1
|
Zhang Y, Wang P, Geng Z, Bao L, Gao S, Sun J, Liu X, Yang X, Zhao R, Li S, Bao Y, Cui X, Guo S. Geniposide attenuates influenza virus-induced pneumonia by regulating inflammatory cytokines production. Evidences to elucidate the followed pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156018. [PMID: 39303507 DOI: 10.1016/j.phymed.2024.156018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Influenza virus-induced pneumonia (IVP) is an infectious pulmonary disease characterized by exacerbated pulmonary inflammation caused by invasion of the influenza virus. IVP continues to threaten public health due to its high morbidity and mortality rates. Geniposide is one of the major bioactive constituents of G. jasminoides, which exerts antiviral and anti-inflammatory effects on influenza A virus (IAV) infection. PURPOSE To investigate therapeutic effects and comprehensive mechanisms of geniposide on IAV infection and subsequent pneumonia. METHODS ICR mice were infected intranasally with H1N1 (A/FM/1/47) to detect the anti-IAV activity of geniposide. Proteomics combined with function-integrated analysis were conducted to gain insight into the comprehensive mechanisms of geniposide. Subsequently, western blot was used to detect the phosphorylation of signal transducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription 2 (STAT2), Interferon regulatory factor 9 (IRF9) and Janus kinase 1 (JAK1) in Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in lung tissue. Finally, RT-qPCR was used to detect the levels of interleukin 6 (IL-6), interleukin 17 (IL-17), interferon-γ (IFN-γ) and the STAT1 inhibitor (fludarabine) was used to verify the targeting between STAT1 and geniposide in RAW cells. RESULTS Geniposide could significantly reduce the lung index, diminish lung pathology, decrease the virus loads and the inflammatory cytokines expression induced by IAV infection. A total of 411 differentially expressed proteins were identified among control, model, and geniposide-treated group in proteomic analysis. According to function-integrated analysis, 15 KEGG pathways were enriched and divided into 9 groups (modules), including influenza A, NOD-like receptor signaling, RIG-I-like receptor signaling, and so on. Among these modules, the most intensely interacting module pair was the NOD-like receptor signaling and influenza A, in which STAT1 and STAT2 acted as hubs with critical bridgeness role in the target network of geniposide. This indicated that geniposide may mitigate inflammation and alleviate IVP by JAK/STAT signaling pathways. Moreover, validation experiments confirmed that geniposide can significantly inhibit STAT1 and STAT2 phosphorylation as well as down-regulated expression of IL-6, IFN-γ and IL-17 in lung. Furthermore, when RAW cells were treated with the STAT1 inhibitor (fludarabine), the inhibitory effect of geniposide on IFN-γ and IL-6 was attenuated significantly. CONCLUSIONS Geniposide can attenuate IAV-induced pneumonia by regulating inflammatory cytokines production through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaowei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuran Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Cheemanapalli S, Golla R, Pagidi S, Pantangi S. In silico exploration of phytocompounds from AYUSH-64 medicinal plants against SARS CoV-2 RNA-dependent RNA polymerase. J Ayurveda Integr Med 2024; 15:101026. [PMID: 39488119 PMCID: PMC11565463 DOI: 10.1016/j.jaim.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The AYUSH 64 formulation helps to treat mild to moderate cases of COVID-19. Although several drugs have been proposed to combat COVID-19, no medication is available for SARS-CoV-2 infection. The RNA-dependent RNA polymerase (RdRp) is the pivotal enzyme of SARS-CoV-2 replication, so it could be considered a better drug target for experimental studies. OBJECTIVE The AYUSH-64 formulation plants exhibited multiple therapeutic properties; thus, the present study aims to screen the phytocompounds of these plants against SARS CoV2 RdRp to identify specific compounds that could potentially affect COVID-19 infection. MATERIALS AND METHODS PatchDock and AutoDock tools were used for docking experiments. MD simulations and Density Functional Theory (DFT) calculations of protein-ligand Picroside-I and Remdesivir complexes were carried out in GROMACS v2019.4 and Gaussian 09 software, respectively. RESULTS Among the tested, five phytocompounds (Picroside I, Oleanolic acid, Arvenin I, II, and III) from AYUSH-64 medicinal plants showed possible binding with RdRp catalytic residues (Ser759, Asp760, and Asp761). Of these, Picroside I exhibited hydrogen bond interactions with NTP entry channel residues (Arg553 and Arg555). The MM-PBSA free energy, RMSD, Rg, PCA, and RMSF analysis suggested that the Picroside I complex showed stable binding interactions with RdRp in the 50 ns simulation. In addition to this, Picroside I revealed its robust and attractive nature toward the target protein, as confirmed by DFT. CONCLUSION The results of this study have proposed that Picroside I from AYUSH 64 medicinal plant compounds was the selective binder of catalytic and NTP entry channel residues of SARS-CoV2 RdRp thereby; it may considered as a potential inhibitor of SARS-CoV2 RdRp.
