang S, Li N, Wang F, Liu H, Zhang Y, Xiao J, Qiu W, Zhang C, Fan X, Qiu M, Li M, Tang H, Fan S, Wang J, Luo H, Li X, Lin J, Huang Y, Liang L. Characterization of the tumor microenvironment and identification of spatially predictive biomarkers associated with beneficial neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Pharmacol Res 2023; 197:106974. [PMID: 37898442 DOI: 10.1016/j.phrs.2023.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Neoadjuvant chemoradiotherapy (nCRT) has become the standard treatment for patients with locally advanced rectal cancer (LARC). However, 20-40% of patients with LARC show little to no response to nCRT. Thus, comprehensively understanding the tumor microenvironment (TME), which might influence therapeutic efficacy, and identifying robust predictive biomarkers is urgently needed. Pre-treatment tumor biopsy specimens from patients with LARC were evaluated in detail through digital spatial profiling (DSP), public RNA sequencing datasets, and multiplex immunofluorescence (mIF). DSP analysis revealed distinct characteristics of the tumor stroma compared to the normal stroma and tumor compartments. We identified high levels of human leukocyte antigen-DR/major histocompatibility complex class II (HLA-DR/MHC-II) in the tumor compartment and B cells in the stroma as potential spatial predictors of nCRT efficacy in the Discovery cohort. Public datasets validated their predictive capacity for clinical outcomes. Using mIF in an independent nCRT cohort and/or the total cohort, we validated that a high density of HLA-DR/MHC-II+ cells in the tumor and CD20 + B cells in the stroma was associated with nCRT efficacy (all p ≤ 0.021). Spatial profiling successfully characterized the LARC TME and identified robust biomarkers with the potential to accurately predict nCRT response. These findings have important implications for individualized therapy.
Collapse
Affiliation(s)
- Shifen Zhang
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China.
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Hailing Liu
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yuhan Zhang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China
| | - Jinyuan Xiao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China
| | - Weihao Qiu
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Ceng Zhang
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Mingxin Qiu
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Hongzhen Tang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China
| | - Shiheng Fan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China
| | - Jiaqian Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen 518000, China
| | - Xiangzhao Li
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital/School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
22
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
23
|
Liu Y, Liu Z, Yang Y, Cui J, Sun J, Liu Y. The prognostic and biology of tumour-infiltrating lymphocytes in the immunotherapy of cancer. Br J Cancer 2023; 129:1041-1049. [PMID: 37452117 PMCID: PMC10539364 DOI: 10.1038/s41416-023-02321-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Tumour immunotherapy has achieved remarkable clinical success in many different types of cancer in the past two decades. The outcome of immune checkpoint inhibitors in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell within the tumour microenvironment, suggesting that the immune landscape of a tumour is highly connected to patient response and prognosis. It is critical to understanding tumour immune microenvironments for identifying immune modifiers of cancer progression and developing cancer immunotherapies. The infiltration of solid tumours by immune cells with anti-tumour activity is both a strong prognostic factor and a therapeutic goal. Recent approaches and applications of new technologies, especially single-cell mRNA analysis in dissecting tumour microenvironments have brought important insights into the biology of tumour-infiltrating immune cells, revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune response. In this review, we will discuss recent advances in the understanding of tumour infiltrated lymphocytes, their prognostic benefit, and predictive value for immunotherapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Grit Biotechnology Ltd., Building 25, Area C, Sangtian Island Biological Industrial Park, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Zhenjiang Liu
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Yixiao Yang
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Jun Cui
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Jingwei Sun
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Yarong Liu
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
24
|
Schardey J, Lu C, Neumann J, Wirth U, Li Q, Jiang T, Zimmermann P, Andrassy J, Bazhin AV, Werner J, Kühn F. Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer. Cancers (Basel) 2023; 15:4743. [PMID: 37835436 PMCID: PMC10571767 DOI: 10.3390/cancers15194743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Chronic inflammation is a significant factor in colorectal cancer (CRC) development, especially in colitis-associated CRC (CAC). T-cell exhaustion is known to influence inflammatory bowel disease (IBD) progression and antitumor immunity in IBD patients. This study aimed to identify unique immune infiltration characteristics in CAC patients. METHODS We studied 20 CAC and 20 sporadic CRC (sCRC) patients, who were matched by tumor stage, grade, and location. Immunohistochemical staining targeted various T-cell markers (CD3, CD4, CD8, and FOXP3), T-cell exhaustion markers (TOX and TIGIT), a B-cell marker (CD20), and a neutrophil marker (CD66b) in tumor and tumor-free mucosa from both groups. The quantification of the tumor immune stroma algorithm assessed immune-infiltrating cells. RESULTS CAC patients had significantly lower TOX+ cell infiltration than sCRC in tumors (p = 0.02) and paracancerous tissues (p < 0.01). Right-sided CAC showed increased infiltration of TOX+ cells (p = 0.01), FOXP3+ regulatory T-cells (p < 0.01), and CD20+ B-cells (p < 0.01) compared to left-sided CAC. In sCRC, higher tumor stages (III and IV) had significantly lower TIGIT+ infiltrate than stages I and II. In CAC, high CD3+ (p < 0.01) and CD20+ (p < 0.01) infiltrates correlated with improved overall survival. In sCRC, better survival was associated with decreased TIGIT+ cells (p < 0.038) and reduced CD8+ infiltrates (p = 0.02). CONCLUSION In CAC, high CD3+ and CD20+ infiltrates relate to improved survival, while this association is absent in sCRC. The study revealed marked differences in TIGIT and TOX expression, emphasizing distinctions between CAC and sCRC. T-cell exhaustion appears to have a different role in CAC development.
