1
|
Ileke KD, Adeniran CO. Chemical composition and insecticidal efficacy of two animals' horn and hoof crude extracts against lesser grains borer, Rhyzopertha dominica (F.) [Coleoptera: Bostrichidae]. Heliyon 2025; 11:e41778. [PMID: 39882483 PMCID: PMC11774779 DOI: 10.1016/j.heliyon.2025.e41778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
This research evaluated the profiling of bioactive compounds and insecticidal activities of the crude extracts of horns and hoofs of cow and goat against Rhyzoperta dominica on wheat grains. Different concentrations (0.1, 0.2, 0.3, 0.4 and 0.5 ml) of the crude extracts were applied per 20 g of wheat grains to assess the toxicity effect on adult mortality and adult emergence. The different concentrations of the two extracts evoked mortality of R. dominica. However, the most effective concentration was 0.5 ml of the crude extract of goat horn causing 100 % mortality after 5days of application, while extract of cow hoof at the same concentration resulted in 86.67 % mortality of R. dominica after 5 days of exposure. The required lethal concentration needed to control 50 % population of R. dominica by extract of cow horn and goat hoof after 24 h exposure was 0.57 ml and 0.48 ml, respectively. Proximate compositions of the animal hoofs and horns showed that the samples contained fat, crude protein and ash. The number of bioactive compounds detected in cow hoof was 44 and goat horn was 21. The study has shown the insecticidal potential of the understudied animal materials. The use of extracts from the horns of goats should be looked into and explored as an eco-friendly measure in the control of R. dominica.
Collapse
Affiliation(s)
- Kayode David Ileke
- Department of Biology, School Life of Sciences, Federal University of Technology, P. M. B. 704, Akure, Ondo State, Nigeria
| | - Catherine Olukemi Adeniran
- Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology,P. M. B. 704, Akure, Ondo State, Nigeria
| |
Collapse
|
2
|
Fatima A, Aslam S, Janiad S, Faisal S, Irfan A, Iqbal J, Shazly GA, Zafar AM, Shaheen A, Noreen S, Mateev E, Bin Jardan YA. Synthesis and biological evaluation of rationally designed pyrazoles as insecticidal agents. Mol Divers 2025:10.1007/s11030-024-11094-2. [PMID: 39849238 DOI: 10.1007/s11030-024-11094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC. HCl achieving yields of 59% to 94%. The synthesized compounds were assessed for their chemotherapeutic efficacy against locusts and termites by calculating LC50 values, thereby determining their potential as anti-termite and anti-locust agents. Among the eighteen synthesized pyrazole compounds, the Schiff base pyrazole molecules 3f (LC50 = 0.001 μg/mL) and 3d (LC50 = 0.006 μg/mL) demonstrated excellent anti-termite activity compared to the reference drug fipronil (LC50 = 0.038 μg/mL). Pyrazole derivative 6 h with LC50 = 47.68 μg/mL exhibited superior anti-locust activity than the reference drug fipronil (LC50 = 63.09 μg/mL). Additionally, compound 3b, containing NO2 functionality at the meta position, exhibited notable and significant anti-locust activity with an LC50 values of 100.00 μg/mL. However, the highest mortality was caused by the glycine conjugate of fipronil 6 h of the 2nd series with an LC50 value of 47.68 μg/mL, which also proved to be a potent anti-locust agent. This study explores the efficacy of biologically active pyrazole structures as potential insecticidal agents through a combination of virtual molecular docking analysis and biological experimental investigations. The results demonstrate a strong correlation between the computational predictions and experimental outcomes, suggesting that the pyrazole derivatives exhibit significant insecticidal properties. The findings highlight the potential of these compounds in the development of innovative insecticides, paving the way for future research in pest control strategies.
Collapse
Affiliation(s)
- Aroog Fatima
- Department of Chemistry, The Women University Multan, Multan, 2023, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 2023, Pakistan.
| | - Sara Janiad
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, 2023, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Javed Iqbal
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, 64200, Pakistan
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ansa Madeeha Zafar
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Aqeela Shaheen
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Taghizadeh MS, Niazi A, Retzl B, Gruber CW. Unveiling the insecticidal efficiency of Viola ignobilis against Macrosiphum rosae and Agonoscena pistaciae: From chemical composition to cytotoxicity analysis. Heliyon 2024; 10:e40636. [PMID: 39654760 PMCID: PMC11626740 DOI: 10.1016/j.heliyon.2024.e40636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Currently, there is a growing preference for eco-friendly bioinsecticides over chemical insecticides due to their safety. Plant extracts have emerged as a promising solution for this purpose. Therefore, this study aimed to evaluate the insecticidal effectiveness of Viola ignobilis extract against two key pests of rose aphid (Macrosiphum rosae) and pistachio psylla (Agonoscena pistaciae). Significant compounds were identified using GC-MS and MALDI-TOF MS. Three bioassay methods were employed to assess the extract's insecticidal potential, and its cytotoxicity was tested on HEK293 cells. Results revealed that the highest insecticidal efficacy occurred at a concentration of 20 mg/mL after a 72 h exposure. The contact bioassay method displayed greater efficiency against M. rosae than A. pistaciae, while the oral bioassay demonstrated the highest efficiency against A. pistaciae. The extract also acted as a feeding deterrent, with indices of 77.47 ± 7.98 % and 87.98 ± 3.84 % for A. pistaciae and M. rosae, respectively. Furthermore, the insecticidal potency of the extract was assessed, resulting in LC50 values of 3.58 mg/mL and 6.77 mg/mL for the contact bioassay, and 0.87 mg/mL and 0.61 mg/mL for the oral bioassay against M. rosae and A. pistaciae, respectively. Importantly, the extract showed no detrimental cytotoxic effects on the HEK293 cell line within the tested concentration range, indicating its potential safety as a bioinsecticide. Overall, these findings highlight the potential of V. ignobilis extract as a promising candidate for further development in pest control.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
4
|
Zhi Y, Dai C, Fang X, Xiao X, Lu H, Chen F, Chen R, Ma W, Deng Z, Lu L, Liu T. Gene-Directed In Vitro Mining Uncovers the Insect-Repellent Constituent from Mugwort ( Artemisia argyi). J Am Chem Soc 2024; 146:30883-30892. [PMID: 39485326 DOI: 10.1021/jacs.4c08857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plants contain a vast array of natural products yet to be discovered, particularly those minor bioactive constituents. Identification of these constituents requires a significant amount of plant material, presenting considerable technical challenges. Mugwort (Artemisia argyi) is a widely recognized insect repellent herb, particularly renowned for its extensive usage during the Dragon Boat Festival in China, but the specific constituent responsible for its repellent activity remains unknown. Here, we employed a gene-directed in vitro mining approach to characterize mugwort terpene synthases (TPSs) systematically in a yeast expression system. Based on the establishment of "Terpene synthase-standard library", we have successfully identified 54 terpene products, including a novel compound designated as cyclosantalol. Through activity screening, we have identified that (+)-intermedeol, which presents in trace amount in plants, exhibits significant repellent activity against mosquitoes and ticks. After establishing its safety and efficacy, we then achieved its biosynthetic production in a yeast chassis, with an initial yield of 2.34 g/L. The methodology employed in this study not only identified a highly effective, safe, and commercially viable insect repellent derived from mugwort but also holds promise for uncovering and producing other valuable plant natural products in future research endeavors.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Wuhan Hesheng Technology Co., Ltd., Wuhan 430074, China
