1
|
Zhao H, Gong H, Zhu P, Sun C, Sun W, Zhou Y, Wu X, Qiu A, Wen X, Zhang J, Luo D, Liu Q, Li Y. Deciphering the cellular and molecular landscapes of Wnt/β-catenin signaling in mouse embryonic kidney development. Comput Struct Biotechnol J 2024; 23:3368-3378. [PMID: 39310276 PMCID: PMC11416353 DOI: 10.1016/j.csbj.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background The Wnt/β-catenin signaling pathway is critical in kidney development, yet its specific effects on gene expression in different embryonic kidney cell types are not fully understood. Methods Wnt/β-catenin signaling was activated in mouse E12.5 kidneys in vitro using CHIR99021, with RNA sequencing performed afterward, and the results were compared to DMSO controls (dataset GSE131240). Differential gene expression in ureteric buds and cap mesenchyme following pathway activation (datasets GSE20325 and GSE39583) was analyzed. Single-cell RNA-seq data from the Mouse Cell Atlas was used to link differentially expressed genes (DEGs) with kidney cell types. β-catenin ChIP-seq data (GSE39837) identified direct transcriptional targets. Results Activation of Wnt/β-catenin signaling led to 917 significant DEGs, including the upregulation of Notum and Apcdd1 and the downregulation of Crym and Six2. These DEGs were involved in kidney development and immune response. Single-cell analysis identified 787 DEGs across nineteen cell subtypes, with Macrophage_Apoe high cells showing the most pronounced enrichment of Wnt/β-catenin-activated genes. Gene expression profiles in ureteric buds and cap mesenchyme differed significantly upon β-catenin manipulation, with cap mesenchyme showing a unique set of DEGs. Analysis of β-catenin ChIP-seq data revealed 221 potential direct targets, including Dpp6 and Fgf12. Conclusion This study maps the complex gene expression driven by Wnt/β-catenin signaling in embryonic kidney cell types. The identified DEGs and β-catenin targets elucidate the molecular details of kidney development and the pathway's role in immune processes, providing a foundation for further research into Wnt/β-catenin signaling in kidney development and disease.
Collapse
Affiliation(s)
- Hui Zhao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangzhou 510005, Guangdong Province, China
| | - Hui Gong
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chang Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wuping Sun
- Department of Pain Medicine, Shenzhen Municipal Key Laboratory for Pain Medicine, The affiliated Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518060, China
| | - Yujin Zhou
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Xiaoxiao Wu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Jinde Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| |
Collapse
|
2
|
Cruzado JM, Sola A, Pato ML, Manonelles A, Varela C, Setién FE, Quero-Dotor C, Heald JS, Piñeyro D, Amaya-Garrido A, Doladé N, Codina S, Couceiro C, Bolaños N, Gomà M, Vigués F, Merkel A, Romagnani P, Berdasco M. Severe ischemia-reperfusion injury induces epigenetic inactivation of LHX1 in kidney progenitor cells after kidney transplantation. Am J Transplant 2024:S1600-6135(24)00687-7. [PMID: 39521058 DOI: 10.1016/j.ajt.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Severe ischemia-reperfusion injury (IRI) causes acute and chronic kidney allograft damage. As therapeutic interventions to reduce damage are limited yet, research on how to promote kidney repair has gained significant interest. To address this question, we performed genome-wide transcriptome and epigenome profiling in progenitor cells isolated from the urine of deceased (severe IRI) and living (mild IRI) donor human kidney transplants and identified LIM homeobox-1 (LHX1) as an epigenetically regulated gene whose expression depends on the IRI severity. Using a mouse model of IRI, we observed a relationship between IRI severity, LHX1 promoter hypermethylation, and LHX1 gene expression. Using functional studies, we confirmed that LHX1 expression is involved in the proliferation of epithelial tubular cells and podocyte differentiation from kidney progenitor cells. Our results provide evidence that severe IRI may reduce intrinsic mechanisms of kidney repair through epigenetic signaling.
Collapse
Affiliation(s)
- Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain.