Collapse
Affiliation(s)
- Srinivasulu Cheemanapalli
- Survey of Medicinal Plants Unit, CCRAS - Regional Ayurveda Research Institute, Itanagar, Arunachal Pradesh, India
| | - Ramanjaneyulu Golla
- Department of Biochemistry, School of Allied Health Science, REVA University, Bangalore, India.
| | - Sudhakar Pagidi
- Department of Chemical Sciences, Indian Institute of Science, Bangalore, India
| | - Seshapani Pantangi
- Department of Microbiology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
3
|
Jiao Y, Zhou L, Li H, Zhu H, Chen D, Lu Y. A novel flavonol-polysaccharide from Tamarix chinensis alleviates influenza A virus-induced acute lung injury. Evidences for its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155364. [PMID: 38241919 DOI: 10.1016/j.phymed.2024.155364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Tamarix chinensis Lour. is a Chinese medicine used for treating inflammation-related diseases and its crude polysaccharides (MBAP90) exhibited significant anticomplement activities in vitro. PURPOSE To obtain anticomplement homogenous polysaccharides from MBAP90 and explore its therapeutic effects and potential mechanism on influenza A virus (IAV)-induced acute lung injury (ALI). METHODS Anticomplement activity-guided fractionation of the water-soluble crude polysaccharides from the leaves and twigs of T. chinensis were performed by diethylaminoethyl-52 (DEAE-52) cellulose and gel permeation columns to yield a homogeneous polysaccharide MBAP-5, which was further characterized using ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MS) and nuclear magnetic resonance (NMR) analysis. In vitro, the anticomplement activity of MBAP-5 through classical pathway was measured using a hemolytic test. The therapeutic effects of MBAP-5 on ALI were evaluated in H1N1-infected mice. H&E staining, enzyme linked immunosorbent assay (ELISA), immunohistochemistry, and western blot were used to systematically access lung histomorphology, inflammatory cytokines, degree of complement component 3c, 5aR, and 5b-9 (C3c, C5aR, and C5b-9) deposition, and inflammasome signaling pathway protein expressions in lung tissues. RESULTS MBAP-5 was a novel flavonol-polysaccharide with the molecular weight (Mw) of 153.6 kDa. Its structure was characterized to process a backbone of →4)-α-D-GlcpA-(1→, →6)-α-D-Glcp-(1→, →3,4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →4,6)-β-D-Glcp-(1→, as well as branches of α-L-Araf-(1→ and β-D-Galp-(1→. Particularly, O-3 of →3,4,6)-α-D-Glcp-(1→ was substituted by quercetin. In vitro assay showed that MBAP-5 had a potent anticomplement activity with a CH50 value of 102 ± 4 µg/ml. Oral administration of MBAP-5 (50 and 100 mg/kg) effectively attenuated the H1N1-induced pulmonary injury in vivo by reducing pulmonary edema, virus replication, and inflammatory responses. Mechanistically, MBAP-5 inhibited the striking deposition and contents of complement activation products (C3c, C5aR, and C5b-9) in the lung. Toll-like receptor 4 (TLR4) /transcription factor nuclear factor κB (NF-κB) signaling pathway was constrained by MBAP-5 treatment. In addition, MBAP-5 could suppress activation of the inflammasome pathways, including Nod-like receptor pyrin domain 3 (NLRP3), cysteinyl aspartate specific proteinase-1/12 (caspase-1/12), apoptosis‑associated speck‑like protein (ASC), gasdermin D (GSDMD), interleukin (IL)-1β, and IL-18 expressions. CONCLUSIONS A novel flavonol-polysaccharide MBAP-5 isolated from T. chinensis demonstrated a therapeutic effect against ALI induced by IAV attack. The mechanism might be associated with inhibition of complement system and inflammasome pathways activation.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, Liang C, Liu Y, Li J, Fang S, Chang Y. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117397. [PMID: 37956915 DOI: 10.1016/j.jep.2023.117397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), belongs to the Rubiaceae family. It has abundant medicinal value, such as purging fire and eliminating annoyance, clearing heat and diuresis, cooling blood, and detoxifying. GF is usually used in combination with other drugs to treat diseases such as fever and jaundice in damp heat syndrome in traditional Chinese medicines (TCMs) clinical practice. THE AIM OF THE REVIEW This review comprehensively summarizes the research progress in botany, traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, pharmacokinetics, and toxicology, which aims to provide a scientific basis for the rational application and future research of GF. MATERIALS AND METHODS ScienceDirect, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Embase, Scopus etc. databases were retrieved to gain the comprehensive information of GF. RESULTS At present, more than 215 compounds were isolated and identified from GF, including iridoids, diterpenes, triterpenoids, flavonoids, organic esters, and so on. The traditional application of GF mainly focused on clearing heat and detoxification. Pharmacological studies proved that GF had anti-inflammatory, antioxidation, antifatigue, antithrombotic, liver and gallbladder protection, and other pharmacological effects. In addition, many improved processing methods can alleviate the side effects and toxic reactions caused by long-term use of GF, so controlling its quality through multi-component content measurement has become an important means of research. CONCLUSION GF has a wide range of applications, the mechanisms by which some effective substances exert their pharmacological effects have not been clearly explained due to the complexity and diversity of its components. This review systematically elaborates on the traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, and toxicology of GF, and it is expected to become a candidate drug for treating diseases, such as depression, pancreatitis, alcoholic or non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Kibungu Kembelo P, Tuenter E, Vanhove W, Belesi Katula H, Van Damme P, Pieters L. Phytochemical Profiling by UPLC-ESI-QTOF-MS of Kalaharia uncinata (Schinz) Moldenke, Widely Used in Traditional Medicine in DR Congo. Chem Biodivers 2023; 20:e202300826. [PMID: 37593932 DOI: 10.1002/cbdv.202300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Kalaharia uncinata (Schinz) Moldenke, is a tropical erect bushy shrub or subshrub of the Lamiaceae family. It is an endemic plant species of Southern Africa, widely used in the pharmacopoeia against upper respiratory tract infections. A previously conducted ethnobotanical survey revealed that it is believed to contain bioactive substances. However, no relevant phytochemical information was available. This study aimed to perform a phytochemical characterization of K. uncinata and also to discuss the potential bioactivity of the identified phytochemical constituents based on documented data. Ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used for profiling and identification of the main phytochemical constituents from leaf extracts (MeOH 90 %, DCM, AcOEt, BuOH, hexane and residue) of K.uncinata. Twenty-four constituents, representing mainly flavonoids (14), followed by phenylethanoid glycosides (7), phenolic acids (2), and an iridoid glycoside (1) were tentatively identified. Most of the identified compounds are documented to have antiviral and anti-inflammatory properties, which could possibly be the rationale behind the use of K. uncinata against upper respiratory tract infections.