| | - Chong Dai
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xueting Fang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaochun Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fangfang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Rong Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Weihua Ma
- Hubei Hongshan Laboratory, Wuhan 430071, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixin Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Hongshan Laboratory, Wuhan 430071, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Wuhan Hesheng Technology Co., Ltd., Wuhan 430074, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
5
|
Saleem U, Asrar M, Jabeen F, Makhdoom Hussain S, Hussain D. Determination of insecticidal potential of selected plant extracts against fall armyworm ( Spodoptera frugiperda) larvae. Heliyon 2024; 10:e39593. [PMID: 39498049 PMCID: PMC11532869 DOI: 10.1016/j.heliyon.2024.e39593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a devastating pest that attacks a wide range of crops, including sugarcane, rice, and maize. The purpose of this study is to evaluate the toxicity potential of native plant extracts (Azadirachta indica, Eucalyptus globulus, Parthenium hysterophorus, Cannabis sativa, Citrullus colocynthis, Nicotiana tabacum) against S. frugiperda. Four different concentrations (50, 100, 200, and 400 ppm) of the ethanolic plant extracts was evaluated against S. frugiperda third-instar larvae to determine their median lethal concentration (LC50). After 72 h of exposure, the LC50 values of A. indica, E. globulus, P. hysterophorus, C. sativa, C. colocynthis, N. tabacum, and positive control (Spinetoram) were 186.104, 518.438, 320.027, 334.259, 252.651, 720.980 and 189.369 ppm respectively. The maximum percent mortality was caused by the highest concentration (400 ppm) of A. indica (64 ± 0.18), E. globulus (48 ± 0.22), P. hysterophorus (56 ± 0.18), C. sativa (56 ± 0.18), C. colocynthis (60 ± 0.00), and N. tabacum (40 ± 0.28), after 72 h of treatment while Spinetoram induced 100 ± 0.00 percent mortality of S. frugiperda and only 4 ± 0.18 percent mortality was recorded in a control group. Results showed that all plant extracts were found to be effective against S. frugiperda. The compounds from the two most effective ethanolic plant extracts were identified by using Gas chromatography-mass spectrometry analysis (GC-MS). The key compounds identified in neem leaf extract and kortuma fruit extract are predominantly biologically active molecules. Many of them were volatile compounds that belonged to different chemical categories, such as fatty acids, hydrocarbons, esters, terpenoids, phenolic compounds, and amines. Terpenes exhibited a wide range of different biological activities, such as serving as insecticides and antifeedant. The presence of various functional groups in the plant extract was determined by conducting a Fourier Transform Infrared Spectroscopy (FTIR). Farmers should employ these kinds of environmental friendly insecticides to lessen the impact of fall armyworm because these products are cheaper to use and better for the economy and the environment.
Collapse
Affiliation(s)
- Usama Saleem
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| |
Collapse
|
6
|
Forouhar Z, Abbasipour H, Karimi J. Effects of Melia azedarach extract on demographic and biochemical characteristics of the cabbage aphid, Brevicoryne brassicae. Toxicon 2024; 247:107851. [PMID: 38969015 DOI: 10.1016/j.toxicon.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The cabbage aphid, Brevicoryne brassicae L. (Aphididae: Hemiptera) a destructive aphid, is native to Europe and is now found in many other parts of the world. Currently, one of the main problems of Iranian cabbage growers is the significant damage caused by this pest. Also, due to the fresh eating of cabbage, it is necessary to use non-chemical methods to control the pests. Our bioassay tests showed that Melia azedarach L. (Meliaceae) fruit extract showed high toxicity to cabbage aphid. In this study, sublethal effects of M. azedarach extract was investigated on some demographic and biochemical properties of B. brassicae. The results showed that the sublethal concentrations (LC10 and LC20) and LC50 values were 0.68, 1.16, and 3.42 μg/ml, respectively. Compared to the control, sublethal concentrations of insecticide significantly decreased the gross reproductive rate (GRR), net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), intrinsic rate of birth (b), intrinsic rate of death (d), weekly growth rate (rw), reproductive rate and adult longevity of the pest. Meanwhile, the mean generation time (T) and population doubling time (DT) of this aphid increased significantly. Additionally, sublethal doses of insecticide reduced the energy reserves of the pest such as carbohydrate, protein and lipid content compared to the controls. In addition to modify the pH, this extract also changed the distribution and concentration of sodium and potassium ions in haemolymph. Therefore, sublethal concentrations of M. Azedarach fruit extract can be used in the management program of B. brassicae.
Collapse
Affiliation(s)
- Zahra Forouhar
- Department of Plant Protection, Faculty of Agriculture, Shahed University, Tehran, Iran.
| | - Habib Abbasipour
- Department of Plant Protection, Faculty of Agriculture, Shahed University, Tehran, Iran.
| | - Jaber Karimi
- Department of Plant Protection, Faculty of Agriculture, Shahed University, Tehran, Iran.
| |
Collapse
|
7
|
Ali AAB, Montasser AA, Mohamed SNA. Histopathological effects of the fruit extract of Citrullus colocynthis on the ovary of the tick Hyalomma dromedarii. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:275-295. [PMID: 38347254 DOI: 10.1007/s10493-023-00895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024]
Abstract
Hyalomma dromedarii is the predominant tick species parasitizing camels in Egypt which leads to mortalities in young animals that result in economic losses. It can transmit a lot of pathogens to animals and humans, such as the Crimean-Congo hemorrhagic fever virus, the Dhori virus, Kadam virus, Theileria annulata and spotted fever rickettsia. The continuous use of chemical acaricides has negative impact on the environment and almost led to acaricidal resistance, and hence the plant extracts represent alternative methods for controlling ticks. The present study was carried out to assess the histopathological effects on the ovary of fed female Hyalomma dromedarii following immersion in the ethanolic extract of fruits of Citrullus colocynthis (100 mg/mL). Light, scanning and transmission electron microscopy observations provided evidence that Citrullus colocynthis caused extensive damage to oocytes. Destruction of the internal organelles of oocytes, along with delay and/or inhibition of vitellogenesis were demonstrated. This is the first histological study that points to damage in H. dromedarii ovaries following treatment with the ethanolic extract of fruits of C. colocynthis. The data presented suggest that the plant extract affects the ovary either directly by entering the oocytes and/or indirectly by damaging the gut cells and digestion of blood that interfere with the development of oocytes, so it can be used as a promising agent for tick control.