Collapse
Affiliation(s)
- Josefine Schardey
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Can Lu
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Clinical Research Center for CANCER & Cancer Center of Zhejiang University, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jens Neumann
- Department of Pathology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Qiang Li
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Tianxiao Jiang
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Petra Zimmermann
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Florian Kühn
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| |
Collapse
|
25
|
Qayoom H, Sofi S, Mir MA. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol Res 2023; 71:588-599. [PMID: 37004645 DOI: 10.1007/s12026-023-09376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023]
Abstract
The immune system plays a vital role in suppressing tumor cell progression. The tumor microenvironment augmented with significant levels of tumor-infiltrating lymphocytes has been widely investigated and it is suggested that tumor-infiltrating lymphocytes have shown a significant role in the prognosis of cancer patients. Compared to ordinary non-infiltrating lymphocytes, tumor-infiltrating lymphocytes (TILs) are a significant population of lymphocytes that infiltrate tumor tissue and have a higher level of specific immunological reactivity against tumor cells. They serve as an effective immunological defense against various malignancies. TILs are a diverse group of immune cells that are divided into immune subsets based on the pathological and physiological impact they have on the immune system. TILs mainly consist of B-cells, T-cells, or natural killer cells with diverse phenotypic and functional properties. TILs are known to be superior to other immune cells in that they can recognize a wide range of heterogeneous tumor antigens by producing many clones of T cell receptors (TCRs), outperforming treatments like TCR-T cell and CAR-T therapy. With the introduction of genetic engineering technologies, tumor-infiltrating lymphocytes (TILs) have become a ground-breaking therapeutic option for malignancies, but because of the hindrances opposed by the immune microenvironment and the mutation of antigens, the development of TILs as therapeutic has been hindered. By giving some insight into the many variables, such as the various barriers inhibiting its usage as a potential therapeutic agent, we have examined various aspects of TILs in this work.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India.
| |
Collapse
|
26
|
García-Ferreras R, Osuna-Pérez J, Ramírez-Santiago G, Méndez-Pérez A, Acosta-Moreno AM, Del Campo L, Gómez-Sánchez MJ, Iborra M, Herrero-Fernández B, González-Granado JM, Sánchez-Madrid F, Carrasco YR, Boya P, Martínez-Martín N, Veiga E. Bacteria-instructed B cells cross-prime naïve CD8 + T cells triggering effective cytotoxic responses. EMBO Rep 2023:e56131. [PMID: 37184882 DOI: 10.15252/embr.202256131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.
Collapse
Affiliation(s)
- Raquel García-Ferreras
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Osuna-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Guillermo Ramírez-Santiago
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Almudena Méndez-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés M Acosta-Moreno
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Lara Del Campo
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Gómez-Sánchez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Marta Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M González-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology & Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
27
|
Quesada S, Lebreton C, Caux C, Italiano A, Dubois B. [Tertiary lymphoid structures in cancer: From biology to therapeutic guides]. Bull Cancer 2023:S0007-4551(23)00205-9. [PMID: 37150731 DOI: 10.1016/j.bulcan.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Tertiary lymphoid structures (TLS) are inducible ectopic lymphoid aggregates, which form in response to various inflammatory situations, including cancer. TLS are notably composed of B lymphocytes, T lymphocytes, mature dendritic cells and other key players such as high endothelial venules. Furthermore, TLS can present different levels of organization and maturation, from simple T/B lymphocyte aggregates to authentic mature B cell follicles with germinal centers adjacent to T cell rich areas. While over the past decade, TLS may have been associated with a favorable prognosis in various cancers, the year 2022 was marked by the first prospective trial (PEMBROSARC) that reported the interest of TLS as predictive biomarkers of pembrolizumab efficacy for the treatment of soft-tissue sarcomas. All along this review, we will first address the molecular and cellular bases of TLS as well as the different strategies for identifying them in clinical practice, then discuss the prognostic/predictive impact of their presence and finally, we will elaborate on the current limitations and perspectives in translational research.
Collapse
Affiliation(s)
- Stanislas Quesada
- Institut régional du cancer de Montpellier - ICM (UNICANCER), département d'oncologie médicale, Montpellier, France.
| | - Coriolan Lebreton
- Institut Bergonié (UNICANCER), département d'oncologie médicale, Bordeaux, France; ARTiSt Lab, Inserm U1312, université de Bordeaux, Bordeaux, France
| | - Christophe Caux
- Centre Léon Bérard, CNRS 5286, Inserm 1052, université Claude Bernard Lyon 1, université de Lyon, centre de recherche en cancérologie de Lyon (CRCL), Équipe "Surveillance immunitaire des tumeurs et ciblage thérapeutique", Lyon, France; Laboratoire d'immunothérapie du cancer de Lyon (LICL), Lyon, France
| | - Antoine Italiano
- Institut Bergonié (UNICANCER), département d'oncologie médicale, Bordeaux, France; Université de Bordeaux, faculté de médecine, Bordeaux, France; DITEP, institut Gustave Roussy - IGR (UNICANCER), Villejuif, France
| | - Bertrand Dubois
- Centre Léon Bérard, CNRS 5286, Inserm 1052, université Claude Bernard Lyon 1, université de Lyon, centre de recherche en cancérologie de Lyon (CRCL), Équipe "Surveillance immunitaire des tumeurs et ciblage thérapeutique", Lyon, France; Laboratoire d'immunothérapie du cancer de Lyon (LICL), Lyon, France
| |
Collapse
|
28
|
Liu RX, Wen C, Ye W, Li Y, Chen J, Zhang Q, Li W, Liang W, Wei L, Zhang J, Chan KW, Wang X, Yang X, Liu H. Altered B cell immunoglobulin signature exhibits potential diagnostic values in human colorectal cancer. iScience 2023; 26:106140. [PMID: 36879799 PMCID: PMC9984553 DOI: 10.1016/j.isci.2023.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Antibody-secreting B cells have long been considered the central element of gut homeostasis; however, tumor-associated B cells in human colorectal cancer (CRC) have not been well characterized. Here, we show that the clonotype, phenotype, and immunoglobulin subclasses of tumor-infiltrating B cells have changed compared to adjacent normal tissue B cells. Remarkably, the tumor-associated B cell immunoglobulin signature alteration can also be detected in the plasma of patients with CRC, suggesting that a distinct B cell response was also evoked in CRC. We compared the altered plasma immunoglobulin signature with the existing method of CRC diagnosis. Our diagnostic model exhibits improved sensitivity compared to the traditional biomarkers, CEA and CA19-9. These findings disclose the altered B cell immunoglobulin signature in human CRC and highlight the potential of using the plasma immunoglobulin signature as a non-invasive method for the assessment of CRC.