| | - Anna Sola
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Miguel L Pato
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Anna Manonelles
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Varela
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Fernando E Setién
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - James S Heald
- Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - David Piñeyro
- Cancer Epigenetics Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Ana Amaya-Garrido
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Núria Doladé
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Sergi Codina
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Carlos Couceiro
- Department of Nephrology, Hospital Universitari Bellvitge, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Núria Bolaños
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Montserrat Gomà
- Department of Pathology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Francesc Vigués
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Department of Urology, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Epigenetic Therapies Group, Genesis of Cancer Program, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
3
|
Thimm C, Adjaye J. Untangling the Uncertain Role of Overactivation of the Renin-Angiotensin-Aldosterone System with the Aging Process Based on Sodium Wasting Human Models. Int J Mol Sci 2024; 25:9332. [PMID: 39273282 PMCID: PMC11394713 DOI: 10.3390/ijms25179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin-angiotensin-aldosterone system (RAAS) includes several systematic processes for the regulation of blood pressure, which is caused by an imbalance of electrolytes. During activation of the RAAS, binding of angiotensin II (ANG II) to angiotensin II type 1 receptor (AGTR1) activates intracellular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate superoxide anions and promote uncoupling of endothelial nitric oxide (NO) synthase, which in turn decreases NO availability and increases ROS production. Promoting oxidative stress and DNA damage mediated by ANG II is tightly regulated. Individuals with sodium deficiency-associated diseases such as Gitelman syndrome (GS) and Bartter syndrome (BS) show downregulation of inflammation-related processes and have reduced oxidative stress and ROS. Additionally, the histone deacetylase sirtuin-1 (SIRT1) has a significant impact on the aging process, with reduced activity with age. However, GS/BS patients generally sustain higher levels of sirtuin-1 (SIRT1) activity than age-matched healthy individuals. SIRT1 expression in GS/BS patients tends to be higher than in healthy age-matched individuals; therefore, it can be assumed that there will be a trend towards healthy aging in these patients. In this review, we highlight the importance of the hallmarks of aging, inflammation, and the RAAS system in GS/BS patients and how this might impact healthy aging. We further propose future research directions for studying the etiology of GS/BS at the molecular level using patient-derived renal stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
4
|
Melica ME, Cialdai F, La Regina G, Risaliti C, Dafichi T, Peired AJ, Romagnani P, Monici M, Lasagni L. Modeled microgravity unravels the roles of mechanical forces in renal progenitor cell physiology. Stem Cell Res Ther 2024; 15:20. [PMID: 38233961 PMCID: PMC10795253 DOI: 10.1186/s13287-024-03633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The glomerulus is a highly complex system, composed of different interdependent cell types that are subjected to various mechanical stimuli. These stimuli regulate multiple cellular functions, and changes in these functions may contribute to tissue damage and disease progression. To date, our understanding of the mechanobiology of glomerular cells is limited, with most research focused on the adaptive response of podocytes. However, it is crucial to recognize the interdependence between podocytes and parietal epithelial cells, in particular with the progenitor subset, as it plays a critical role in various manifestations of glomerular diseases. This highlights the necessity to implement the analysis of the effects of mechanical stress on renal progenitor cells. METHODS Microgravity, modeled by Rotary Cell Culture System, has been employed as a system to investigate how renal progenitor cells respond to alterations in the mechanical cues within their microenvironment. Changes in cell phenotype, cytoskeleton organization, cell proliferation, cell adhesion and cell capacity for differentiation into podocytes were analyzed. RESULTS In modeled microgravity conditions, renal progenitor cells showed altered cytoskeleton and focal adhesion organization associated with a reduction in cell proliferation, cell adhesion and spreading capacity. Moreover, mechanical forces appeared to be essential for renal progenitor differentiation into podocytes. Indeed, when renal progenitors were exposed to a differentiative agent in modeled microgravity conditions, it impaired the acquisition of a complex podocyte-like F-actin cytoskeleton and the expression of specific podocyte markers, such as nephrin and nestin. Importantly, the stabilization of the cytoskeleton with a calcineurin inhibitor, cyclosporine A, rescued the differentiation of renal progenitor cells into podocytes in modeled microgravity conditions. CONCLUSIONS Alterations in the organization of the renal progenitor cytoskeleton due to unloading conditions negatively affect the regenerative capacity of these cells. These findings strengthen the concept that changes in mechanical cues can initiate a pathophysiological process in the glomerulus, not only altering podocyte actin cytoskeleton, but also extending the detrimental effect to the renal progenitor population. This underscores the significance of the cytoskeleton as a druggable target for kidney diseases.
Collapse
Affiliation(s)
- Maria Elena Melica
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Gilda La Regina
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Tommaso Dafichi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Anna Julie Peired
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| |
Collapse
|
5
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Huang RL, Li Q, Ma JX, Atala A, Zhang Y. Body fluid-derived stem cells - an untapped stem cell source in genitourinary regeneration. Nat Rev Urol 2023; 20:739-761. [PMID: 37414959 PMCID: PMC11639537 DOI: 10.1038/s41585-023-00787-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Habib R, Fahim S, Wahid M, Ainuddin J. Optimisation of a Method for the Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Toward Renal Epithelial-like Cells. Altern Lab Anim 2023; 51:363-375. [PMID: 37831588 DOI: 10.1177/02611929231207774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) can differentiate into multiple cell lineages, but few methods have been developed to generate kidney lineage cells. Due to their human origin, pluripotent nature and immunomodulatory properties, these stem cells are attractive candidates for clinical applications such as the repair or regeneration of damaged organs. This study evaluated the renal differentiation potential of hucMSCs, when exposed for 10 days to optimised concentrations of retinoic acid, activin-A and bone morphogenetic protein-7 (BMP-7) in various combinations, with and without the priming of the cells with a Wnt signalling pathway activator (CHIR99021). The hucMSCs were isolated and characterised according to surface marker expression (CD73, CD90, CD44, CD146 and CD8) and tri-lineage differentiation potential. The expression of key marker genes (OSR1, TBXT, HOXA13, SIX2, PAX2, KRT18 and ZO1) was examined by qRT-PCR. Specific marker protein expression (E-cadherin, cytokeratin-8 and cytokeratin-19) was analysed by immunocytochemistry. CHIR99021-primed cells treated with the retinoic acid, activin-A and BMP-7 cocktail showed epithelial cell-like differentiation - i.e. distinct phenotypic changes, as well as upregulated gene and protein expression, were observed that were consistent with an epithelial cell phenotype. Thus, our results showed that hucMSCs can efficiently differentiate into renal epithelial-like cells. This work may help in the development of focused therapeutic strategies, in which lineage-defined human stem cells can be used for renal regeneration.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Shumaila Fahim
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Jahanara Ainuddin
- Department of Gynaecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
8
|
Nguyen L, Thewes L, Westerhoff M, Wruck W, Reichert AS, Berndt C, Adjaye J. JNK Signalling Regulates Self-Renewal of Proliferative Urine-Derived Renal Progenitor Cells via Inhibition of Ferroptosis. Cells 2023; 12:2197. [PMID: 37681928 PMCID: PMC10486975 DOI: 10.3390/cells12172197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
With a global increase in chronic kidney disease patients, alternatives to dialysis and organ transplantation are needed. Stem cell-based therapies could be one possibility to treat chronic kidney disease. Here, we used multipotent urine-derived renal progenitor cells (UdRPCs) to study nephrogenesis. UdRPCs treated with the JNK inhibitor-AEG3482 displayed decreased proliferation and downregulated transcription of cell cycle-associated genes as well as the kidney progenitor markers-SIX2, SALL1 and VCAM1. In addition, levels of activated SMAD2/3, which is associated with the maintenance of self-renewal in UdRPCs, were decreased. JNK inhibition resulted in less efficient oxidative phosphorylation and more lipid peroxidation via ferroptosis, an iron-dependent non-apoptotic cell death pathway linked to various forms of kidney disease. Our study is the first to describe the importance of JNK signalling as a link between maintenance of self-renewal and protection against ferroptosis in SIX2-positive renal progenitor cells.