Collapse
Affiliation(s)
- Asmaa Ali Baioumy Ali
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Ashraf Ahmed Montasser
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | | |
Collapse
|
8
|
Li D, Lu S, Jian Y, Cheng S, Zhao Q, Yuan H, Wang N, Liu Y, Zhang S, Zhang L, Wang R, Jian F. Acaricidal and repellent activities of ethanol extracts of nine chinese medicinal herbs against Rhipicephalus microplus (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:69-87. [PMID: 37522955 PMCID: PMC10462553 DOI: 10.1007/s10493-023-00813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023]
Abstract
Rhipicephalus microplus is a major threat to the cattle industry worldwide. The intensive use of acaricides and repellents has resulted in drug resistance. Hence, effective and eco-friendly pest control alternatives are urgently needed, especially from natural plant resources. In this study, the acaricidal and repellent activities of nine herbs against the larvae and eggs of R. microplus were evaluated. The results showed that ethanol extracts of star anise (Illicium verum), chaulmoogra (Hydnocarpus anthelmintica), motherwart (Leonurus artemisia), mandarin orange peel (citri reticulatae pericarpium, i.e., peel of Citrus reticulata fruit), and stemona (Stemona sessilifolia) had good contact acaricidal activities of 100, 98, 94, 88 and 86%, respectively, whereas star anise and clove (Syzygium aromaticum) had good fumigant acaricidal activities of 98 and 96%, respectively. The hatching inhibition rate of star anise against R. microplus eggs was 100%. All nine herbs had good real-time repellent rates, but only castor bean and star anise had repellent effects after 48 h (81.3 and 79.6%, respectively). This is the first report of the acaricidal and repellent activities of these medicinal herbs against R. microplus. Ethanol extracts of these herbs might be considered as potential alternatives to chemical acaricides for control of R. microplus.
Collapse
Affiliation(s)
- Donglinag Li
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Shunli Lu
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Yichen Jian
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Shuqi Cheng
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Qianming Zhao
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, 843300, China
| | - Huizhen Yuan
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Nanhao Wang
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Yufeng Liu
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong, District, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
9
|
Cheng X, Qin M, Chen R, Jia Y, Zhu Q, Chen G, Wang A, Ling B, Rong W. Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules 2023; 28:6221. [PMID: 37687049 PMCID: PMC10488440 DOI: 10.3390/molecules28176221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) is widely distributed in the desert areas of the world. The fruit bodies of C. colocynthis are recognized for their wide range of nutraceutical potential, as well as medicinal and pharmaceutical uses. The plant has been reported for various uses, such as asthma, bronchitis, cancer, colic, common cold, cough, diabetes, dysentery, and jaundice. The fruit has been extensively studied for its biological activities, which include insecticide, antitumor, and antidiabetic effects. Numerous bioactive compounds have been reported in its fruit bodies, such as essential oils, fatty acids, glycosides, alkaloids, and flavonoids. Of these, flavonoids or caffeic acid derivatives are the constituents associated with the inhibition of fungal or bacterial growth, whereas eudesmane sesquiterpenes or sesquiterpene lactones are most active against insects, mites, and nematodes. In this review, the scientific evidence for the biological activity of C. colocynthis against insecticide, cytotoxic, and antidiabetic effects is summarized.
Collapse
Affiliation(s)
- Xiaotian Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University & The First People’s Hospital of Yancheng, Yancheng 224001, China
| | - Minni Qin
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Rongrong Chen
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Yunxia Jia
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Guangtong Chen
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| | - Bai Ling
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University & The First People’s Hospital of Yancheng, Yancheng 224001, China
| | - Weiwei Rong
- School of Pharmacy, Nantong University, Nantong 226001, China; (X.C.)
| |
Collapse
|
10
|
Liu C, Liu Z, Zhang Y, Song X, Huang W, Zhang R. Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana. INSECTS 2023; 14:insects14050470. [PMID: 37233098 DOI: 10.3390/insects14050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Plant essential oils, as biological pesticides, have been reviewed from several perspectives and play a key role in chemical ecology. However, plant essential oils show rapid degradation and vulnerability during actual usage. In this study, we conducted a detailed analysis of the compounds present in the essential oils of A. stechmanniana using gas chromatography-mass spectrometry (GC-MS). The results showed seventeen terpenoid compounds in the A. stechmanniana oil, with four major terpenoid compounds, i.e., eucalyptol (15.84%), (+)-2-Bornanone (16.92%), 1-(1,2,3-Trimethyl-cyclopent-2-enyl)-ethanone (25.63%), and (-)-Spathulenol (16.38%), in addition to an amount of the other terpenoid compounds (25.26%). Indoor toxicity assays were used to evaluate the insecticidal activity of Artemisia stechmanniana essential oil against Aphis gossypii, Frankliniella occidentalis, and Bactericera gobica in Lycium barbarum. The LC50/LD50 values of A. stechmanniana essential oils against A. gossypii, F. occidentalis, and B. gobica were 5.39 mg/mL, 0.34 mg/L, and 1.40 μg/insect, respectively, all of which were highly efficient compared with azadirachtin essential oil. Interestingly, A. stechmanniana essential oil embedded in β-cyclodextrin (microencapsule) remained for only 21 days, whereas pure essential oils remained for only 5 days. A field efficacy assay with the A. stechmanniana microencapsule (AM) and doses at three concentrations was conducted in Lycium barbarum, revealing that the insecticidal activities of AM showed high efficiency, maintained a significant control efficacy at all concentrations tested, and remained for 21 days. Our study identified terpenoid compounds from untapped Artemisia plants and designed a novel method against pests using a new biopesticide on L. barbarum.
