1
|
Thiel S, Gottstein M, Heymann EW, Kroszewski J, Lieker N, Tello NS, Tschapka M, Junker RR, Heer K. Vertically stratified interactions of nectarivores and nectar-inhabiting bacteria in a liana flowering across forest strata. AMERICAN JOURNAL OF BOTANY 2024; 111:e16303. [PMID: 38531667 DOI: 10.1002/ajb2.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 03/28/2024]
Abstract
PREMISE Vertical stratification is a key feature of tropical forests and plant-frugivore interactions. However, it is unclear whether equally strong patterns of vertical stratification exist for plant-nectarivore interactions and, if so, which factors drive these patterns. Further, nectar-inhabiting bacteria, acting as "hidden players" in plant-nectarivore interactions, might be vertically stratified, either in response to differences among strata in microenvironmental conditions or to the nectarivore community serving as vectors. METHODS We observed visitations by a diverse nectarivore community to the liana Marcgravia longifolia in a Peruvian rainforest and characterized diversity and community composition of nectar-inhabiting bacteria. Unlike most other plants, M. longifolia produces inflorescences across forest strata, enabling us to study effects of vertical stratification on plant-nectarivore interactions without confounding effects of plant species and stratum. RESULTS A significantly higher number of visits were by nectarivorous bats and hummingbirds in the midstory than in the understory and canopy, and the visits were strongly correlated to flower availability and nectar quantity and quality. Trochiline hummingbirds foraged across all strata, whereas hermits remained in the lower strata. The Shannon diversity index for nectar-inhabiting bacterial communities was highest in the midstory. CONCLUSIONS Our findings suggest that vertical niche differentiation in plant-nectarivore interactions seems to be partly driven by resource abundance, but other factors such as species-specific preferences of hummingbirds, likely caused by competition, play an important role. We conclude that vertical stratification is an important driver of a species' interaction niche highlighting its role for promoting biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Sarina Thiel
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str, 8, Marburg, Germany
| | - Malika Gottstein
- Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstr. 17, Freiburg, Germany
| | - Eckhard W Heymann
- Verhaltensökologie & Soziobiologie, Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Kellnerweg 4, Göttingen, Germany
| | - Jana Kroszewski
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str, 8, Marburg, Germany
| | - Narges Lieker
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str, 8, Marburg, Germany
| | | | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert Einstein Allee 11, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Katrin Heer
- Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstr. 17, Freiburg, Germany
| |
Collapse
|
2
|
Kim D, DeBriere TJ, Eastmond BH, Alomar AA, Yaren O, McCarter J, Bradley KM, Benner SA, Alto BW, Burkett-Cadena ND. Rapid detection of West Nile and Dengue viruses from mosquito saliva by loop-mediated isothermal amplification and displaced probes. PLoS One 2024; 19:e0298805. [PMID: 38394282 PMCID: PMC10889885 DOI: 10.1371/journal.pone.0298805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Arthropod-borne viruses are major causes of human and animal disease, especially in endemic low- and middle-income countries. Mosquito-borne pathogen surveillance is essential for risk assessment and vector control responses. Sentinel chicken serosurveillance (antibody testing) and mosquito pool screening (by RT-qPCR or virus isolation) are currently used to monitor arbovirus transmission, however substantial time lags of seroconversion and/or laborious mosquito identification and RNA extraction steps sacrifice their early warning value. As a consequence, timely vector control responses are compromised. Here, we report on development of a rapid arbovirus detection system whereby adding sucrose to reagents of loop-mediated isothermal amplification with displaced probes (DP-LAMP) elicits infectious mosquitoes to feed directly upon the reagent mix and expectorate viruses into the reagents during feeding. We demonstrate that RNA from pathogenic arboviruses (West Nile and Dengue viruses) transmitted in the infectious mosquito saliva was detectable rapidly (within 45 minutes) without RNA extraction. Sucrose stabilized viral RNA at field temperatures for at least 48 hours, important for transition of this system to practical use. After thermal treatment, the DP-LAMP could be reliably visualized by a simple optical image sensor to distinguish between positive and negative samples based on fluorescence intensity. Field application of this technology could fundamentally change conventional arbovirus surveillance methods by eliminating laborious RNA extraction steps, permitting arbovirus monitoring from additional sites, and substantially reducing time needed to detect circulating pathogens.
