1
|
Schultes FPJ, Welter L, Hufnagel D, Heghmanns M, Kasanmascheff M, Mügge C. An Active and Versatile Electron Transport System for Cytochrome P450 Monooxygenases from the Alkane Degrading Organism Acinetobacter sp. OC4. Chembiochem 2024; 25:e202400098. [PMID: 38787654 DOI: 10.1002/cbic.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Cytochrome P450 monooxygenases (CYPs) are valuable biocatalysts for the oxyfunctionalization of non-activated carbon-hydrogen bonds. Most CYPs rely on electron transport proteins as redox partners. In this study, the ferredoxin reductase (FdR) and ferredoxin (FD) for a cytochrome P450 monooxygenase from Acinetobacter sp. OC4 are investigated. Upon heterologous production of both proteins independently in Escherichia coli, spectral analysis showed their reduction capability towards reporter electron acceptors, e. g., cytochrome c. The individual proteins' specific activity towards cytochrome c reduction was 25 U mg-1. Furthermore, the possibility to enhance electron transfer by artificial fusion of the units was elucidated. FdR and FD were linked by helical linkers [EAAAK]n, flexible glycine linkers [GGGGS]n or rigid proline linkers [EPPPP]n of n=1-4 sequence repetitions. The system with a glycine linker (n=4) reached an appreciable specific activity of 19 U mg-1 towards cytochrome c. Moreover, their ability to drive different members of the CYP153A subfamily is demonstrated. By creating artificial self-sufficient P450s with FdR, FD, and a panel of four CYP153A representatives, effective hydroxylation of n-hexane in a whole-cell system was achieved. The results indicate this protein combination to constitute a functional and versatile surrogate electron transport system for this subfamily.
Collapse
Affiliation(s)
- Fabian Peter Josef Schultes
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Leon Welter
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Doreen Hufnagel
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| | - Melanie Heghmanns
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Technical University Dortmund, Faculty for Chemistry and Chemical Biology, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Carolin Mügge
- Ruhr-University Bochum, Faculty of Biology and Biotechnology, Microbial Biotechnology, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
2
|
Zhu F, Xia L, Wen J, Zhang L. Recent Advances in the Biosynthesis of Mid- and Long-Chain Dicarboxylic Acids Using Terminally Oxidizing Unconventional Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19566-19580. [PMID: 39207200 DOI: 10.1021/acs.jafc.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As high-performance monomers for the manufacture of polyamide materials, mid- and long-chain dicarboxylic acids (DCAi, i ≥ 6) have received extensive attention from researchers. Biosynthesis is gradually replacing chemical synthesis due to its outstanding advantages in the industrial production of mid- and long-chain dicarboxylic acids, which is mostly achieved by using the strong terminal oxidation ability of nonmodel microorganisms such as Candida tropicalis to oxidize hydrophobic substrates such as alkanes. Here, we first summarize the metabolic pathways of oxidative alkane conversion into dicarboxylic acid by terminally oxidizing unconventional yeasts and the corresponding metabolic engineering strategies. Then, we summarize the research progress on new dicarboxylic acid production processes. Finally, the future development directions in the biosynthesis of mid- and long-chain dicarboxylic acids are prospected from synthetic biology and bioprocess engineering, which can also provide a reference for the synthesis of other biobased chemicals and biomaterials.
Collapse
Affiliation(s)
- Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| |
Collapse
|
3
|
Tulloch LB, Tinti M, Wall RJ, Weidt SK, Corpas- Lopez V, Dey G, Smith TK, Fairlamb AH, Barrett MP, Wyllie S. Sterol 14-alpha demethylase (CYP51) activity in Leishmania donovani is likely dependent upon cytochrome P450 reductase 1. PLoS Pathog 2024; 20:e1012382. [PMID: 38991025 PMCID: PMC11265716 DOI: 10.1371/journal.ppat.1012382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Victoriano Corpas- Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gourav Dey
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
4
|
Pham NN, Chang CW, Chang YH, Tu Y, Chou JY, Wang HY, Hu YC. Rational genome and metabolic engineering of Candida viswanathii by split CRISPR to produce hundred grams of dodecanedioic acid. Metab Eng 2023; 77:76-88. [PMID: 36948241 DOI: 10.1016/j.ymben.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Candida viswanathii is a promising cell factory for producing dodecanedioic acid (DDA) and other long chain dicarboxylic acids. However, metabolic engineering of C. viswanathii is difficult partly due to the lack of synthetic biology toolkits. Here we developed CRISPR-based approaches for rational genome and metabolic engineering of C. viswanathii. We first optimized the CRISPR system and protocol to promote the homozygous gene integration efficiency to >60%. We also designed a split CRISPR system for one-step integration of multiple genes into C. viswanathii. We uncovered that co-expression of CYP52A19, CPRb and FAO2 that catalyze different steps in the biotransformation enhances DDA production and abolishes accumulation of intermediates. We also unveiled that co-expression of additional enzyme POS5 further promotes DDA production and augments cell growth. We harnessed the split CRISPR system to co-integrate these 4 genes (13.6 kb) into C. viswanathii and generated a stable strain that doubles the DDA titer (224 g/L), molar conversion (83%) and productivity (1.87 g/L/h) when compared with the parent strain. This study altogether identifies appropriate enzymes/promoters to augment dodecane conversion to DDA and implicates the potential of split CRISPR system for metabolic engineering of C. viswanathii.