Collapse
Affiliation(s)
- Chang Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhilong Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yihan Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuan Song
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenguang Huang
- Grassland Workstation of Ningxia, Yinchuan 750002, China
| | - Rong Zhang
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
11
|
Liu P, Zhong L, Xiao J, Hu Y, Liu T, Ren Z, Wang Y, Zheng K. Ethanol extract from Artemisia argyi leaves inhibits HSV-1 infection by destroying the viral envelope. Virol J 2023; 20:8. [PMID: 36647143 PMCID: PMC9841929 DOI: 10.1186/s12985-023-01969-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widely disseminated virus that establishes latency in the brain and causes occasional but fatal herpes simplex encephalitis. Currently, acyclovir (ACV) is the main clinical drug used in the treatment of HSV-1 infection, and the failure of therapy in immunocompromised patients caused by ACV-resistant HSV-1 strains necessitates the requirement to develop novel anti-HSV-1 drugs. Artemisia argyi, a Traditional Chinese Medicine, has been historically used to treat inflammation, bacterial infection, and cancer. In this study, we demonstrated the antiviral effect and mechanism of ethanol extract of A. argyi leaves (hereafter referred to as 'AEE'). We showed that AEE at 10 μg/ml exhibits potent antiviral effects on both normal and ACV-resistant HSV-1 strains. AEE also inhibited the infection of HSV-2, rotavirus, and influenza virus. Transmission electron microscopy revealed that AEE destroys the membrane integrity of HSV-1 viral particles, resulting in impaired viral attachment and penetration. Furthermore, mass spectrometry assay identified 12 major components of AEE, among which two new flavones, deoxysappanone B 7,3'-dimethyl ether, and 3,7-dihydroxy-3',4'-dimethoxyflavone, exhibited the highest binding affinity to HSV-1 glycoprotein gB at the surface site critical for gB-gH-gL interaction and gB-mediated membrane fusion, suggesting their involvement in inactivating virions. Therefore, A. argyi is an important source of antiviral drugs, and the AEE may be a potential novel antiviral agent against HSV-1 infection.
Collapse
Affiliation(s)
- Ping Liu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Lishan Zhong
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Ji Xiao
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Yuze Hu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Tao Liu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Zhe Ren
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Yifei Wang
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
13
|
Ona G, Balant M, Bouso JC, Gras A, Vallès J, Vitales D, Garnatje T. The Use of Cannabis sativa L. for Pest Control: From the Ethnobotanical Knowledge to a Systematic Review of Experimental Studies. Cannabis Cannabinoid Res 2022; 7:365-387. [PMID: 34612729 PMCID: PMC9418361 DOI: 10.1089/can.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Despite the benefits that synthetic pesticides have provided in terms of pest and disease control, they cause serious long-term consequences for both the environment and living organisms. Interest in eco-friendly products has subsequently increased in recent years. Methods: This article briefly analyzes the available ethnobotanical evidence regarding the use of Cannabis sativa as a pesticide and offers a systematic review of experimental studies. Results: Our findings indicate that both ethnobotanical and experimental procedures support the use of C. sativa as a pesticide, as remarkable toxicity has been observed against pest organisms. The results included in the systematic review of experimental studies (n=30) show a high degree of heterogeneity, but certain conclusions can be extracted to guide further research. For instance, promising pesticide properties were reported for most of the groups of species tested, especially Arachnida and Insecta; the efficacy of C. sativa as a pesticide can be derived from a wide variety of compounds that it contains and possible synergistic effects; it is crucial to standardize the phytochemical profile of C. sativa plants used as well as to obtain easily reproducible results; appropriate extraction methods should be explored; and upper inflorescences of the plant may be preferred for the production of the essential oil, but further studies should explore better other parts of the plant. Conclusion: In the coming years, as new findings are produced, the promising potential of C. sativa as a pesticide will be elucidated, and reviews such as the present one constitute useful basic tools to make these processes easier.
Collapse
Affiliation(s)
- Genís Ona
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Catalonia, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Catalonia, Spain
| | - Manica Balant
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Catalonia, Spain
- Laboratori de Botànica (UB)—Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Catalonia, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Airy Gras
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Catalonia, Spain
| | - Joan Vallès
- Laboratori de Botànica (UB)—Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Catalonia, Spain
- Laboratori de Botànica (UB)—Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Jian Y, Li S, Li D, Ning C, Zhang S, Jian F, Si H. Evaluation of the in vitro acaricidal activity of ethanol extracts of seven Chinese medicinal herbs on Ornithonyssus sylviarum (Acari: Macronyssidae). EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:67-79. [PMID: 35737253 PMCID: PMC9287229 DOI: 10.1007/s10493-022-00716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Ornithonyssus sylviarum (Acari: Macronyssidae) is a common ectoparasite that feeds on the blood of poultry. Following infestation, this mite will cause symptoms such as weight loss, anemia, and decreased egg production. To explore green and safe drugs for the prevention and treatment of O. sylviarum, this study evaluated the effects of ethanol extracts of seven Chinese medicinal herbs-Leonurus artemisia (motherwort), Illicium verum (star anise), Cinnamomum cassia (cinnamon), Hibiscus syriacus, Artemisia argyi (Chinese mugwort), Taraxacum sp. (dandelion), and Syzygium aromaticum (clove)-on O. sylviarum at different life stages. The results showed that different methods of administration affected the acaricidal efficacy of these plant extracts on O. sylviarum. After 6 h of administration with the fumigation method, the acaricidal efficacy of S. aromaticum on adults, nymphs and larvae of O. sylviarum reached 100%. 30 min after administration with the infiltration method, S. aromaticum, H. syriacus and L. artemisia showed acaricidal effects on adults and nymphs of O. sylviarum reaching 100%. In another experiment evaluating the inhibition of egg hatching of O. sylviarum with alcohol extracts of these seven herbs, at 48 h after treatment, A. argyi and C. cassia showed inhibition rates of 19.4%. The results of this study indicate that S. aromaticum induced mortality at all stages of O. sylviarum, whereas A. argyi was found to be the most effective at inhibiting the mite's egg hatching among the seven herbs. These herbs can therefore be used as potential substitutes for chemical pesticides to prevent and control O. sylviarum. These results provide practical knowledge for the control of O. sylviarum.
Collapse
Affiliation(s)
- Yichen Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- College of Animal Science and Technology, GuangXi University, Nanning, 530000, China
| | - Shijie Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dongliang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Changshen Ning
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Hongbin Si
- College of Animal Science and Technology, GuangXi University, Nanning, 530000, China.
| |
Collapse
|
15
|
Sharma AK, Tiwari SS, Kumar S, Rawat AKS, Srivastava S, Ray D, Singh NK, Rawat SS, Sangwan AK, Ghosh S. Establishment of antitick efficacy of a phytoformulation prepared from Annona squamosa leaf extracts for the management of acaricide resistant tick infestations on cattle. Acta Trop 2022; 233:106463. [PMID: 35460645 DOI: 10.1016/j.actatropica.2022.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022]
Abstract
To combat the problem of acaricide resistance in ticks, efforts have been made to develop eco-friendly herbal acaricides which are safe for animal use with no possibilities of evoking environment and residual toxicity. In the present study, the acaricidal properties of a commonly available plant, Annona squamosa have been established to develop a novel antitick phytoformulation using leaf extract, suitable solvents and emulsifier for managing resistant tick infestations in animals. The quality control of the safe and stable phytoformulation using Rutin as a major constituent was maintained by HPTLC profiling. Several phytformulations (A-E) were prepared and formulation 'C' is identifried as the most effective showing 52.5-75% antitick activity against in vitro treated resistant strains of R. microplus (IVRI-IV and V) with 33.8-40.2% inhibition of oviposition while 65-85% mortality against multiacaricide resistant field populations. The phytoformulation provided 70.4% efficacy after first larval challenge in experimentally infested animals. The field efficacy of the formulation in different multilocational field trials was 68.53-77.8%. The detail antitick efficacy of the formulation along with safety and stability are explained as a component of antitck technology to manage resistant tick problem in livestock.