Collapse
Affiliation(s)
- Lisa Nguyen
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
| | - Leonie Thewes
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.T.); (C.B.)
| | - Michelle Westerhoff
- Institute of Biochemistry and Molecular Biology I, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.W.); (A.S.R.)
| | - Wasco Wruck
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.W.); (A.S.R.)
| | - Carsten Berndt
- Department of Neurology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.T.); (C.B.)
| | - James Adjaye
- Institute of Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (L.N.); (W.W.)
- EGA Institute for Women’s Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
9
|
Thimm C, Erichsen L, Wruck W, Adjaye J. Unveiling Angiotensin II and Losartan-Induced Gene Regulatory Networks Using Human Urine-Derived Podocytes. Int J Mol Sci 2023; 24:10551. [PMID: 37445727 DOI: 10.3390/ijms241310551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Podocytes are highly specialized cells that play a pivotal role in the blood filtration process in the glomeruli of the kidney, and their dysfunction leads to renal diseases. For this reason, the study and application of this cell type is of great importance in the field of regenerative medicine. Hypertension is mainly regulated by the renin-angiotensin-aldosterone system (RAAS), with its main mediator being angiotensin II (ANG II). Elevated ANG II levels lead to a pro-fibrotic, inflammatory, and hypertrophic milieu that induces apoptosis in podocytes. The activation of RAAS is critical for the pathogenesis of podocyte injury; as such, to prevent podocyte damage, patients with hypertension are administered drugs that modulate RAAS signaling. A prime example is the orally active, non-peptide, selective angiotensin-II-type I receptor (AGTR1) blocker losartan. Here, we demonstrate that SIX2-positive urine-derived renal progenitor cells (UdRPCs) and their immortalized counterpart (UM51-hTERT) can be directly differentiated into mature podocytes. These podocytes show activation of RAAS after stimulation with ANG II, resulting in ANG II-dependent upregulation of the expression of the angiotensin-II-type I receptor, AGTR1, and the downregulated expression of the angiotensin-II-type II receptor 2 (AGTR2). The stimulation of podocytes with losartan counteracts ANG II-dependent changes, resulting in a dependent favoring of the specific receptor from AGTR1 to AGTR2. Transcriptome analysis revealed 94 losartan-induced genes associated with diverse biological processes and pathways such as vascular smooth muscle contraction, the oxytocin signaling pathway, renin secretion, and ECM-receptor interaction. Co-stimulation with losartan and ANG II induced the exclusive expression of 106 genes associated with DNA methylation or demethylation, cell differentiation, the developmental process, response to muscle stretch, and calcium ion transmembrane transport. These findings highlight the usefulness of UdRPC-derived podocytes in studying the RAAS pathway and nephrotoxicity in various kidney diseases.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- EGA Institute for Women's Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
10
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Royer-Pokora B, Wruck W, Adjaye J, Beier M. Gene expression studies of WT1 mutant Wilms tumor cell lines in the frame work of published kidney development data reveals their early kidney stem cell origin. PLoS One 2023; 18:e0270380. [PMID: 36689432 PMCID: PMC9870146 DOI: 10.1371/journal.pone.0270380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/21/2022] [Indexed: 01/24/2023] Open
Abstract
In order to get a better insight into the timing of WT1 mutant Wilms tumor development, we compared the gene expression profiles of nine established WT1 mutant Wilms tumor cell lines with published data from different kidney cell types during development. Publications describing genes expressed in nephrogenic precursor cells, ureteric bud cells, more mature nephrogenic epithelial cells and interstitial cell types were used. These studies uncovered that the WT1 mutant Wilms tumor cells lines express genes from the earliest nephrogenic progenitor cells, as well as from more differentiated nephron cells with the highest expression from the stromal/interstitial compartment. The expression of genes from all cell compartments points to an early developmental origin of the tumor in a common stem cell. Although variability of the expression of specific genes was evident between the cell lines the overall expression pattern was very similar. This is likely dependent on their different genetic backgrounds with distinct WT1 mutations and the absence/presence of mutant CTNNB1.