Collapse
Affiliation(s)
- Rui-Xian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Chuangyu Wen
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Weibiao Ye
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Yewei Li
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junxiong Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qian Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weiqian Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wanfei Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xueqin Wang
- International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
29
|
Laumont CM, Nelson BH. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41:466-489. [PMID: 36917951 DOI: 10.1016/j.ccell.2023.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada.
| |
Collapse
|
30
|
Zhang E, Ding C, Li S, Zhou X, Aikemu B, Fan X, Sun J, Zheng M, Yang X. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomark Res 2023; 11:28. [PMID: 36890557 PMCID: PMC9997025 DOI: 10.1186/s40364-023-00460-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/28/2023] [Indexed: 03/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-1 or PD-L1 have emerged as a revolutionary treatment strategy for human cancer patients. However, as the response rate to ICI therapy varies widely among different types of tumours, we are beginning to gain insight into the mechanisms as well as biomarkers of therapeutic response and resistance. Numerous studies have highlighted the dominant role of cytotoxic T cells in determining the treatment response to ICIs. Empowered by recent technical advances, such as single-cell sequencing, tumour-infiltrating B cells have been identified as a key regulator in several solid tumours by affecting tumour progression and the response to ICIs. In the current review, we summarized recent advances regarding the role and underlying mechanisms of B cells in human cancer and therapy. Some studies have shown that B-cell abundance in cancer is positively associated with favourable clinical outcomes, while others have indicated that they are tumour-promoting, implying that the biological function of B cells is a complex landscape. The molecular mechanisms involved multiple aspects of the functions of B cells, including the activation of CD8+ T cells, the secretion of antibodies and cytokines, and the facilitation of the antigen presentation process. In addition, other crucial mechanisms, such as the functions of regulatory B cells (Bregs) and plasma cells, are discussed. Here, by summarizing the advances and dilemmas of recent studies, we depicted the current landscape of B cells in cancers and paved the way for future research in this field.
Collapse
Affiliation(s)
- Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| |
Collapse
|
31
|
Karjalainen H, Sirniö P, Tuomisto A, Mäkinen MJ, Väyrynen JP. A prognostic score based on B cell and plasma cell densities compared to T cell densities in colorectal cancer. Int J Colorectal Dis 2023; 38:47. [PMID: 36800011 PMCID: PMC9938036 DOI: 10.1007/s00384-023-04322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE The purpose of this study was to compare a B cell/plasma cell-based scoring system to T cell score and evaluate their prognostic value in colorectal cancer. METHODS We used immunohistochemistry to analyze the expression of CD20, CD138, CD3, and CD8 in 221 colorectal cancer patients. CD20+ B cell and CD138+ plasma cell densities in the tumor center and invasive margin were calculated and converted into a B cell/plasma cell score. T cell score was defined similarly, using CD3+ and CD8+ T cell densities. Their associations with tumor and patient characteristics and survival were analyzed. RESULTS Kaplan-Meier analysis showed a high B cell/plasma cell score was associated with a tendency towards longer survival (p = 0.089), but no statistically significant association was found. High T cell score associated with longer cancer-specific survival in Kaplan-Meier analysis and multivariable Cox regression analysis (p < 0.001). Additionally, high T cell score associated with lower disease stage (p < 0.001) and lesser lymphovascular invasion (p = 0.020). CONCLUSIONS High T cell score is associated with longer survival and clinicopathological factors typical to less aggressive tumors. This study did not support the additional prognostic value of B cell/plasma cell quantification.
Collapse
Affiliation(s)
- Henna Karjalainen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Päivi Sirniö
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Anne Tuomisto
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland
| | - Markus J Mäkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland.
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
32
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
33
|
Zannikou M, Duffy JT, Levine RN, Seblani M, Liu Q, Presser A, Arrieta VA, Chen CJ, Sonabend AM, Horbinski CM, Lee-Chang C, Miska J, Lesniak MS, Gottschalk S, Balyasnikova IV. IL15 modification enables CAR T cells to act as a dual targeting agent against tumor cells and myeloid-derived suppressor cells in GBM. J Immunother Cancer 2023; 11:e006239. [PMID: 36759014 PMCID: PMC9923337 DOI: 10.1136/jitc-2022-006239] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION The immunosuppressive tumor microenvironment (TME) is a major barrier to the efficacy of chimeric antigen receptor T cells (CAR-T cells) in glioblastoma (GBM). Transgenic expression of IL15 is one attractive strategy to modulate the TME. However, at present, it is unclear if IL15 could be used to directly target myeloid-derived suppressor cells (MDSCs), a major cellular component of the GBM TME. Here, we explored if MDSC express IL15Rα and the feasibility of exploiting its expression as an immunotherapeutic target. METHODS RNA-seq, RT-qPCR, and flow cytometry were used to determine IL15Rα expression in paired peripheral and tumor-infiltrating immune cells of GBM patients and two syngeneic murine GBM models. We generated murine T cells expressing IL13Rα2-CARs and secretory IL15 (CAR.IL15s) or IL13Rα2-CARs in which IL15 was fused to the CAR to serve as an IL15Rα-targeting moiety (CAR.IL15f), and characterized their effector function in vitro and in syngeneic IL13Rα2+glioma models. RESULTS IL15Rα was preferentially expressed in myeloid, B, and dendritic cells in patients' and syngeneic GBMs. In vitro, CAR.IL15s and CAR.IL15f T cells depleted MDSC and decreased their secretion of immunosuppressive molecules with CAR.IL15f T cells being more efficacious. Similarly, CAR.IL15f T cells significantly improved the survival of mice in two GBM models. TME analysis showed that treatment with CAR.IL15f T cells resulted in higher frequencies of CD8+T cells, NK, and B cells, but a decrease in CD11b+cells in tumors compared with therapy with CAR T cells. CONCLUSIONS We demonstrate that MDSC of the glioma TME express IL15Ra and that these cells can be targeted with secretory IL15 or an IL15Rα-targeting moiety incorporated into the CAR. Thus, IL15-modified CAR T cells act as a dual targeting agent against tumor cells and MDSC in GBM, warranting their future evaluation in early-phase clinical studies.
Collapse
Affiliation(s)
- Markella Zannikou
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rebecca N Levine
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maggie Seblani
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Division of Hematology, Oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qianli Liu
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aaron Presser
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Victor A Arrieta
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher J Chen
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
34
|
Wang W, Zhang Y, Liu J, Jing H, Lu K, Wang L, Zhu T, Xu Y, Bu D, Cheng M, Liu J, Shen W, Yao J, Huang S. Comparison of the prognostic value of stromal tumor-infiltrating lymphocytes and CD3 + T cells between schistosomal and non-schistosomal colorectal cancer. World J Surg Oncol 2023; 21:31. [PMID: 36726115 PMCID: PMC9890788 DOI: 10.1186/s12957-023-02911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
AIM To compare the prognostic value of tumor-infiltrating lymphocytes (TILs) and CD3 + cells and CD20 + cells between schistosomal colorectal cancer (SCRC) and non-schistosomal CRC (NSCRC). BACKGROUND Although schistosomiasis has been basically eliminated, it has not been completely extinction in China, and occasional outbreaks occur in Europe recently. The role of immune cells in the immune microenvironment of SCRC and NSCRC is remaining obscure, and the inflammation-based prognostic systems of SCRC has rarely been reported. METHODS HE-stained sections of 349 colorectal cancer (CRC) tumors, which were completely resected, were evaluated for density of TILs. Meanwhile, we evaluated CD3 + T lymphocytes and CD20 + B lymphocytes by immunochemistry. The relationship of these infiltrating immune cells with clinicopathological features, including schistosomiasis, and clinical outcomes was evaluated, and the prognostic roles of TILs in SCRC and NSCRC were explored. RESULTS Except for age (P < 0.0001), there were no significant differences between NSCRC and SCRC patients in clinicopathological features (P > 0.05). Beside, the positive expression pattern of sTILs, iTILs, CD3, and CD20 between NSCRC and SCRC patients was also similar (P > 0.05). In the whole cohort, sTILs and CD3 were defined as independent prognostic factors (P = 0.031 and P = 0.003, respectively). CD3 was an independent prognostic factor both in the NSCRC and SCRC set (P = 0.026 and P = 0.045, respectively). Higher sTILs, CD3, and CD20 were correlated with less aggressive tumor characteristics in the whole cohort and in subgroups. CONCLUSION Although CD3 was an independent prognostic factor for both NSCRC and SCRC set, there were no significant differences between SCRC and NSCRC patients in sTILs, CD3, CD20, and in other clinicopathological features.