Collapse
Affiliation(s)
- Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 U.P. India
| | - Shashi Shankar Tiwari
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001 U.P., India
| | - Sachin Kumar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 U.P. India
| | - Ajay Kumar Singh Rawat
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001 U.P., India
| | - Sharad Srivastava
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001 U.P., India
| | - Debdatta Ray
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 U.P. India
| | - Nirbhay Kumar Singh
- Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary & Animal Sciences University, Ludhiana 141004 Punjab India
| | - Sumer Singh Rawat
- Department of Animals Husbandry, Govt. of Rajasthan, Chittorgarh 312001 Rajasthan, India
| | - Arun Kumar Sangwan
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004 Haryana, India
| | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 U.P. India.
| |
Collapse
|
16
|
Dolma SK, Singh PP, Reddy SGE. Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica sebifera (L.) Small against Aphis craccivora Koch. Molecules 2022; 27:molecules27061967. [PMID: 35335330 PMCID: PMC8954943 DOI: 10.3390/molecules27061967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aphid, Aphis craccivora Koch (Hemiptera: Aphididae), is a major sap-sucking insect pest of leguminous crops and also transmits plant viruses, leading to economic yield loss. Indiscriminate and repeated use of insecticides for control of aphid leads to the development of resistance, and is harmful to the environment, non-target organisms, etc. Plant-based extracts/seed oils (SO) are the best alternatives to insecticides. Insecticidal activities of Triadica sebifera have not been reported against A. craccivora and other insect pests to date. In the current study, the main objective was to study the insecticidal activities of leaf/bark extracts/fractions, seed oil, isolated compounds, and their combinations against A. craccivora. Results showed that, among the extracts, ethanolic bark extract 80% (LC50 = 5115.98 mg/L) was more effective against A. craccivora. Among fractions, the n-hexane fraction of leaves (LC50 = 425.73 mg/L) and the ethyl acetate fraction of bark (LC50 = 813.45 mg/L) were promising. Among compounds, gallic acid was the most effective (LC50 = 1303.68 mg/L) compared to shikimic acid and quercetin. SO (LC50 = 850.94 mg/L) was superior compared to extracts/fractions/compounds. All the combinations showed toxicity and synergistic activity. Leaf/bark extracts and SO significantly inhibited the AChE and GST activity in A. craccivora. Based on field bio-efficacy, the leaf extract/SO or their combinations can be recommended for the control of aphids.
Collapse
Affiliation(s)
- Shudh Kirti Dolma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prithvi Pal Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Sajjalavarahalli G. Eswara Reddy
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or
| |
Collapse
|
17
|
Chauhan N, Kashyap U, Dolma SK, Reddy SGE. Chemical Composition, Insecticidal, Persistence and Detoxification Enzyme Inhibition Activities of Essential Oil of Artemisia maritima against the Pulse Beetle. Molecules 2022; 27:1547. [PMID: 35268647 PMCID: PMC8911588 DOI: 10.3390/molecules27051547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Pulse beetle is the major pests of pulses that cause significant loss to grains leads to unfit for consumption and marketing. Indiscriminate use of synthetic pesticides for the control of pulse beetle (Callosobruchus chinensis and Callosobruchus maculatus) led to insect resistance, pesticide residues on grains which affect consumer's health and environment. Essential oils (EOs) are good alternatives to synthetics due to their safety to the environment and consumers' health. The main objective of the present study was to explore the chemical composition, fumigant, repellency, ovipositional deterrence, persistence, and detoxification enzyme inhibition of Artemisia maritima essential oil against pulse beetle. Results showed that primary components of the EO were 1,8-Cineole and bornyl acetate. EO showed promising fumigant toxicity to C. chinensis and C. maculatus (LC50 = 1.17 and 0.56 mg/L, respectively) after 48 h. In the repellent assay, EO at 8 mg/L showed 92-96% repellence after 1 h. In ovipositional deterrence assay, EO showed more ovipositional deterrence against C. chinensis (OD50 = 3.30 mg/L) than C. maculatus (OD50 = 4.01 mg/L). Higher concentrations of oil (8 and 6 mg/L) in C. maculatus showed significant inhibition of the glutathione-S-transferase enzyme (7.14 and 5.61 n mol/min/mL, respectively).
Collapse
Affiliation(s)
- Nandita Chauhan
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
| | - Urvashi Kashyap
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shudh Kirti Dolma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sajjalavarahalli G. Eswara Reddy
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Aćimović M, Jeremić JS, Todosijević M, Kiprovski B, Vidović S, Vladić J, Pezo L. Comparative Study of the Essential Oil and Hydrosol Composition of Sweet Wormwood (Artemisia annua L.) from Serbia. Chem Biodivers 2022; 19:e202100954. [PMID: 35170197 DOI: 10.1002/cbdv.202100954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/27/2022] [Indexed: 01/13/2023]
Abstract
The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and β-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture.
Collapse
Affiliation(s)
- Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Jovana Stanković Jeremić
- University of Belgrade, Institute of Chemistry Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia
| | - Marina Todosijević
- University of Belgrade, Faculty of Chemistry, Studentski trg 16, 11000, Belgrade, Serbia
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Senka Vidović
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena Vladić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Lato Pezo
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12, 11000, Belgrade, Serbia
| |
Collapse
|
19
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:619-645. [DOI: 10.1093/jpp/rgab175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022]
|
20
|
Differential expression of gluconeogenic enzymes in early- and late-stage diabetes: the effect of Citrullus colocynthis (L.) Schrad. Seed extract on hyperglycemia and hyperlipidemia in Wistar-Albino rats model. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The medicinal plant Citrullus colocynthis (L.) Schrad. (C. colocynthis) may benefit patients at different phases of diabetes by attuning to contrasting situations. Our primary objective was to find the mechanism(s) behind the antidiabetic/anti-hyperlipidemic effects of C.colocynthis seed aqueous extract (CCAE) in two different stages of type 2 diabetes (T2D) in rats.