Collapse
Affiliation(s)
- Dongmin Kim
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | | | - Bradley H. Eastmond
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Abdullah A. Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Ozlem Yaren
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Jacquelyn McCarter
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Steven A. Benner
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| |
Collapse
|
3
|
Pyke GH, Ren ZX. Floral nectar production: what cost to a plant? Biol Rev Camb Philos Soc 2023; 98:2078-2090. [PMID: 37461187 DOI: 10.1111/brv.12997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/29/2023] [Accepted: 06/30/2023] [Indexed: 11/07/2023]
Abstract
Floral nectar production is central to plant pollination, and hence to human wellbeing. As floral nectar is essentially a solution in water of various sugars, it is likely a valuable plant resource, especially in terms of energy, with plants experiencing costs/trade-offs associated with its production or absorption and adopting mechanisms to regulate nectar in flowers. Possible costs of nectar production may also influence the evolution of nectar volume, concentration and composition, of pollination syndromes involving floral nectar, and the production of some crops. There has been frequent agreement that costs of floral nectar production are significant, but relevant evidence is scant and difficult to interpret. Convincing direct evidence comes from experimental studies that relate either enhanced nectar sugar production (through repeated nectar removal) to reduced ability to produce seeds, or increased sugar availability (through absorption of additional artificial nectar) to increased seed production. Proportions of available photosynthate allocated by plants to nectar production may also indicate nectar cost. However, such studies are rare, some do not include treatments of all (or almost all) flowers per plant, and all lack quantitative cost-benefit comparisons for nectar production. Additional circumstantial evidence of nectar cost is difficult to interpret and largely equivocal. Future research should repeat direct experimental approaches that relate reduced or enhanced nectar sugar availability for a plant with consequent ability to produce seeds. To avoid confounding effects of inter-flower resource transfer, each plant should experience a single treatment, with treatment of all or almost all flowers per plant. Resource allocation by plants, pathways used for resource transfer, and the locations of resource sources and sinks should also be investigated. Future research should also consider extension of nectar cost into other areas of biology. For example, evolutionary models of nectar production are rare but should be possible if plant fitness gains and costs associated with nectar production are expressed in the same currency, such as energy. It should then be possible to understand observed nectar production for different plant species and pollination syndromes involving floral nectar. In addition, potential economic benefits should be possible to assess if relationships between nectar production and crop value are evaluated.
Collapse
Affiliation(s)
- Graham H Pyke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- School of Natural Sciences, Macquarie University, Balaclava Rd, North Ryde, 2113, New South Wales, Australia
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
4
|
Domingos-Melo A, Cocucci AA, Tschapka M, Machado IC. A negative association between nectar standing crop and pollen transfer suggests nectar functions as a manipulator of pollinating bats. ANNALS OF BOTANY 2023; 131:361-372. [PMID: 36579432 PMCID: PMC9992937 DOI: 10.1093/aob/mcac154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Nectar standing crop has a fundamental role in controlling pollinator movements between flowers and individuals within a population. In bat pollination systems, plants take advantage of the cognitive abilities of nectarivorous bats, which integrate complex perceptions of the quality and spatial distribution of resources. Here, we propose that associations between standing crop and pollen transfer help to reveal the role of nectar as a manipulator of pollinator behaviour. METHODS We used Harpochilus neesianus Ness (Acanthaceae), a bat-pollinated shrub from the Brazilian Caatinga, as a model system to assess nectar removal effects and standing crop, respectively, over the night and to test associations between the amount of nectar available to pollinators, and pollen import and export. KEY RESULTS Harpochilus neesianus showed continuous nectar secretion throughout the flower lifespan. Flowers subjected to successive nectar removals produced less nectar than flowers sampled just once, and showed, despite a higher sugar concentration, a lower absolute amount of sugar. Under these conditions, bats may realize that nectar production is decreasing after repeated visits to the same flower and could be manipulated to avoid such already pollinated flowers with little nectar, thus increasing the probability of visits to flowers with a high amount of nectar, and a still high pollen availability on anthers and low pollen deposition on stigmas. We found that during most of the period of anthesis, nectar standing crop volume was positively correlated with the number of pollen grains remaining in the anthers, and negatively with the number of pollen grains deposited on the stigma. CONCLUSIONS Nectar secretion patterns can function as a manipulator of pollinating bats in H. neesianus. We propose that the assessment of variability in nectar secretion in response to removal, and the correlation between nectar standing crop and relative pollen transfer throughout anthesis should be considered in order to understand the role of nectar in the manipulation of pollinators.