Collapse
Affiliation(s)
- Brigitte Royer-Pokora
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manfred Beier
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Erichsen L, Kloss LDF, Thimm C, Bohndorf M, Schichel K, Wruck W, Adjaye J. Derivation of the Immortalized Cell Line UM51-PrePodo-hTERT and Its Responsiveness to Angiotensin II and Activation of the RAAS Pathway. Cells 2023; 12:342. [PMID: 36766685 PMCID: PMC9913089 DOI: 10.3390/cells12030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Recent demographic studies predict there will be a considerable increase in the number of elderly people within the next few decades. Aging has been recognized as one of the main risk factors for the world's most prevalent diseases such as neurodegenerative disorders, cancer, cardiovascular disease, and metabolic diseases. During the process of aging, a gradual loss of tissue volume and organ function is observed, which is partially caused by replicative senescence. The capacity of cellular proliferation and replicative senescence is tightly regulated by their telomere length. When telomere length is critically shortened with progressive cell division, cells become proliferatively arrested, and DNA damage response and cellular senescence are triggered, whereupon the "Hayflick limit" is attained at this stage. Podocytes are a cell type found in the kidney glomerulus where they have major roles in blood filtration. Mature podocytes are terminal differentiated cells that are unable to undergo cell division in vivo. For this reason, the establishment of primary podocyte cell cultures has been very challenging. In our present study, we present the successful immortalization of a human podocyte progenitor cell line, of which the primary cells were isolated directly from the urine of a 51-year-old male. The immortalized cell line was cultured over the course of one year (~100 passages) with high proliferation capacity, endowed with contact inhibition and P53 expression. Furthermore, by immunofluorescence-based expression and quantitative real-time PCR for the podocyte markers CD2AP, LMX1B, NPHS1, SYNPO and WT1, we confirmed the differentiation capacity of the immortalized cells. Finally, we evaluated and confirmed the responsiveness of the immortalized cells on the main mediator angiotensin II (ANGII) of the renin-angiotensin system (RAAS). In conclusion, we have shown that it is possible to bypass cellular replicative senescence (Hayflick limit) by TERT-driven immortalization of human urine-derived pre-podocyte cells from a 51-year-old African male.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Lea Doris Friedel Kloss
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Kira Schichel
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
- EGA Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
13
|
Gerges D, Hevesi Z, Schmidt SH, Kapps S, Pajenda S, Geist B, Schmidt A, Wagner L, Winnicki W. Tubular epithelial progenitors are excreted in urine during recovery from severe acute kidney injury and are able to expand and differentiate in vitro. PeerJ 2022; 10:e14110. [PMID: 36285332 PMCID: PMC9588302 DOI: 10.7717/peerj.14110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Background Acute kidney injury (AKI) is a serious condition associated with chronic kidney disease, dialysis requirement and a high risk of death. However, there are specialized repair mechanisms for the nephron, and migrated committed progenitor cells are the key players. Previous work has described a positive association between renal recovery and the excretion of tubular progenitor cells in the urine of kidney transplant recipients. The aim of this work was to describe such structures in non-transplanted AKI patients and to focus on their differentiation. Methods Morning urine was obtained from four patients with AKI stage 3 and need for RRT on a consecutive basis. Urine sediment gene expression was performed to assess which part of the tubular or glomerular segment was affected by injury, along with measurement of neprilysin. Urine output and sediment morphology were monitored, viable hyperplastic tubular epithelial clusters were isolated and characterized by antibody or cultured in vitro. These cells were monitored by phase contrast microscopy, gene, and protein expression over 9 days by qPCR and confocal immunofluorescence. Furthermore, UMOD secretion into the supernatant was quantitatively measured. Results Urinary neprilysin decreased rapidly with increasing urinary volume in ischemic, toxic, nephritic, and infection-associated AKI, whereas the decrease in sCr required at least 2 weeks. While urine output increased, dead cells were present in the sediment along with debris followed by hyperplastic agglomerates. Monitoring of urine sediment for tubular cell-specific gene transcript levels NPHS2 (podocyte), AQP1 and AQP6 (proximal tubule), and SLC12A1 (distal tubule) by qPCR revealed different components depending on the cause of AKI. Confocal immunofluorescence staining confirmed the presence of intact nephron-specific epithelial cells, some of which appeared in clusters expressing AQP1 and PAX8 and were 53% positive for the stem cell marker PROM1. Isolated tubule epithelial progenitor cells were grown in vitro, expanded, and reached confluence within 5-7 days, while the expression of AQP1 and UMOD increased, whereas PROM1 and Ki67 decreased. This was accompanied by a change in cell morphology from a disproportionately high nuclear/cytoplasmic ratio at day 2-7 with mitotic figures. In contrast, an apoptotic morphology of approximately 30% was found at day 9 with the appearance of multinucleated cells that were associable with different regions of the nephron tubule by marker proteins. At the same time, UMOD was detected in the culture supernatant. Conclusion During renal recovery, a high replicatory potential of tubular epithelial progenitor cells is found in urine. In vitro expansion and gene expression show differentiation into tubular cells with marker proteins specific for different nephron regions.