Methods
Fasting blood sugar (FBS) levels, body weights, and the degree of impaired glucose tolerance (IGT) were measured in healthy nondiabetic control rats (Con), as well as rats with early and late stages of T2D, denoted as ET2D and LT2D, respectively. CCAE was intraperitoneally (IP) injected for 28 days. In the end, the hepatic mRNA expression levels of the following genes were determined by RT-PCR: glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), insulin-dependent sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), peroxisome proliferator-activated receptor alpha (PPARα), and carnitine palmitoyltransferase I (CPT1). The liver was examined by hematoxylin and eosin (H&E) and Oil-Red O staining. CCAE was partially analyzed by HPLC-DAD.
Results
ET2D and LT2D were characterized by differentially elevated FBS, deteriorated bodyweight, and significant IGT compared to Con. Hepatosteatoses of varying morphologies and higher hepatic expression of G6Pase than PRPCK in ET2D versus the opposite in LT2D further confirmed the divergent nature of metabolic aberrations. At the end of 28 days, the high levels of FBS, alkaline phosphatase (ALP), triglyceride (TG), urea, hepatic protein carbonyl content (PCC), and alanine and aspartate aminotransferases (AST and ALT, respectively) persisted in untreated LT2D. CCAE ameliorated oxidative stress and upregulated PPARα expression in diabetic groups and Con; it downregulated CPT1 expression in the LT2D group. CCAE’s ability to lower FBS and serum and hepatic TG in both ET2D and LT2D indicated its ability to act via different mechanisms. Ferulic acid (Fer A) and rutin hydrate (RH) were detected in CCAE.
Conclusion
CCAE lowered the FBS in ET2D via inhibiting the hepatic G6Pase expression (glycogenolysis). In LT2D, CCAE abated sugar levels by diverting PEPCK activity, preferably towards glyceroneogenesis than gluconeogenesis. The preserved triglyceride/fatty acid (TG/FA) cycle, the upregulated PPARα, and the downregulated CPT1 gene expressions reduced serum and hepatic TG.
Collapse
|
21
|
Deng X, Shi B, Ye Z, Huang M, Chen R, Cai Y, Kuang Z, Sun X, Bian G, Deng Z, Liu T. Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (-)-eremophilene overproduction in engineered yeast. Metab Eng 2021; 69:122-133. [PMID: 34781019 DOI: 10.1016/j.ymben.2021.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
Plant-derived natural active products have attracted increasing attention for use in flavors and perfumes. These compounds also have applications in insect pest control because of their environment-friendly properties. Holy basil (Ocimum sanctum), a famous herb used in Ayurveda in India, is a natural source of medical healing agents and insecticidal repellents. Despite the available genomic sequences and genome-wide bioinformatic analysis of terpene synthase genes, the functionality of the sesquiterpene genes involved in the unique fragrance and insecticidal activities of Holy basil are largely unknown. In this study, we systematically screened the sesquiterpenoid biosynthesis genes in this plant using a precursor-providing yeast system. The enzymes that synthesize β-caryophyllene and its close isomer α-humulene were successfully identified. The enzymatic product of OsaTPS07 was characterized by in vivo mining, in vitro reaction, and NMR detection. This product was revealed as (-)-eremophilene. We created a mutant yeast strain that can achieve a high-yield titer by adjusting the gene copy number and FPP precursor enhancement. An optimized two-stage fed-batch fermentation method achieved high biosynthetic capacity, with a titer of 34.6 g/L cyclic sesquiterpene bioproduction in a 15-L bioreactor. Further insect-repelling assays demonstrated that (-)-eremophilene repelled the insect pest, fall leafworm, suggesting the potential of (-)-eremophilene as an alternative to synthetic chemicals for agricultural pest control. This study highlights the potential of our microbial platform for the bulk mining of plant-derived ingredients and provides an impressive cornerstone for their industrial utilization.
Collapse
Affiliation(s)
- Xiaomin Deng
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China; Wuhan Institute of Biotechnology, Wuhan, 470074, Hubei, People's Republic of China
| | - Bin Shi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China; Wuhan Drug Solubilization and Delivery Technology Research Center, Wuhan Vocational College of Software and Engineering, Wuhan, 430205, Hubei, People's Republic of China
| | - Ziling Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Man Huang
- J1 Biotech Co., Ltd., Wuhan 430075, Hubei, People's Republic of China
| | - Rong Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Yousheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Zhaolin Kuang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Xiang Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China; Wuhan Institute of Biotechnology, Wuhan, 470074, Hubei, People's Republic of China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, People's Republic of China; Wuhan Institute of Biotechnology, Wuhan, 470074, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Farag SM, Essa EE, Alharbi SA, Alfarraj S, Abu El-Hassan G. Agro-waste derived compounds (flax and black seed peels): Toxicological effect against the West Nile virus vector, Culex pipiens L. with special reference to GC-MS analysis. Saudi J Biol Sci 2021; 28:5261-5267. [PMID: 34466104 PMCID: PMC8381002 DOI: 10.1016/j.sjbs.2021.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
The development of different approaches to use agricultural residues as a source of high value-added products, become a must, especially after the problems emerged due to their accumulation. This contribution demonstrates the potential of agricultural residues, Linuim usitatissium (flax seed) and Nigella sativa (black seed) peels, as raw materials for the production of bioactive products, botanical insecticides, against Cx. pipiens, with deep analysis to their chemical constituents by gas chromatography-mass spectrometry, the larvicidal efficacies of the three crude extracts (methylene chloride, petroleum ether and methanol 70%) from the two plant waste peels were evaluated for the first time against the late third instar larvae of Cx. pipiens. Results indicated different lethal doses in larvae depending on the efficacy of organic solvent used. For both compounds methanol 70% extracts produced the highest dry yield. The most efficient solvent is petroleum ether in case of both flax and Black seed peels. Petroleum ether extract exhibited the highest toxicity against Cx. pipiens with an LC50 of 69.6383 ppm. The same results for black seed indicated that petroleum ether was the most efficient against Cx. pipiens with an LC50 of 40.7748 ppm. The study revealed for the first time the type of phytochemical constituents presents in peels of flax and black seeds using GC-MS analysis which revealed twenty-eight constituents among extracts of flax and black seed peels ranging from to 58.8711% to 99.99% of the total extracts. GC-MS profiling showed that a five constituents, 9-2-Methyl-Z, Z-3, 13 octadecadienol (terpenoid), 9,17-Octadecadienal, (Z)-, Nonanoic acid, 9-oxo-, methyl ester, 9,12-Octadecadienoic acid Z,Z and Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- have insecticidal activity beside many other biological activities as recorded from a variety of botanical extracts. While the constituents like Hexadecanoic acid, methyl ester and cis-9-Hexadecenal, both of them are larvicidal, cis-Vaccenic acid and 9-Oxononanoic acid showing only an insecticidal activity beside Undecanoic acid the mosquito repellent. The other six constituents Linoelaidic acid, Oleic Acid, Z-2-Octadecen-1-ol, 1-Methoxy-3-hydroxymethylheptane, Cis-11,14-Eicosadieonic acid-methyl ester and Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- are constituents of other plant extracts which showed as a whole an insecticidal activity.