Collapse
Affiliation(s)
- Weixia Wang
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yingyi Zhang
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jican Liu
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Hongyan Jing
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Kui Lu
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Limei Wang
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ting Zhu
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yanchao Xu
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Dacheng Bu
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Meihong Cheng
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jing Liu
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Weidong Shen
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Junxia Yao
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Sinian Huang
- grid.8547.e0000 0001 0125 2443Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
35
|
Mezheyeuski A, Backman M, Mattsson J, Martín-Bernabé A, Larsson C, Hrynchyk I, Hammarström K, Ström S, Ekström J, Mauchanski S, Khelashvili S, Lindberg A, Agnarsdóttir M, Edqvist PH, Huvila J, Segersten U, Malmström PU, Botling J, Nodin B, Hedner C, Borg D, Brändstedt J, Sartor H, Leandersson K, Glimelius B, Portyanko A, Ponten F, Jirström K, Micke P, Sjöblom T. An immune score reflecting pro- and anti-tumoural balance of tumour microenvironment has major prognostic impact and predicts immunotherapy response in solid cancers. EBioMedicine 2023; 88:104452. [PMID: 36724681 PMCID: PMC9918750 DOI: 10.1016/j.ebiom.2023.104452] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cancer immunity is based on the interaction of a multitude of cells in the spatial context of the tumour tissue. Clinically relevant immune signatures are therefore anticipated to fundamentally improve the accuracy in predicting disease progression. METHODS Through a multiplex in situ analysis we evaluated 15 immune cell classes in 1481 tumour samples. Single-cell and bulk RNAseq data sets were used for functional analysis and validation of prognostic and predictive associations. FINDINGS By combining the prognostic information of anti-tumoural CD8+ lymphocytes and tumour supportive CD68+CD163+ macrophages in colorectal cancer we generated a signature of immune activation (SIA). The prognostic impact of SIA was independent of conventional parameters and comparable with the state-of-art immune score. The SIA was also associated with patient survival in oesophageal adenocarcinoma, bladder cancer, lung adenocarcinoma and melanoma, but not in endometrial, ovarian and squamous cell lung carcinoma. We identified CD68+CD163+ macrophages as the major producers of complement C1q, which could serve as a surrogate marker of this macrophage subset. Consequently, the RNA-based version of SIA (ratio of CD8A to C1QA) was predictive for survival in independent RNAseq data sets from these six cancer types. Finally, the CD8A/C1QA mRNA ratio was also predictive for the response to checkpoint inhibitor therapy. INTERPRETATION Our findings extend current concepts to procure prognostic information from the tumour immune microenvironment and provide an immune activation signature with high clinical potential in common human cancer types. FUNDING Swedish Cancer Society, Lions Cancer Foundation, Selanders Foundation, P.O. Zetterling Foundation, U-CAN supported by SRA CancerUU, Uppsala University and Region Uppsala.
Collapse
Affiliation(s)
- Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Johanna Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Alfonso Martín-Bernabé
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska vägen, A2:07, 171 64 Solna, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Ina Hrynchyk
- City Clinical Pathologoanatomic Bureau, Minsk 220116, Republic of Belarus
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Simon Ström
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Joakim Ekström
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Siarhei Mauchanski
- N.N. Alexandrov National Cancer Centre of Belarus, Lesnoy, Minsk, 223040, Republic of Belarus
| | - Salome Khelashvili
- N.N. Alexandrov National Cancer Centre of Belarus, Lesnoy, Minsk, 223040, Republic of Belarus
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Margrét Agnarsdóttir
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Jutta Huvila
- Department of Pathology, University of Turku, 20500 Åbo, Finland
| | - Ulrika Segersten
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, 751 85 Uppsala, Sweden
| | - Per-Uno Malmström
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, 751 85 Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Barngatan 4, 221 85 Lund, Sweden
| | - Charlotta Hedner
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Barngatan 4, 221 85 Lund, Sweden
| | - David Borg
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Barngatan 4, 221 85 Lund, Sweden
| | - Jenny Brändstedt
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Barngatan 4, 221 85 Lund, Sweden
| | - Hanna Sartor
- Diagnostic Radiology, Department of Translational Medicine, Lund University, Skåne University Hospital, Carl-Bertil Laurells gata 9, 20502 Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, J Waldenströms gata 35, 214 28 Malmö, Sweden
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Anna Portyanko
- N.N. Alexandrov National Cancer Centre of Belarus, Lesnoy, Minsk, 223040, Republic of Belarus
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Barngatan 4, 221 85 Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden.