Collapse
Affiliation(s)
- Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - June-Yen Chou
- Innovation and R&D Division, Chang Chun Group, Taipei, Taiwan; Dairen Chemical Corp, Taipei, Taiwan
| | | | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Nowrouzi B, Lungang L, Rios-Solis L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:197. [PMID: 36123694 PMCID: PMC9484169 DOI: 10.1186/s12934-022-01922-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. Results Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. Conclusions This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01922-1.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Liang Lungang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
6
|
Zhang B, Kang C, Davydov DR. Conformational Rearrangements in the Redox Cycling of NADPH-Cytochrome P450 Reductase from Sorghum bicolor Explored with FRET and Pressure-Perturbation Spectroscopy. BIOLOGY 2022; 11:biology11040510. [PMID: 35453709 PMCID: PMC9030436 DOI: 10.3390/biology11040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary NADPH-cytochrome P450 reductase (CPR) enzymes are known to undergo an ample conformational transition between the closed and open states in the process of their redox cycling. To explore the conformational landscape of CPR from the potential biofuel crop Sorghum bicolor (SbCPR), we incorporated a FRET donor/acceptor pair into the enzyme and employed rapid scanning stop-flow and pressure perturbation spectroscopy to characterize the equilibrium between its open and closed states at different stages of the redox cycle. Our results suggest the presence of several open conformational sub-states differing in the system volume change associated with the opening transition (ΔV0). Although the closed conformation always predominates in the conformational landscape, the population of the open conformations increases by order of magnitude upon the two-electron reduction and the formation of the disemiquinone state of the enzyme. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions. Abstract NADPH-cytochrome P450 reductase (CPR) from Sorghum bicolor (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. This transition is triggered by electron transfer between the FAD and FMN and provides access of the partner protein to the electron-donating FMN domain. To characterize the electron transfer mechanisms in the monolignol biosynthetic pathway better, we explore the conformational transitions in SbCPR with rapid scanning stop-flow and pressure-perturbation spectroscopy. We used FRET between a pair of donor and acceptor probes incorporated into the FAD and FMN domains of SbCPR, respectively, to characterize the equilibrium between the open and closed states and explore its modulation in connection with the redox state of the enzyme. We demonstrate that, although the closed conformation always predominates in the conformational landscape, the population of open state increases by order of magnitude upon the formation of the disemiquinone state. Our results are consistent with several open conformation sub-states differing in the volume change (ΔV0) of the opening transition. While the ΔV0 characteristic of the oxidized enzyme is as large as −88 mL/mol, the interaction of the enzyme with the nucleotide cofactor and the formation of the double-semiquinone state of CPR decrease this value to −34 and −18 mL/mol, respectively. This observation suggests that the interdomain electron transfer in CPR increases protein hydration, while promoting more open conformation. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions.
Collapse
|
7
|
Catucci G, Ciaramella A, Di Nardo G, Zhang C, Castrignanò S, Gilardi G. Molecular Lego of Human Cytochrome P450: The Key Role of Heme Domain Flexibility for the Activity of the Chimeric Proteins. Int J Mol Sci 2022; 23:ijms23073618. [PMID: 35408976 PMCID: PMC8998974 DOI: 10.3390/ijms23073618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as ‘molecular Lego’. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the ‘molecular Lego’ approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.