Collapse
Affiliation(s)
- Daniela Gerges
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Sophie H. Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Sebastian Kapps
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Barbara Geist
- Department of Biochemical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| |
Collapse
|
14
|
Erichsen L, Adjaye J. Crosstalk between age accumulated DNA-damage and the SIRT1-AKT-GSK3ß axis in urine derived renal progenitor cells. Aging (Albany NY) 2022; 14:8179-8204. [PMID: 36170022 PMCID: PMC9648809 DOI: 10.18632/aging.204300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
The aging process is manifested by a multitude of inter-linked biological processes. These processes contribute to genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, de-regulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The mammalian ortholog of the yeast silent information regulator (Sir2) SIRT1 is a NAD+-dependent class III histone deacetylase and has been recognized to be involved in many of the forementioned processes. Furthermore, the physiological activity of several Sirtuin family members has been connected to the regulation of life span of lower organisms (Caenorhabditis elegans and Drosophila melanogaster) as well as mammals. In the present study, we provide evidence that SIX2-positive urine derived renal progenitor cells-UdRPCs isolated directly from human urine show typical hallmarks of aging. This includes the subsequent transcriptional downregulation of SIRT1 and its downstream targets AKT and GSK3ß with increased donor age. This transcriptional downregulation is accompanied by an increase in DNA damage and transcriptional levels of several cell cycle inhibitors such as P16. We provide evidence that the renal progenitor transcription factor SIX2 binds to the coding sequence of SIRT1. Furthermore, we show that the SIRT1 promoter region is methylation sensitive and becomes methylated during aging, dividing them into SIRT1-high and -low expressing UdRPCs. Our results highlight the importance of SIRT1 in DNA damage repair recognition in UdRPCs and the control of differentiation by regulating the activation of GSK3β through AKT.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine- University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
15
|
Erichsen L, Thimm C, Bohndorf M, Rahman MS, Wruck W, Adjaye J. Activation of the Renin–Angiotensin System Disrupts the Cytoskeletal Architecture of Human Urine-Derived Podocytes. Cells 2022; 11:cells11071095. [PMID: 35406662 PMCID: PMC8997628 DOI: 10.3390/cells11071095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
High blood pressure is one of the major public health problems that causes severe disorders in several tissues including the human kidney. One of the most important signaling pathways associated with the regulation of blood pressure is the renin–angiotensin system (RAS), with its main mediator angiotensin II (ANGII). Elevated levels of circulating and intracellular ANGII and aldosterone lead to pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Furthermore, ANGII has been recognized as a major risk factor for the induction of apoptosis in podocytes, ultimately leading to chronic kidney disease (CKD). In the past, disease modeling of kidney-associated diseases was extremely difficult, as the derivation of kidney originated cells is very challenging. Here we describe a differentiation protocol for reproducible differentiation of sine oculis homeobox homolog 2 (SIX2)-positive urine-derived renal progenitor cells (UdRPCs) into podocytes bearing typical cellular processes. The UdRPCs-derived podocytes show the activation of the renin–angiotensin system by being responsive to ANGII stimulation. Our data reveal the ANGII-dependent downregulation of nephrin (NPHS1) and synaptopodin (SYNPO), resulting in the disruption of the podocyte cytoskeletal architecture, as shown by immunofluorescence-based detection of α-Actinin. Furthermore, we show that the cytoskeletal disruption is mainly mediated through angiotensin II receptor type 1 (AGTR1) signaling and can be rescued by AGTR1 inhibition with the selective, competitive angiotensin II receptor type 1 antagonist, losartan. In the present manuscript we confirm and propose UdRPCs differentiated to podocytes as a unique cell type useful for studying nephrogenesis and associated diseases. Furthermore, the responsiveness of UdRPCs-derived podocytes to ANGII implies potential applications in nephrotoxicity studies and drug screening.
Collapse
|
16
|
The Nephrotoxin Puromycin Aminonucleoside Induces Injury in Kidney Organoids Differentiated from Induced Pluripotent Stem Cells. Cells 2022; 11:cells11040635. [PMID: 35203286 PMCID: PMC8870209 DOI: 10.3390/cells11040635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), which can progress to end stage renal disease (ESRD), are a worldwide health burden. Organ transplantation or kidney dialysis are the only effective available therapeutic tools. Therefore, in vitro models of kidney diseases and the development of prospective therapeutic options are urgently needed. Within the kidney, the glomeruli are involved in blood filtration and waste excretion and are easily affected by changing cellular conditions. Puromycin aminonucleoside (PAN) is a nephrotoxin, which can be employed to induce acute glomerular damage and to model glomerular disease. For this reason, we generated kidney organoids from three iPSC lines and treated these with PAN in order to induce kidney injury. Morphological observations revealed the disruption of glomerular and tubular structures within the kidney organoids upon PAN treatment, which were confirmed by transcriptome analyses. Subsequent analyses revealed an upregulation of immune response as well as inflammatory and cell-death-related processes. We conclude that the treatment of iPSC-derived kidney organoids with PAN induces kidney injury mediated by an intertwined network of inflammation, cytoskeletal re-arrangement, DNA damage, apoptosis and cell death. Furthermore, urine-stem-cell-derived kidney organoids can be used to model kidney-associated diseases and drug discovery.