| |
Collapse
|
36
|
Lin JR, Wang S, Coy S, Chen YA, Yapp C, Tyler M, Nariya MK, Heiser CN, Lau KS, Santagata S, Sorger PK. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 2023; 186:363-381.e19. [PMID: 36669472 PMCID: PMC10019067 DOI: 10.1016/j.cell.2022.12.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Collapse
Affiliation(s)
- Jia-Ren Lin
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shu Wang
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Shannon Coy
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yu-An Chen
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Madison Tyler
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Maulik K Nariya
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cody N Heiser
- Program in Chemical & Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sandro Santagata
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Hou D, Castro B, Dapash M, Zolp A, Katz J, Arrieta V, Biermann J, Melms J, Kueckelhaus J, Benotmane J, Youngblood M, Rashidi A, Billingham L, Dmello C, Vazquez-Cervantes G, Lopez-Rosas A, Han Y, Patel R, Chia TY, Sun L, Prins R, Izar B, Heiland DH, Zhang P, Sonabend A, Miska J, Lesniak M, Zhao J, Lee-Chang C. B-cells Drive Response to PD-1 Blockade in Glioblastoma Upon Neutralization of TGFβ-mediated Immunosuppression. RESEARCH SQUARE 2023:rs.3.rs-2399170. [PMID: 36711497 PMCID: PMC9882679 DOI: 10.21203/rs.3.rs-2399170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and melanoma brain metastasis, we found that tumor-associated B-cells have high expression of checkpoint molecules, known to block B-cell-receptor downstream effector function such as plasmablast differentiation and antigen-presentation. We also identified TGFβ-1/TGFβ receptor-2 interaction as a crucial modulator of B-cell suppression. Treatment of glioblastoma patients with pembrolizumab induced expression of B-cell checkpoint molecules and TGFβ-receptor-2. Abrogation of TGFβ using different conditional knockouts expanded germinal-center-like intratumoral B-cells, enhancing immune-checkpoint-blockade efficacy. Finally, blocking αVβ8 integrin (which controls the release of active TGFβ) and PD-1 significantly increased B-cell-dependent animal survival and immunological memory. Our study highlights the importance of intratumoral B-cell immunity and a remodeled approach to boost the effects of immunotherapy against brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jason Miska
- University of Miami Miller School of Medicine
| | | | | | | |
Collapse
|
38
|
Geva R, Alon G, Nathanson M, Bar-David S, Nevo N, Aizic A, Peles-Avraham S, Lahat G, Nizri E. PD-1 Blockade Combined with Heated Intraperitoneal Chemotherapy Improves Outcome in Experimental Peritoneal Metastases from Colonic Origin in a Murine Model. Ann Surg Oncol 2023; 30:2657-2663. [PMID: 36595112 DOI: 10.1245/s10434-022-13025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Heated intraperitoneal chemotherapy (HIPEC) was shown to induce immunogenicity of peritoneal metastases from colorectal cancer (PM-CRC) by induction of immunogenic cell death. We aimed to explore whether the addition of a checkpoint inhibitor would augment the effect of HIPEC in an experimental murine model of PM-CRC. METHODS PM-CRC was established in C57BL mice by intraperitoneal inoculation of MC38 colon cancer cells. HIPEC was administered using the closed technique with mitomycin C (MMC). Clinical and immunological parameters were compared between animals treated with HIPEC alone and those treated with HIPEC + anti-programmed death receptor-1 (aPD-1). RESULTS MMC-based HIPEC increased the overall survival of animals compared with sham-treated animals (22.8; 95% confidence interval [CI] 21.14-24.53 vs. 18.9 days; 95% CI 17.6-20.3, p < 0.001). The extent of peritoneal disease as measured by the modified peritoneal carcinomatosis index was also reduced by HIPEC. This clinical benefit was accompanied by increased infiltration of CD8+, CD68+, and CD20+ cells into tumor metastases in HIPEC-treated animals compared with sham-treated animals. We identified heat shock protein (HSP) 90 as a potential immunogenic cell death protein whose expression is increased under HIPEC conditions (fold change: 2.37 ± 1.5 vs. 1 without HIPEC, p < 0.05). Combined HIPEC + PD-1 treatment ameliorated survival compared with HIPEC alone and sham treatment (24.66; 95% CI 20.13-29.2 vs. 19; 95% CI 15.85-22.14 and 14.33 days; 95% CI 9.6-19.04, respectively; p = 0.008). This clinical effect was accompanied by increased CD8+ tumor infiltration. CONCLUSIONS HIPEC induced the expression of immunogenic cell death signals that can support an anti-tumor immune response. This response can be further exploited by a checkpoint inhibitor.
Collapse
Affiliation(s)
- Ravit Geva
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Alon
- Department of Surgery A, Peritoneal Surface Malignancy and Melanoma Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Surgical Oncology, Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Maya Nathanson
- Department of Surgery, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Shoshi Bar-David
- Department of Surgery A, Peritoneal Surface Malignancy and Melanoma Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Surgical Oncology, Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nadav Nevo
- Department of Surgery A, Peritoneal Surface Malignancy and Melanoma Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Surgical Oncology, Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Asaf Aizic
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sharon Peles-Avraham
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Lahat
- Department of Surgery A, Peritoneal Surface Malignancy and Melanoma Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Laboratory of Surgical Oncology, Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Surgery A, Peritoneal Surface Malignancy and Melanoma Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Laboratory of Surgical Oncology, Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
The prognostic impact of tumor-infiltrating B lymphocytes in patients with solid malignancies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 181:103893. [PMID: 36481308 DOI: 10.1016/j.critrevonc.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study reviewed the prognostic effect of tumor-infiltrating B lymphocytes (TIBLs) on solid malignancies, to determine the potential role of TIBLs in predicting cancer patient's prognosis and their response to immunotherapy. A total of 45 original papers involving 11,099 individual patients were included in this meta-analysis covering 7 kinds of cancer. The pooled results suggested that high levels of TIBLs were correlated with favorable OS in lung, esophageal, gastric, colorectal, liver, and breast cancer; improved RFS in lung cancer; and improved DFS in gastrointestinal neoplasms. Additionally, TIBLs were significantly correlated with negative lymphatic invasion in gastric cancer, small tumor size in hepatocellular carcinoma, and negative distant metastasis in colorectal cancer. Additionally, TIBLs were reported as a discriminative feature of patients treated with immunotherapy with improved survival. We concluded that TIBLs play a favorable prognostic role among the common solid malignancie, providing theoretical evidence for further prognosis prediction for solid tumors.
Collapse
|
40
|
Erlandsson A, Lundholm M, Watz J, Bergh A, Petrova E, Alamdari F, Helleday T, Davidsson S, Andren O, Tarish F. Infiltrating immune cells in prostate cancer tissue after androgen deprivation and radiotherapy. Int J Immunopathol Pharmacol 2023; 37:3946320231158025. [PMID: 36880147 PMCID: PMC9996739 DOI: 10.1177/03946320231158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Androgen deprivation therapy (ADT) has long been a cornerstone in treatment of advanced prostate cancer (PCa), and is known to improve the results of radiotherapy (RT) for high-risk disease. The purpose of our study was to use a multiplexed immunohistochemical (mIHC) approach to investigate the infiltration of immune cells in PCa tissue after eight weeks of ADT and/or RT with 10 Gy. METHODS From a cohort of 48 patients divided into two treatment arms, we obtained biopsies before and after treatment and used a mIHC method with multispectral imaging to analyze the infiltration of immune cells in tumor stroma and tumor epithelium, focusing on areas with high infiltration. RESULTS Tumor stroma showed a significantly higher infiltration of immune cells compared to tumor epithelium. The most prominent immune cells were CD20+ B-lymphocytes, followed by CD68+ macrophages, CD8+ cytotoxic T-cells, FOXP3+ regulatory T-cells (Tregs), and T-bet+ Th1-cells. Neoadjuvant ADT followed by RT significantly increased the infiltration of all five immune cells. Numbers of Th1-cells and Tregs significantly increased after single treatment with ADT or RT. In addition, ADT alone increased the number of cytotoxic T-cells and RT increased the number of B-cells. CONCLUSIONS Neoadjuvant ADT in combination with RT results in a higher inflammatory response compared to RT or ADT alone. The mIHC method may be a useful tool for investigating infiltrating immune cells in PCa biopsies to understand how immunotherapeutic approaches can be combined with current PCa therapies.