Collapse
Affiliation(s)
- Arthur Domingos-Melo
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Centro de Biociências – Universidade Federal de Pernambuco, Brazil
- Universidade de Pernambuco – Campus Petrolina, Brazil
| | - Andrea A Cocucci
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Cordoba, Argentina
| | - Marco Tschapka
- University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Ancon, Panamá
| | - Isabel C Machado
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Centro de Biociências – Universidade Federal de Pernambuco, Brazil
| |
Collapse
|
5
|
Nicolson SW. Sweet solutions: nectar chemistry and quality. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210163. [PMID: 35491604 PMCID: PMC9058545 DOI: 10.1098/rstb.2021.0163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/07/2021] [Indexed: 12/22/2022] Open
Abstract
Nectar, the main floral reward for pollinators, varies greatly in composition and concentration. The assumption that nectar quality is equivalent to its sugar (energy) concentration is too simple. Diverse non-sugar components, especially amino acids and secondary metabolites, play various roles in nutrition and health of pollinators. Many nectar compounds have indirect effects by altering the foraging behaviour of pollinators or protecting them from disease. This review also emphasizes the water component of nectar, often ignored because of evaporative losses and difficulties in sampling small nectar volumes. Nectar properties vary with environmental factors, pollinator visits and microbial contamination. Pollination mutualisms depend on the ability of insect and vertebrate pollinators to cope with and benefit from the variation and diversity in nectar chemistry. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
6
|
Lu NN, Ma Y, Hou M, Zhao ZG. The function of floral traits and phenotypic selection in Aconitum gymnandrum (Ranunculaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:931-938. [PMID: 34396652 DOI: 10.1111/plb.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Floral evolution in angiosperms is thought to be driven by pollinator-mediated selection. Understanding flower integration and adaptation requires resolving the additive and nonadditive contributions of floral pollinator attraction and pollination efficiency traits to fitness components. In this study, a flower manipulation experiment with a factorial design was used to study the adaptive significance of galea height (a putative attraction trait) and entrance width (a putative efficiency trait) in Aconitum gymnandrum Maxim. flowers. Simultaneously, phenotypic selection analysis was conducted to examine selection by pollinators on galea height, entrance width, nectar production and plant height. Increased galea height increased the pollinator visitation rate, which confirmed its attractiveness function. Increasing floral entrance width by spreading the lower sepals increased the seed number per fruit without affecting pollinator visitation. This suggests a pollination efficiency role for the entrance width. The phenotypic selection analysis, however, did not provide evidence of pollinator-mediated selection for either of these traist, but it did for plant height. According to the manipulation treatment and correlational selection results, the combined variation in galea height and entrance width of A. gymnandrum flowers did not have nonadditive effects on female reproductive success. This study demonstrated the adaptive value of A. gymnandrum flowers through manipulation of an attractiveness trait and an efficiency trait. However, neither trait was associated with pollinator-mediated selection. A combination of manipulating traits and determining current phenotypic selection could help to elucidate the mechanism of selection on floral traits involved in different functions and flower integration.
Collapse
Affiliation(s)
- N-N Lu
- School of Life Science, North-West Normal University, Lanzhou, China
| | - Y Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - M Hou
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Z-G Zhao
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Fantinato E, Sonkoly J, Török P, Buffa G. Patterns of pollination interactions at the community level are related to the type and quantity of floral resources. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edy Fantinato
- Department of Environmental Sciences, Informatics and Statistics University Ca' Foscari of Venice Venice Italy
| | - Judit Sonkoly
- Department of Ecology University of Debrecen Debrecen Hungary
- MTA‐DE Lendület Functional and Restoration Ecology Research Group Debrecen Hungary
| | - Péter Török
- Department of Ecology University of Debrecen Debrecen Hungary
- MTA‐DE Lendület Functional and Restoration Ecology Research Group Debrecen Hungary
- Polish Academy of Sciences Botanical Garden ‐ Center for Biological Diversity Conservation in Powsin Warszawa Poland
| | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics University Ca' Foscari of Venice Venice Italy
| |
Collapse
|
8
|
McPeek SJ, Bronstein JL, McPeek MA. The Evolution of Resource Provisioning in Pollination Mutualisms. Am Nat 2021; 198:441-459. [PMID: 34559615 DOI: 10.1086/715746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractResource dynamics influence the contemporary ecology of consumer-resource mutualisms. Suites of resource traits, such as floral nectar components, also evolve in response to different selective pressures, changing the ecological dynamics of the interacting species at the evolutionary equilibrium. Here we explore the evolution of resource-provisioning traits in a biotically pollinated plant that produces nectar as a resource for beneficial consumers. We develop a mathematical model describing natural selection on two quantitative nectar traits: maximum nectar production rate and maximum nectar reservoir volume. We use this model to examine how nectar production dynamics evolve under different ecological conditions that impose varying cost-benefit regimes on resource provisioning. The model results predict that natural selection favors higher nectar production when ecological factors limit the plant or pollinator's abundance (e.g., a lower productivity environment or a higher pollinator conversion efficiency). We also find that nectar traits evolve as a suite in which higher costs of producing one trait select for a compensatory increase in investment in the other trait. This empirically explicit approach to studying the evolution of consumer-resource mutualisms illustrates how natural selection acting via direct and indirect pathways of species interactions generates patterns of resource provisioning seen in natural systems.
Collapse
|