Collapse
Affiliation(s)
- Shaimaa M. Farag
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo, Egypt
| | - Eman E. Essa
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo, Egypt
| | - Sulaiman A. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - G.M.M. Abu El-Hassan
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo, Egypt
| |
Collapse
|
23
|
Ivănescu B, Burlec AF, Crivoi F, Roșu C, Corciovă A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules 2021; 26:3061. [PMID: 34065533 PMCID: PMC8160890 DOI: 10.3390/molecules26103061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
The Artemisia genus includes a large number of species with worldwide distribution and diverse chemical composition. The secondary metabolites of Artemisia species have numerous applications in the health, cosmetics, and food sectors. Moreover, many compounds of this genus are known for their antimicrobial, insecticidal, parasiticidal, and phytotoxic properties, which recommend them as possible biological control agents against plant pests. This paper aims to evaluate the latest available information related to the pesticidal properties of Artemisia compounds and extracts and their potential use in crop protection. Another aspect discussed in this review is the use of nanotechnology as a valuable trend for obtaining pesticides. Nanoparticles, nanoemulsions, and nanocapsules represent a more efficient method of biopesticide delivery with increased stability and potency, reduced toxicity, and extended duration of action. Given the negative impact of synthetic pesticides on human health and on the environment, Artemisia-derived biopesticides and their nanoformulations emerge as promising ecofriendly alternatives to pest management.
Collapse
Affiliation(s)
- Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Crăița Roșu
- Department of Experimental and Applied Biology, Institute of Biological Research Iasi, 47 Lascăr Catargi Street, 700107 Iasi, Romania;
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| |
Collapse
|
24
|
Aqueous and Ethanolic Plant Extracts as Bio-Insecticides-Establishing a Bridge between Raw Scientific Data and Practical Reality. PLANTS 2021; 10:plants10050920. [PMID: 34064367 PMCID: PMC8147817 DOI: 10.3390/plants10050920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Global demand for food production is causing pressure to produce faster and bigger crop yields, leading to a rampant use of synthetical pesticides. To combat the nefarious consequences of its uses, a search for effective alternatives began in the last decades and is currently ongoing. Nature is seen as the main source of answers to crop protection problems, supported by several examples of plants/extracts used for this purpose in traditional agriculture. The literature reviewed allowed the identification of 95 plants whose extracts exhibit insecticide activity and can be used as bio-pesticides contributing to sustainable agriculture. The option for ethanol and/or water extracts is more environmentally friendly and resorts to easily accessible solvents, which can be reproduced by farmers themselves. This enables a bridge to be established between raw scientific data and a more practical reality. Azadirachta indica, Capsicum annuum, Nicotiana tabacum and Tagetes erecta are the most researched plants and have the potential to be viable options in the pest management approach. Azadirachta indica showed the most promising results and Brevicoryne brassicae was the most targeted pest species, being tested against the aqueous and/or ethanolic extracts of 23 different plants. Maceration using dried material (usually leaves) is the extraction method preferred by the majority of authors.
Collapse
|
25
|
Mondédji AD, Silvie P, Nyamador WS, Martin P, Agboyi LK, Amévoin K, Ketoh GK, Glitho IA. Cabbage Production in West Africa and IPM with a Focus on Plant-Based Extracts and a Complementary Worldwide Vision. PLANTS (BASEL, SWITZERLAND) 2021; 10:529. [PMID: 33799877 PMCID: PMC7998567 DOI: 10.3390/plants10030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
In urban and peri-urban areas in West Africa, the cabbage Brassica oleracea L. (Brassicaceae) is protected using repeated high doses of synthetic insecticides. After a brief description of available IPM components, this paper presents a literature review focused on the botanical extracts that have been experimented with at the laboratory or in the field in West Africa against major cabbage pests. The literature reviewed mentions 19 plant species from 12 families used for cabbage protection in the subregion. The species most used are Azadirachta indica, Capsicum frutescens, Ocimum gratissimum and Ricinus communis. An overview of the world literature showed that a total of 13 plant species belonging to 8 families used to control cabbage pests are reported from the rest of Africa, and 140 plant species belonging to 43 families from the rest of the world. The most commonly used and tested plant species against insect pests in the three geographical areas considered is A. indica.
Collapse
Affiliation(s)
- Abla Déla Mondédji
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
- CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; (P.S.); (P.M.)
| | - Pierre Silvie
- CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; (P.S.); (P.M.)
- Institut de Recherche Pour le Développement, UMR IPME, 34AA001 Montpellier, France
- AIDA, CIRAD, Montpellier University, CEDEX 05, 34398 Montpellier, France
| | - Wolali Seth Nyamador
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| | - Pierre Martin
- CIRAD, Agroécologie et Intensification Durable Des Cultures Annuelles (AIDA), 34398 Montpellier, France; (P.S.); (P.M.)
- AIDA, CIRAD, Montpellier University, CEDEX 05, 34398 Montpellier, France
| | - Lakpo Koku Agboyi
- CABI West Africa, PO Box CT 8630, Cantonments, Accra GA 0376800, Ghana;
| | - Komina Amévoin
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| | - Guillaume Koffivi Ketoh
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| | - Isabelle Adolé Glitho
- Laboratoire d’Ecologie et d’Ecotoxicologie, Faculté des Sciences, Université de Lomé, Lomé 1 01B.P. 1515, Togo; (W.S.N.); (K.A.); (G.K.K.); (I.A.G.)
| |
Collapse
|
26
|
Baranitharan M, Alarifi S, Alkahtani S, Ali D, Elumalai K, Pandiyan J, Krishnappa K, Rajeswary M, Govindarajan M. Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: An efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi J Biol Sci 2021; 28:148-156. [PMID: 33424291 PMCID: PMC7785431 DOI: 10.1016/j.sjbs.2020.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Globally, the farmers are struggling with polyphagous insect pest, and it is the number one enemy of agri-products, which made plenty of economic deterioration. Spodoptera litura and Helicoverpa armigera are the agronomically important polyphagous pests. Most of the farmers are predominately dependent on synthetic chemical insecticides (SCIs) for battle against polyphagous pets. As a result, the broad spectrum usage of SCIs led a lot of detrimental outcomes only inconsequently the researchers search the former-friendly phyto-pesticidal approach. In the present investigation, leaf ethanol extract (LEE) and silver nanoparticles (AgNPs) of A. catechu (Ac) were subjected to various spectral (TLC, CC, UV, FTIR, XRD and SEM) analyses. Larval and pupal toxicity of A. catechu Ac-LEE and Ac-AgNPs were tested against selected polyphagous insect pests. The significant larval and pupal toxicity were experimentally proven, and the highest toxicity noticed in AgNPs than Ac-LEE. The larval and pupal toxicity of Ac-AgNPs tested against S. litura and H. armigera LC50/LC90 values were 71.04/ 74.78, 85.33/ 88.91 µg/mL and 92.57/ 96.21 and 124.43/ 129.95 µg/mL respectively. Ac-AgNPs could be potential phyto-pesticidal effectiveness against selected polyphagous insect pests. In globally, it is significantly sufficient ratification giving towards the prevention of many unauthorized SCPs.