Collapse
Affiliation(s)
- Ann Erlandsson
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden.,Department of Environmental and Life Sciences/Biology, 101086Karlstad University, Karlstad, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, 377074Umeå University, Umeå, Sweden
| | - Johan Watz
- Department of Environmental and Life Sciences/Biology, 101086Karlstad University, Karlstad, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, 377074Umeå University, Umeå, Sweden
| | - Elitsa Petrova
- Department of Clinical Pathology and Cytology, 59594Central Hospital Karlstad, Karlstad, Sweden
| | - Farhood Alamdari
- Department of Urology, 370894Västmanlands Hospital, Västerås, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Karolinska Institutet, 463758Science for Life Laboratory, Stockholm, Sweden
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden
| | - Firas Tarish
- Department of Oncology-Pathology, Karolinska Institutet, 463758Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
41
|
Xia J, Xie Z, Niu G, Lu Z, Wang Z, Xing Y, Ren J, Hu Z, Hong R, Cao Z, Han S, Chu Y, Liu R, Ke C. Single-cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer. Immunology 2023; 168:135-151. [PMID: 36082430 DOI: 10.1111/imm.13568] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022] Open
Abstract
B cells constitute a major component of infiltrating immune cells in colorectal cancer (CRC). However, the characteristics of B cells and their clinical significance remain unclear. In this study, using single-cell RNA sequencing and multicolour immunofluorescence staining experiments, we identified five distinct subtypes of B cells with their marker genes, distribution patterns and functional properties in the CRC tumour microenvironment. Meanwhile, we found a higher proportion of IgG plasma cells in tumour sites than that in adjacent normal mucosal tissues. In addition, the CXCL13-producing CD8+ T cells in the tumour tissues could promote the formation of tertiary lymphoid structure (TLS) B cells, and the CCL28-CCR10 axis is pivotal for IgG plasma cell migration from the periphery of TLSs to the tumour stroma. Finally, we identified four distinct colon immune classes (CICs: A-D) and found that CD20+ B cells within TLSs were enriched in one immune-inflamed or hot tumour group (CIC D). This B cell-rich group, which was characterized by strong antigen presentation, IgG plasma cells accumulation, microsatellite instability-high (MSI-H) and high tumour mutation burden (TMB-H), as well as immunosuppressive property in particular, might become a potential predictive biomarker for future immunotherapy. Additionally, in an immunotherapy cohort, patients with the enrichment of B cells and TLSs were demonstrated to obtain significant therapeutic advantages. Together, our findings provide the detailed landscape of infiltrating B cells and their potential clinical significance in CRC.
Collapse
Affiliation(s)
- Jie Xia
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhangjuan Xie
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhou Lu
- Liver Cancer Institute and Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yun Xing
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Ren
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - ZhiPeng Cao
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shanliang Han
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Khan S, Miles GJ, Demetriou C, Sidat Z, Foreman N, West K, Karmokar A, Howells L, Pritchard C, Thomas AL, Brown K. Ex vivo explant model of adenoma and colorectal cancer to explore mechanisms of action and patient response to cancer prevention therapies. Mutagenesis 2022; 37:227-237. [PMID: 36426854 PMCID: PMC9730503 DOI: 10.1093/mutage/geac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the UK. Novel therapeutic prevention strategies to inhibit the development and progression of CRC would be invaluable. Potential contenders include low toxicity agents such as dietary-derived agents or repurposed drugs. However, in vitro and in vivo models used in drug development often do not take into account the heterogeneity of tumours or the tumour microenvironment. This limits translation to a clinical setting. Our objectives were to develop an ex vivo method utilizing CRC and adenoma patient-derived explants (PDEs) which facilitates screening of drugs, assessment of toxicity, and efficacy. Our aims were to use a multiplexed immunofluorescence approach to demonstrate the viability of colorectal tissue PDEs, and the ability to assess immune cell composition and interactions. Using clinically achievable concentrations of curcumin, we show a correlation between curcumin-induced tumour and stromal apoptosis (P < .001) in adenomas and cancers; higher stromal content is associated with poorer outcomes. B cell (CD20+ve) and T cell (CD3+ve) density of immune cells within tumour regions in control samples correlated with curcumin-induced tumour apoptosis (P < .001 and P < .05, respectively), suggesting curcumin-induced apoptosis is potentially predicted by baseline measures of immune cells. A decrease in distance between T cells (CD3+ve) and cytokeratin+ve cells was observed, indicating movement of T cells (CD3+ve) towards the tumour margin (P < .001); this change is consistent with an immune environment associated with improved outcomes. Concurrently, an increase in distance between T cells (CD3+ve) and B cells (CD20+ve) was detected following curcumin treatment (P < .001), which may result in a less immunosuppressive tumour milieu. The colorectal tissue PDE model offers significant potential for simultaneously assessing multiple biomarkers in response to drug exposure allowing a greater understanding of mechanisms of action and efficacy in relevant target tissues, that maintain both their structural integrity and immune cell compartments.
Collapse
Affiliation(s)
- Sam Khan
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Gareth J Miles
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Constantinos Demetriou
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Zahirah Sidat
- Hope Clinical Trials Facility, Leicester Royal Infirmary, Leicester LE1 5WW, United Kingdom
| | - Nalini Foreman
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Kevin West
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Ankur Karmokar
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Lynne Howells
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Catrin Pritchard
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Anne L Thomas
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Karen Brown
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| |
Collapse
|
43
|
Tertiary Lymphoid Structures: A Potential Biomarker for Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14235968. [PMID: 36497450 PMCID: PMC9739898 DOI: 10.3390/cancers14235968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A tertiary lymphoid structure (TLS) is a special component in the immune microenvironment that is mainly composed of tumor-infiltrating lymphocytes (TILs), including T cells, B cells, DC cells, and high endothelial venules (HEVs). For cancer patients, evaluation of the immune microenvironment has a predictive effect on tumor biological behavior, treatment methods, and prognosis. As a result, TLSs have begun to attract the attention of researchers as a new potential biomarker. However, the composition and mechanisms of TLSs are still unclear, and clinical detection methods are still being explored. Although some meaningful results have been obtained in clinical trials, there is still a long way to go before such methods can be applied in clinical practice. However, we believe that with the continuous progress of basic research and clinical trials, TLS detection and related treatment can benefit more and more patients. In this review, we generalize the definition and composition of TLSs, summarize clinical trials involving TLSs according to treatment methods, and describe possible methods of inducing TLS formation.