Collapse
|
8
|
Zhang B, Munske GR, Timokhin VI, Ralph J, Davydov DR, Vermerris W, Sattler SE, Kang C. Functional and structural insight into the flexibility of cytochrome P450 reductases from Sorghum bicolor and its implications for lignin composition. J Biol Chem 2022; 298:101761. [PMID: 35202651 PMCID: PMC8942828 DOI: 10.1016/j.jbc.2022.101761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3′-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3′H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide–binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Gerhard R Munske
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Vitaliy I Timokhin
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Scott E Sattler
- U.S. Department of Agriculture - Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, Lincoln, Nebraska, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
9
|
Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Appl Microbiol Biotechnol 2021; 105:5367-5381. [PMID: 34196745 DOI: 10.1007/s00253-021-11419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
With the pursuit of natural non-calorie sweeteners, steviol glycosides (SGs) have become one of the most popular natural sweeteners in the market. The SGs in Stevia are a mixture of SGs synthesized from steviol (a terpenoid). SGs are diterpenoids. Different SGs depend on the number and position of sugar groups on the core steviol backbone. This diversity comes from the processing of glycoside steviol by various glycosyltransferases. Due to the differences in glycosylation, each SG has unique sensory properties. At present, it is more complicated to extract high-quality SGs from plants, so the excavation of the metabolic pathways of engineered microorganisms to synthesize SGs has been extensively studied. Specifically, the expression of different glycosyltransferases in microbes is key to the synthesis of various SGs by engineered microorganisms. To trigger more researches on the functional characterization of the enzymes encoded by these genes, this review describes the latest research progresses of the related enzymes involved in SG biosynthesis and metabolic engineering.Key points• Outlines the research progress of key enzymes in the biosynthetic pathway of SGs• Factors affecting the catalytic capacity of stevia glucosyltransferase• Provide guidance for the efficient synthesis of SGs in microbial cell factories.
Collapse
|
10
|
Sellner M, Fischer A, Don CG, Smieško M. Conformational Landscape of Cytochrome P450 Reductase Interactions. Int J Mol Sci 2021; 22:1023. [PMID: 33498551 PMCID: PMC7864194 DOI: 10.3390/ijms22031023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
Oxidative reactions catalyzed by Cytochrome P450 enzymes (CYPs), which constitute the most relevant group of drug-metabolizing enzymes, are enabled by their redox partner Cytochrome P450 reductase (CPR). Both proteins are anchored to the membrane of the endoplasmic reticulum and the CPR undergoes a conformational change in order to interact with the respective CYP and transfer electrons. Here, we conducted over 22 microseconds of molecular dynamics (MD) simulations in combination with protein-protein docking to investigate the conformational changes necessary for the formation of the CPR-CYP complex. While some structural features of the CPR and the CPR-CYP2D6 complex that we highlighted confirmed previous observations, our simulations revealed additional mechanisms for the conformational transition of the CPR. Unbiased simulations exposed a movement of the whole protein relative to the membrane, potentially to facilitate interactions with its diverse set of redox partners. Further, we present a structural mechanism for the susceptibility of the CPR to different redox states based on the flip of a glycine residue disrupting the local interaction network that maintains inter-domain proximity. Simulations of the CPR-CYP2D6 complex pointed toward an additional interaction surface of the FAD domain and the proximal side of CYP2D6. Altogether, this study provides novel structural insight into the mechanism of CPR-CYP interactions and underlying conformational changes, improving our understanding of this complex machinery Cytochrome P450 reductase; CPR; conformational; dynamicsrelevant for drug metabolism.
Collapse
Affiliation(s)
| | | | | | - Martin Smieško
- Computational Pharmacy, Departement of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (M.S.); (A.F.); (C.G.D.)
| |
Collapse
|
11
|
Zhang N, Yang Z, Liang W, Liu M. Global Proteomic Analysis of Lysine Crotonylation in the Plant Pathogen Botrytis cinerea. Front Microbiol 2020; 11:564350. [PMID: 33193151 PMCID: PMC7644960 DOI: 10.3389/fmicb.2020.564350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Lysine crotonylation (Kcr), a recently discovered post-translational modification, plays a key role in the regulation of diverse cellular processes. Botrytis cinerea is a destructive necrotrophic fungal pathogen distributed worldwide with broad ranging hosts. However, the functions of Kcr are unknown in B. cinerea or any other plant fungal pathogens. Here, we comprehensively evaluated the crotonylation proteome of B. cinerea and identified 3967 Kcr sites in 1041 proteins, which contained 9 types of modification motifs. Our results show that although the crotonylation was largely conserved, different organisms contained distinct crotonylated proteins with unique functions. Bioinformatics analysis demonstrated that the majority of crotonylated proteins were distributed in cytoplasm (35%), mitochondria (26%), and nucleus (22%). The identified proteins were found to be involved in various metabolic and cellular processes, such as cytoplasmic translation and structural constituent of ribosome. Particularly, 26 crotonylated proteins participated in the pathogenicity of B. cinerea, suggesting a significant role for Kcr in this process. Protein interaction network analysis demonstrated that many protein interactions are regulated by crotonylation. Furthermore, our results show that different nutritional conditions had a significant influence on the Kcr levels of B. cinerea. These data represent the first report of the crotonylome of B. cinerea and provide a good foundation for further explorations of the role of Kcr in plant fungal pathogens.
Collapse
Affiliation(s)
- Ning Zhang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhenzhou Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|