Collapse
Affiliation(s)
- Mathalaimuthu Baranitharan
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Jeganathan Pandiyan
- Department of Zoology and Wildlife Biology A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, Tamil Nadu, India
| | - Kaliyamoorthy Krishnappa
- Department of Zoology and Wildlife Biology A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, Tamil Nadu, India
| | - Mohan Rajeswary
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
27
|
Iqbal MF, Feng YL. Species diversity of different insect families trapped under beer-based volatile fermentation. BMC Chem 2020; 14:48. [PMID: 32789300 PMCID: PMC7416404 DOI: 10.1186/s13065-020-00699-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/21/2020] [Indexed: 01/23/2023] Open
Abstract
Background Insect species composition is an important phenomenon playing a significant role in the ecosystem. Chemical control of insects and pests releases toxic materials to the environment. These chemicals are dangerous to human populations. In this situation, there is a dire need to develop strategies to overcome the haphazard use of chemicals. The present investigations were carried out to explore the diversity of different insects attracted through bait fermentation. Methods The traditionally prepared bait fermentation was used to attract different insect populations both in treated (traps installed near field crops) and control traps (traps installed near invasive weed). Abundance, evenness, richness and equitability of these trapped insects were calculated. The chemical screening of bait fermentation was done using Gas Chromatography and Mass Spectrometry (GC-MS). Results Significant difference (P < 0.05) in abundance of insect populations was found in treated compared to control trap. The insects of Noctuidae family recorded high Shannon- Wiener's diversity index followed by Muscidae. Margalef's index was recorded maximum in the treated traps (10.77) compared to those of control (8.09). The yielded index indicated that maximum richness was found in bait treated compared to control. The Shannon's equitability's values were investigated higher in Noctuidae (1.48), while, maximum evenness was observed in Muscidae (2.05) in treated trap. This fermentation was dried at room temperature and ground at 0.1 micron size. Our result showed significant (P < 0.05) effects of extraction times, with high yield in first extraction by polar solvents. Co-efficient of determination (R 2 = 0.87) recorded similar results in both extractions, however high root mean square error (0.97) recorded with bait + distilled water solvent showed linear arc line gave better performance. Finally, this fermentation was analyzed using GC-MS and recorded volatile compounds that were involved in the attraction of major and minor pests. Conclusion Fermentation can help for the attraction of different families of insects of various crops. The field experiment suggested that this fermentation is economical, easily installed and consumed only 0.64 RMB/0.09 USD, including infrastructures per location. Bait fermentation is safe biochemical constituents and did not spread any toxic chemicals to the environment.
Collapse
Affiliation(s)
- Mazher Farid Iqbal
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning Province People's Republic of China.,Adaptive Research, Gujranwala, 52330 Punjab Province Pakistan
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 Liaoning Province People's Republic of China
| |
Collapse
|
28
|
Ahmed M, Qin P, Ji M, An R, Guo H, Shafi J. Spinasterol, 22,23-Dihydrospinasterol and Fernenol from Citrullus Colocynthis L. with Aphicidal Activity against Cabbage Aphid Brevicoryne Brassicae L. Molecules 2020; 25:molecules25092184. [PMID: 32392823 PMCID: PMC7249147 DOI: 10.3390/molecules25092184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Brevicoryne brassicae is a problematic pest in cabbage and other field crops. Synthetic pesticides are used to control this pest, but they are injurious for human health and the environment. The present study aimed to purify and identify the active compounds from Citrullus colocynthis leaves with an appraisal of their efficacy against B. brassicae. Separation and purification were performed via different chromatographic techniques. Molecular analysis and chemical structures were recognized by mass spectrum (MS) and nuclear magnetic resonance (NMR), respectively. Moreover, in vitro and in vivo aphicidal activity was assessed using various concentrations, i.e., 6.25, 12.5, 25 and 50 µg/mL at 12, 24, 48 and 72 h exposure. The outcome shows that mass spectrum analyses of the purified compounds suggested the molecular formulae are C30H50O and C29H50O, C29H48O. The compounds were characterized as fernenol and a mixture of spinasterol, 22,23-dihydrospinasterol by 1H-NMR and 13C-NMR spectrum analysis. The toxicity results showed that the mixture of spinasterol and 22,23-dihydrospinasterol showed LC50 values of 32.36, 44.49 and 37.50 µg/mL by contact, residual and greenhouse assay at 72 h exposure, respectively. In contrast, fernenol recorded LC50 values as 47.99, 57.46 and 58.67 µg/mL, respectively. On the other hand, spinasterol, 22,23-dihydrospinasterol showed the highest mortality, i.e., 66.67%, 53.33% and 60% while, 30%, 23.33% and 25% mortality was recorded by fernenol after 72 h at 50 µg/mL by contact, residual and greenhouse assay, respectively. This study suggests that spinasterol, 22,23-dihydrospinasterol are more effective against B. brassicae which may be introduced as an effective and suitable substitute of synthetic chemical pesticides.
Collapse
Affiliation(s)
- Maqsood Ahmed
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (R.A.); (H.G.)
- Department of Agriculture, Pest Warning & Quality Control of Pesticides, Gujrat 50700, Pakistan
| | - Peiwen Qin
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (R.A.); (H.G.)
- Correspondence: (P.Q.); (M.J.); Tel.: +86-24-8848-7148 (M.J.); Fax: +86-24-8834-2315 (M.J.)
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (R.A.); (H.G.)
- Correspondence: (P.Q.); (M.J.); Tel.: +86-24-8848-7148 (M.J.); Fax: +86-24-8834-2315 (M.J.)
| | - Ran An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (R.A.); (H.G.)
| | - Hongxia Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (R.A.); (H.G.)
| | - Jamil Shafi
- Department of Plant Pathology, University of Agriculture Faisalabad, Sub-Campus Depalpur, Okara, Faisalabad 56300, Pakistan;
| |
Collapse
|