Collapse
|
44
|
Cho H, Kim JE, Hong YS, Kim SY, Kim J, Ryu YM, Kim SY, Kim TW. Comprehensive evaluation of the tumor immune microenvironment and its dynamic changes in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy: From the phase II ADORE study. Oncoimmunology 2022; 11:2148374. [PMID: 36451674 PMCID: PMC9704411 DOI: 10.1080/2162402x.2022.2148374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A better understanding of the effects of preoperative chemoradiotherapy (CRT) on tumor immune microenvironment (TIME) is essential to improve the treatment outcomes of patients with locally advanced rectal cancer (LARC). In this context, we performed a multiplex immunofluorescence staining to evaluate the TIME in 158 patients with LARC who underwent preoperative CRT followed by surgery and adjuvant chemotherapy in the ADORE trial. We found that higher levels of T-cell subsets (CD3+, CD4+, and CD8+) and dendritic cells in the tumor compartment of pretreatment biopsy samples were associated with good response to preoperative CRT. After CRT, there was a significant increase in the densities of CD3+ T cells, CD8+ T cells, and dendritic cells, while that of CD4+FoxP3+ regulatory T cells decreased, indicating that CRT changed the TIME into a more immune-active status. However, CRT also conferred an immunosuppressive effect by polarizing the tumor-associated macrophages from pro-inflammatory M1 macrophage to immune-suppressive M2 macrophages and decreasing the density of B cells. High delta values of CD3+ T cells and PD-L1+ lymphocytes after CRT were associated with good disease-free survival (DFS), while that of CD4+FoxP3+ regulatory T cells was associated with poor DFS. These findings provide a framework for future studies incorporating strategies to modulate the TIME in patients with LARC.
Collapse
Affiliation(s)
- Hyungwoo Cho
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihun Kim
- Departments of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,CONTACT Tae Won Kim Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Korea
| |
Collapse
|
45
|
Sonzini G, Granados-Aparici S, Sanegre S, Diaz-Lagares A, Diaz-Martin J, de Andrea C, Eritja N, Bao-Caamano A, Costa-Fraga N, García-Ros D, Salguero-Aranda C, Davidson B, López-López R, Melero I, Navarro S, Ramon y Cajal S, de Alava E, Matias-Guiu X, Noguera R. Integrating digital pathology with transcriptomic and epigenomic tools for predicting metastatic uterine tumor aggressiveness. Front Cell Dev Biol 2022; 10:1052098. [PMID: 36467415 PMCID: PMC9716026 DOI: 10.3389/fcell.2022.1052098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/04/2022] [Indexed: 10/13/2024] Open
Abstract
The incidence of new cancer cases is expected to increase significantly in the future, posing a worldwide problem. In this regard, precision oncology and its diagnostic tools are essential for developing personalized cancer treatments. Digital pathology (DP) is a particularly key strategy to study the interactions of tumor cells and the tumor microenvironment (TME), which play a crucial role in tumor initiation, progression and metastasis. The purpose of this study was to integrate data on the digital patterns of reticulin fiber scaffolding and the immune cell infiltrate, transcriptomic and epigenetic profiles in aggressive uterine adenocarcinoma (uADC), uterine leiomyosarcoma (uLMS) and their respective lung metastases, with the aim of obtaining key TME biomarkers that can help improve metastatic prediction and shed light on potential therapeutic targets. Automatized algorithms were used to analyze reticulin fiber architecture and immune infiltration in colocalized regions of interest (ROIs) of 133 invasive tumor front (ITF), 89 tumor niches and 70 target tissues in a total of six paired samples of uADC and nine of uLMS. Microdissected tissue from the ITF was employed for transcriptomic and epigenetic studies in primary and metastatic tumors. Reticulin fiber scaffolding was characterized by a large and loose reticular fiber network in uADC, while dense bundles were found in uLMS. Notably, more similarities between reticulin fibers were observed in paired uLMS then paired uADCs. Transcriptomic and multiplex immunofluorescence-based immune profiling showed a higher abundance of T and B cells in primary tumor and in metastatic uADC than uLMS. Moreover, the epigenetic signature of paired samples in uADCs showed more differences than paired samples in uLMS. Some epigenetic variation was also found between the ITF of metastatic uADC and uLMS. Altogether, our data suggest a correlation between morphological and molecular changes at the ITF and the degree of aggressiveness. The use of DP tools for characterizing reticulin scaffolding and immune cell infiltration at the ITF in paired samples together with information provided by omics analyses in a large cohort will hopefully help validate novel biomarkers of tumor aggressiveness, develop new drugs and improve patient quality of life in a much more efficient way.