Collapse
|
17
|
Zhang W, Hu J, Huang Y, Wu C, Xie H. Urine-derived stem cells: applications in skin, bone and articular cartilage repair. BURNS & TRAUMA 2021; 9:tkab039. [PMID: 34859109 PMCID: PMC8633594 DOI: 10.1093/burnst/tkab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Indexed: 02/05/2023]
Abstract
As an emerging type of adult stem cell featuring non-invasive acquisition, urine-derived stem cells (USCs) have shown great potential for applications in tissue engineering and regenerative medicine. With a growing amount of research on the topic, the effectiveness of USCs in various disease models has been shown and the underlying mechanisms have also been explored, though many aspects still remain unclear. In this review, we aim to provide an up-to-date overview of the biological characteristics of USCs and their applications in skin, bone and articular cartilage repair. In addition to the identification procedure of USCs, we also summarize current knowledge of the underlying repair mechanisms and application modes of USCs. Potential concerns and perspectives have also been summarized.
Collapse
Affiliation(s)
- Wenqian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jungen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yizhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Wu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Sugita E, Hayashi K, Hishikawa A, Itoh H. Epigenetic Alterations in Podocytes in Diabetic Nephropathy. Front Pharmacol 2021; 12:759299. [PMID: 34630127 PMCID: PMC8497789 DOI: 10.3389/fphar.2021.759299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, epigenetic alterations have been shown to be involved in the pathogenesis of diabetes and its complications. Kidney podocytes, which are glomerular epithelial cells, are important cells that form a slit membrane—a barrier for proteinuria. Podocytes are terminally differentiated cells without cell division or replenishment abilities. Therefore, podocyte damage is suggested to be one of the key factors determining renal prognosis. Recent studies, including ours, suggest that epigenetic changes in podocytes are associated with chronic kidney disease, including diabetic nephropathy. Furthermore, the association between DNA damage repair and epigenetic changes in diabetic podocytes has been demonstrated. Detection of podocyte DNA damage and epigenetic changes using human samples, such as kidney biopsy and urine-derived cells, may be a promising strategy for estimating kidney damage and renal prognoses in patients with diabetes. Targeting epigenetic podocyte changes and associated DNA damage may become a novel therapeutic strategy for preventing progression to end-stage renal disease (ESRD) and provide a possible prognostic marker in diabetic nephropathy. This review summarizes recent advances regarding epigenetic changes, especially DNA methylation, in podocytes in diabetic nephropathy and addresses detection of these alterations in human samples. Additionally, we focused on DNA damage, which is increased under high-glucose conditions and associated with the generation of epigenetic changes in podocytes. Furthermore, epigenetic memory in diabetes is discussed. Understanding the role of epigenetic changes in podocytes in diabetic nephropathy may be of great importance considering the increasing diabetic nephropathy patient population in an aging society.
Collapse
Affiliation(s)
- Erina Sugita
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
19
|
Shrestha S, Singhal S, Kalonick M, Guyer R, Volkert A, Somji S, Garrett SH, Sens DA, Singhal SK. Role of HRTPT in kidney proximal epithelial cell regeneration: Integrative differential expression and pathway analyses using microarray and scRNA-seq. J Cell Mol Med 2021; 25:10466-10479. [PMID: 34626063 PMCID: PMC8581341 DOI: 10.1111/jcmm.16976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end‐stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co‐expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA‐seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine‐derived renal progenitor cells and human kidney‐derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single‐cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co‐expressed gene set compared with other human renal–derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexis Volkert
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
20
|
Wruck W, Graffmann N, Spitzhorn LS, Adjaye J. Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire Rejuvenation and Reduced Heterogeneity. Front Cell Dev Biol 2021; 9:717772. [PMID: 34604216 PMCID: PMC8481886 DOI: 10.3389/fcell.2021.717772] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the uniform selection criteria for the isolation of human mesenchymal stem cells (MSCs), considerable heterogeneity exists which reflects the distinct tissue origins and differences between individuals with respect to their genetic background and age. This heterogeneity is manifested by the variabilities seen in the transcriptomes, proteomes, secretomes, and epigenomes of tissue-specific MSCs. Here, we review literature on different aspects of MSC heterogeneity including the role of epigenetics and the impact of MSC heterogeneity on therapies. We then combine this with a meta-analysis of transcriptome data from distinct MSC subpopulations derived from bone marrow, adipose tissue, cruciate, tonsil, kidney, umbilical cord, fetus, and induced pluripotent stem cells derived MSCs (iMSCs). Beyond that, we investigate transcriptome differences between tissue-specific MSCs and pluripotent stem cells. Our meta-analysis of numerous MSC-related data sets revealed markers and associated biological processes characterizing the heterogeneity and the common features of MSCs from various tissues. We found that this heterogeneity is mainly related to the origin of the MSCs and infer that microenvironment and epigenetics are key drivers. The epigenomes of MSCs alter with age and this has a profound impact on their differentiation capabilities. Epigenetic modifications of MSCs are propagated during cell divisions and manifest in differentiated cells, thus contributing to diseased or healthy phenotypes of the respective tissue. An approach used to reduce heterogeneity caused by age- and tissue-related epigenetic and microenvironmental patterns is the iMSC concept: iMSCs are MSCs generated from induced pluripotent stem cells (iPSCs). During iMSC generation epigenetic and chromatin remodeling result in a gene expression pattern associated with rejuvenation thus allowing to overcome age-related shortcomings (e.g., limited differentiation and proliferation capacity). The importance of the iMSC concept is underlined by multiple clinical trials. In conclusion, we propose the use of rejuvenated iMSCs to bypass tissue- and age-related heterogeneity which are associated with native MSCs.