Collapse
Affiliation(s)
- Giorgia Sonzini
- Department of Pathology, Medical School, University of Valencia-INCLIVA, Valencia, Spain
| | - Sofia Granados-Aparici
- Department of Pathology, Medical School, University of Valencia-INCLIVA, Valencia, Spain
| | - Sabina Sanegre
- Department of Pathology, Medical School, University of Valencia-INCLIVA, Valencia, Spain
- Cancer CIBER (CIBERONC), Madrid, Spain
| | - Angel Diaz-Lagares
- Cancer CIBER (CIBERONC), Madrid, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Juan Diaz-Martin
- Cancer CIBER (CIBERONC), Madrid, Spain
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla, Seville, Spain
| | - Carlos de Andrea
- Cancer CIBER (CIBERONC), Madrid, Spain
- Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Núria Eritja
- Cancer CIBER (CIBERONC), Madrid, Spain
- Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - David García-Ros
- Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Carmen Salguero-Aranda
- Cancer CIBER (CIBERONC), Madrid, Spain
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla, Seville, Spain
| | - Ben Davidson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Rafael López-López
- Cancer CIBER (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Ignacio Melero
- Cancer CIBER (CIBERONC), Madrid, Spain
- Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia-INCLIVA, Valencia, Spain
- Cancer CIBER (CIBERONC), Madrid, Spain
| | - Santiago Ramon y Cajal
- Cancer CIBER (CIBERONC), Madrid, Spain
- Department of Pathology, Vall d'Hebron University Hospital, Autonoma University of Barcelona, Barcelona, Spain
| | - Enrique de Alava
- Cancer CIBER (CIBERONC), Madrid, Spain
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla, Seville, Spain
| | - Xavier Matias-Guiu
- Cancer CIBER (CIBERONC), Madrid, Spain
- Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - University of Barcelona, Barcelona, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia-INCLIVA, Valencia, Spain
- Cancer CIBER (CIBERONC), Madrid, Spain
| |
Collapse
|
46
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Tumor-Associated Neutrophils in Colorectal Cancer Development, Progression and Immunotherapy. Cancers (Basel) 2022; 14:cancers14194755. [PMID: 36230676 PMCID: PMC9563115 DOI: 10.3390/cancers14194755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The colorectal-cancer (CRC) incidence rate and mortality have remained high for several years. In recent years, immune-checkpoint-inhibitor (ICI) therapy has rapidly developed. However, it is only effective in a few CRC patients with microsatellite-instability-high (MSI-H) or mismatch-repair-deficient (dMMR) CRC. How to improve the efficiency of ICI therapy in CRC patients with microsatellite stability (MSS) remains a huge obstacle. Tumor-associated neutrophils (TANs), which are similar to macrophages, also have N1 and N2 phenotypes. They can be recruited and polarized through different cytokines or chemokines, and then play an antitumor or tumor-promoting role. In CRC, we find that the prognostic significance of TANs is still controversial. In this review, we describe the antitumor regulation of TANs, and their mechanism of promoting tumor progression by boosting the transformation of inflammation into tumors, facilitating tumor-cell proliferation, metastasis and angiogenesis. The targeting of TANs combined with ICIs may be a new treatment model for CRC. Relevant animal experiments have shown good responses, and clinical trials have also been carried out in succession. TANs, as “assistants” of ICI treatment, may become the key to the success of CRC immunotherapy, although no significant results have been obtained.
Collapse
|
48
|
Graham Martínez C, Barella Y, Kus Öztürk S, Ansems M, Gorris MA, van Vliet S, Marijnen CA, Nagtegaal ID. The immune microenvironment landscape shows treatment-specific differences in rectal cancer patients. Front Immunol 2022; 13:1011498. [PMID: 36238289 PMCID: PMC9552175 DOI: 10.3389/fimmu.2022.1011498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neoadjuvant therapy is the cornerstone of modern rectal cancer treatment. Insights into the biology of tumor responses are essential for the successful implementation of organ-preserving strategies, as different treatments may lead to specific tumor responses. In this study, we aim to explore treatment-specific responses of the tumor microenvironment. Patients with locally advanced adenocarcinoma of the rectum who had received neo-adjuvant chemotherapy (CT), neo-adjuvant radiochemotherapy (RCT), neo-adjuvant radiotherapy with a long-interval (LRT) or short-interval (SRT) or no neoadjuvant therapy (NT) as control were included. Multiplex-immunofluorescence was performed to determine the presence of cytotoxic T-cells (T-cyt; CD3+CD8+), regulatory T-cells (T-reg; CD3+FOXP3+), T-helper cells (T-helper; CD3+CD8-FOXP3-), B cells (CD20+), dendritic cells (CD11c+) and tumor cells (panCK+). A total of 80 rectal cancer patients were included. Treatment groups were matched for gender, tumor location, response to therapy, and TNM stage. The pattern of response (shrinkage vs. fragmentation) was, however, different between treatment groups. Our analyses reveal that RCT-treated patients exhibited lower stromal T-helper, T-reg, and T-cyt cells compared to other treatment regimens. In conclusion, we demonstrated treatment-specific differences in the immune microenvironment landscape of rectal cancer patients. Understanding the underlying mechanisms of this landscape after a specific therapy will benefit future treatment decisions.
Collapse
Affiliation(s)
- Cristina Graham Martínez
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
- *Correspondence: Cristina Graham Martínez,
| | - Yari Barella
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sonay Kus Öztürk
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Mark A.J Gorris
- Department of Tumor Immunology, Radboud University Medical Centre, Nijmegen, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Shannon van Vliet
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Corrie A.M Marijnen
- Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
49
|
Song Y, Zhang Z, Zhang B, Zhang W. CD8+ T cell-associated genes MS4A1 and TNFRSF17 are prognostic markers and inhibit the progression of colon cancer. Front Oncol 2022; 12:941208. [PMID: 36203424 PMCID: PMC9530608 DOI: 10.3389/fonc.2022.941208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundColon cancer (CC) is among the top three diseases with the highest morbidity and mortality rates worldwide. Its increasing incidence imposes a major global health burden. Immune checkpoint inhibitors, such as anti-PD-1 and anti-PD-L1, can be used for the treatment of CC; however, most patients with CC are resistant to immunotherapy. Therefore, identification of biomarkers that can predict immunotherapy sensitivity is necessary for selecting patients with CC who are eligible for immunotherapy.MethodsDifferentially expressed genes associated with the high infiltration of CD8+ T cells were identified in CC and para-cancerous samples via bioinformatic analysis. Kaplan–Meier survival analysis revealed that MS4A1 and TNFRSF17 were associated with the overall survival of patients with CC. Cellular experiments were performed for verification, and the protein expression of target genes was determined via immunohistochemical staining of CC and the adjacent healthy tissues. The proliferation, migration and invasion abilities of CC cells with high expression of target genes were determined via in vitro experiments.ResultsDifferential gene expression, weighted gene co-expression and survival analyses revealed that patients with CC with high expression of MS4A1 and TNFRSF17 had longer overall survival. The expression of these two genes was lower in CC tissues than in healthy colon tissues and was remarkably associated with the infiltration of various immune cells, including CD8+ T cells, in the tumour microenvironment (TME) of CC. Patients with CC with high expression of MS4A1 and TNFRSF17 were more sensitive to immunotherapy. Quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemical staining validated the differential expression of MS4A1 and TNFRSF17. In addition, Cell Counting Kit-8, wound healing and transwell assays revealed that the proliferation, migration and invasion abilities of CC cells were weakened after overexpression of MS4A1 and TNFRSF17.ConclusionsThe core genes MS4A1 and TNFRSF17 can be used as markers to predict the sensitivity of patients with CC to immunotherapy and have potential applications in gene therapy to inhibit CC progression.
Collapse
Affiliation(s)
- Ye Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Weihui Zhang,
| |
Collapse
|
50
|
Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, Lukas RV. Next Steps for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:4023. [PMID: 36011015 PMCID: PMC9406905 DOI: 10.3390/cancers14164023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, including vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches. In addition, we explore the factors that potentially influence response to immunotherapy, which should be considered in future research aimed at improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Toni Q. Cao
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|