Collapse
Affiliation(s)
- Wasco Wruck
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nina Graffmann
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Atkinson SP. A preview of select articles. Stem Cells 2021. [DOI: 10.1002/stem.3384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Abedini A, Zhu YO, Chatterjee S, Halasz G, Devalaraja-Narashimha K, Shrestha R, S. Balzer M, Park J, Zhou T, Ma Z, Sullivan KM, Hu H, Sheng X, Liu H, Wei Y, Boustany-Kari CM, Patel U, Almaani S, Palmer M, Townsend R, Blady S, Hogan J, Morton L, Susztak K. Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney. J Am Soc Nephrol 2021; 32:614-627. [PMID: 33531352 PMCID: PMC7920183 DOI: 10.1681/asn.2020050757] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/24/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microscopic analysis of urine sediment is probably the most commonly used diagnostic procedure in nephrology. The urinary cells, however, have not yet undergone careful unbiased characterization. METHODS Single-cell transcriptomic analysis was performed on 17 urine samples obtained from five subjects at two different occasions, using both spot and 24-hour urine collection. A pooled urine sample from multiple healthy individuals served as a reference control. In total 23,082 cells were analyzed. Urinary cells were compared with human kidney and human bladder datasets to understand similarities and differences among the observed cell types. RESULTS Almost all kidney cell types can be identified in urine, such as podocyte, proximal tubule, loop of Henle, and collecting duct, in addition to macrophages, lymphocytes, and bladder cells. The urinary cell-type composition was subject specific and reasonably stable using different collection methods and over time. Urinary cells clustered with kidney and bladder cells, such as urinary podocytes with kidney podocytes, and principal cells of the kidney and urine, indicating their similarities in gene expression. CONCLUSIONS A reference dataset for cells in human urine was generated. Single-cell transcriptomics enables detection and quantification of almost all types of cells in the kidney and urinary tract.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yuan O. Zhu
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Shatakshee Chatterjee
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gabor Halasz
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael S. Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jihwan Park
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tong Zhou
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katie Marie Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Xin Sheng
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yi Wei
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | | | - Uptal Patel
- Inflammation and Respiratory Therapeutics, Gilead Sciences Inc., Foster City, California
| | - Salem Almaani
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Raymond Townsend
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shira Blady
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Hogan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - The TRIDENT Study Investigators,*
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
- Cardiometabolic Disease Research Department, Boehringer Ingelheim, Ridgefield, Connecticut
- Inflammation and Respiratory Therapeutics, Gilead Sciences Inc., Foster City, California
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lori Morton
- Cardiovascular, Renal and Fibrosis Research, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Zidan AA, Perkins GB, Al-Hawwas M, Elhossiny A, Yang J, Bobrovskaya L, Mourad GM, Zhou XF, Hurtado PR. Urine stem cells are equipped to provide B cell survival signals. STEM CELLS (DAYTON, OHIO) 2021; 39:803-818. [PMID: 33554422 PMCID: PMC8248326 DOI: 10.1002/stem.3351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
The interplay between mesenchymal stem cells (MSCs) and immune cells has been studied for MSCs isolated from different tissues. However, the immunomodulatory capacity of urine stem cells (USCs) has not been adequately researched. The present study reports on the effect of USCs on peripheral blood lymphocytes. USCs were isolated and characterized before coculture with resting and with anti‐CD3/CD28 bead stimulated lymphocytes. Similarly to bone marrow mesenchymal stem cells (BM‐MSCs), USCs inhibited the proliferation of activated T lymphocytes and induced their apoptosis. However, they also induced strong activation, proliferation, and cytokine and antibody production by B lymphocytes. Molecular phenotype and supernatant analysis revealed that USCs secrete a range of cytokines and effector molecules, known to play a central role in B cell biology. These included B cell‐activating factor (BAFF), interleukin 6 (IL‐6) and CD40L. These findings raise the possibility of an unrecognized active role for kidney stem cells in modulating local immune cells.
Collapse
Affiliation(s)
- Asmaa A Zidan
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Griffith B Perkins
- Department of Molecular & Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mohammed Al-Hawwas
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ahmed Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianyu Yang
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Pharmacy, Kunming Medical University, Kunming, People's Republic of China
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ghada M Mourad
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Plinio R Hurtado
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle? Cells 2021; 10:cells10010059. [PMID: 33401654 PMCID: PMC7823786 DOI: 10.3390/cells10010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Kidneys of mice, rats and humans possess progenitors that maintain daily homeostasis and take part in endogenous regenerative processes following injury, owing to their capacity to proliferate and differentiate. In the glomerular and tubular compartments of the nephron, consistent studies demonstrated that well-characterized, distinct populations of progenitor cells, localized in the parietal epithelium of Bowman capsule and scattered in the proximal and distal tubules, could generate segment-specific cells in physiological conditions and following tissue injury. However, defective or abnormal regenerative responses of these progenitors can contribute to pathologic conditions. The molecular characteristics of renal progenitors have been extensively studied, revealing that numerous classical and evolutionarily conserved pathways, such as Notch or Wnt/β-catenin, play a major role in cell regulation. Others, such as retinoic acid, renin-angiotensin-aldosterone system, TLR2 (Toll-like receptor 2) and leptin, are also important in this process. In this review, we summarize the plethora of molecular mechanisms directing renal progenitor responses during homeostasis and following kidney injury. Finally, we will explore how single-cell RNA sequencing could bring the characterization of renal progenitors to the next level, while knowing their molecular signature is gaining relevance in the clinic.
Collapse
|
25
|
Meng P, Zhu M, Ling X, Zhou L. Wnt signaling in kidney: the initiator or terminator? J Mol Med (Berl) 2020; 98:1511-1523. [PMID: 32939578 PMCID: PMC7591426 DOI: 10.1007/s00109-020-01978-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The kidney is a key organ in the human body that excretes toxins and sustains the water-electrolyte balance. During embryonic development and disease progression, the kidney undergoes enormous changes in macrostructure, accompanied by a variety of microstructural histological changes, such as glomerular formation and sclerosis, tubule elongation and atrophy, interstitial establishment, and fibrosis progression. All of these rely on the frequent occurrence of cell death and growth. Notably, to overcome disease, some cells regenerate through self-repair or progenitor cell differentiation. However, the signaling mechanisms underlying kidney development and regeneration have not been elucidated. Recently, Wnt signaling has been noted to play an important role. Although it is a well-known developmental signal, the role of Wnt signaling in kidney development and regeneration is not well recognized. In this review, we review the role of Wnt signaling in kidney embryonic development, tissue repair, cell division, and progenitor cell differentiation after injury. Moreover, we briefly highlight advances in our understanding of the pathogenic mechanisms of Wnt signaling in mediating cellular senescence in kidney parenchymal and stem cells, an irreversible arrest of cell proliferation blocking tissue repair and regeneration. We also highlight the therapeutic targets of Wnt signaling in kidney diseases and provide important clues for clinical strategies.
Collapse
Affiliation(s)
- Ping Meng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
26
|
Burdeyron P, Giraud S, Hauet T, Steichen C. Urine-derived stem/progenitor cells: A focus on their characterization and potential. World J Stem Cells 2020; 12:1080-1096. [PMID: 33178393 PMCID: PMC7596444 DOI: 10.4252/wjsc.v12.i10.1080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.
Collapse
Affiliation(s)
- Perrine Burdeyron
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
| | - Sébastien Giraud
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France.
| |
Collapse
|
27
|
Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y, Ohyama M. Altered FGF expression profile in human scalp-derived fibroblasts upon WNT activation: implication of their role to provide folliculogenetic microenvironment. Inflamm Regen 2020; 40:35. [PMID: 32973962 PMCID: PMC7507293 DOI: 10.1186/s41232-020-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background Hair follicle (HF) formation and growth are sustained by epithelial-mesenchymal interaction via growth factors and cytokines. Pivotal roles of FGFs on HF regeneration and neogenesis have been reported mainly in rodent models. FGF expression is regulated by upstream pathways, represented by canonical WNT signaling; however, how FGFs influence on human folliculogenesis remains elusive. The aim of this study is to assess if human scalp-derived fibroblasts (sFBs) are able to modulate their FGF expression profile in response to WNT activation and to evaluate the influence of WNT-activated or suppressed FGFs on folliculogenesis. Methods Dermal papilla cells (DPCs), dermal sheath cells (DSCs), and sFBs were isolated from the human scalp and cultured independently. The gene expression profile of FGFs in DPCs, DSCs, and sFBs and the influence of WNT activator, CHIR99021, on FGF expression pattern in sFBs were evaluated by reverse transcription polymerase chain reaction, which were confirmed at protein level by western blotting analysis. The changes in the expression of DPC or keratinocyte (KC) biomarkers under the presence of FGF7 or 9 were examined in both single and co-culture assay of DPCs and/or KCs. The influence of FGF 7 and FGF 9 on hair morphogenesis and growth was analyzed in vivo using mouse chamber assay. Results In single culture, sFBs were distinguished from DPCs and DSCs by relatively high expression of FGF5 and FGF18, potential inducers of hair cycle retardation or catagen phase. In WNT-activated state, sFBs downregulated FGF7 while upregulating FGF9, a positive regulator of HF morphogenesis, FGF16 and FGF20 belonging to the same FGF subfamily. In addition, CHIR99021, a WNT activator, dose-dependently modulated FGF7 and 9 expression to be folliculogenic. Altered expressions of FGF7 and FGF9 by CHIR99021 were confirmed at protein level. Supplementation of FGF9 to cultured DPCs resulted in upregulation of representative DP biomarkers and this tendency was sustained, when DPCs were co-cultured with KCs. In mouse chamber assay, FGF9 increased both the number and the diameter of newly formed HFs, while FGF7 decreased HF diameter. Conclusion The results implied that sFBs support HF formation by modulating regional FGF expression profile responding to WNT activation.
Collapse
Affiliation(s)
- Misaki Kinoshita-Ise
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| | - Aki Tsukashima
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Tomonari Kinoshita
- Division of Cellular Signaling Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoshimi Yamazaki
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| |
Collapse
|
28
|
Abstract
IMPACT STATEMENT Stem cells hold great promise in regenerative medicine. Pluripotent stem cells have been differentiated into kidney organoids to understand human kidney development and to dissect renal disease mechanisms. Meanwhile, recent studies have explored the treatment of kidney diseases using a variety of cells, including mesenchymal stem cells and renal derivatives. This mini-review discusses the diverse mechanisms underlying current renal disease treatment via stem cell therapy. We postulate that clinical applications of stem cell therapy for kidney diseases can be readily achieved in the near future.
Collapse
Affiliation(s)
- Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| |
Collapse
|