Collapse
Affiliation(s)
- Pathy Kibungu Kembelo
- Department of Environmental Sciences, Kinshasa University (UNIKIN), Kinshasa XI, BP 127, Kinshasa, Democratic Republic of Congo
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
- Faculty of Agronomic Sciences, Kongo University, 23-Avenue Kolo, BP 202, Mbanza-Ngungu, Kongo-Central Province, Democratic Republic of Congo
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
| | - Wouter Vanhove
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Honoré Belesi Katula
- Department of Environmental Sciences, Kinshasa University (UNIKIN), Kinshasa XI, BP 127, Kinshasa, Democratic Republic of Congo
| | - Patrick Van Damme
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Kamycka 129, 165 00, Praha - Suchdol, Czech Republic
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
| |
Collapse
|
6
|
Bao Y, Shi Y, Zhou L, Gao S, Yao R, Guo S, Geng Z, Bao L, Zhao R, Cui X. MicroRNA-205-5p: A potential therapeutic target for influenza A. J Cell Mol Med 2022; 26:5917-5928. [PMID: 36403222 PMCID: PMC9716220 DOI: 10.1111/jcmm.17615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 02/11/2024] Open
Abstract
We are committed to finding host targets for influenza A therapeutics. The nucleoprotein (NP) plays an important role in influenza A virus replication and is an indispensable part of viral transcription and replication. Exploring endogenous substances that can modulate NP is critical for finding host targets. MicroRNAs (miRNAs, miR) are a novel class of powerful, endogenous gene expression regulators. Herein, we used miRanda to analyse the base complementarity between the NP gene and the 14 host miRNAs reported previously by us. MiRanda predicted that miR-431-5p, miR-744-3p and miR-205-5p could complement the NP gene. To understand the effect of these miRNAs on NP expression, we co-transfected 293 T cells with NP gene sequence containing above miRNAs binding site or full sequence of NP gene (transfected into pmirGlo or pcDNA3.1 vectors, respectively), and mimics of miR-205-5p, miR-431-5p and miR-744-3p. Dual luciferase reporter gene or Western blotting assays confirmed that miR-205-5p and miR-431-5p inhibit NP expression by binding with the miRNA binding site of NP gene. Further, we infected Mouse Lung Epithelial (MLE-12) cells overexpressing miR-205-5p and miR-431-5p with influenza A virus and performed Western blotting to examine NP expression. We found that NP expression was significantly reduced in MLE-12 cells overexpressing miR-205-5p during influenza A infection. The miR-205-5p overexpression-induced inhibition of influenza A replication could be attributed to the inhibition of NP expression. Further, we administered oseltamivir and Jinchai Antiviral Capsules (JC, an anti-influenza Chinese medicine) to influenza A virus-infected MLE-12 cells and mice. We found that miR-205-5p was significantly decreased increased in infected cells and lung tissues, and oseltamivir and JC could up-regulate miR-205-5p. In conclusion, we provide new evidence that miR-205-5p plays a role in regulating viral NP protein expression in combating influenza A and may be a potential target for influenza A therapy.
Collapse
Affiliation(s)
- Yanyan Bao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yujing Shi
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Lirun Zhou
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Shuangrong Gao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Rongmei Yao
- Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shanshan Guo
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Zihan Geng
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Lei Bao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ronghua Zhao
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Xiaolan Cui
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
7
|
Tang Z, Li L, Xia Z. Exploring Anti-Nonalcoholic Fatty Liver Disease Mechanism of Gardeniae Fructus by Network Pharmacology, Molecular Docking, and Experiment Validation. ACS OMEGA 2022; 7:25521-25531. [PMID: 35910181 PMCID: PMC9330257 DOI: 10.1021/acsomega.2c02629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 05/08/2023]
Abstract
Gardeniae fructus (GF), the fruit from Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of nonalcoholic fatty liver disease (NAFLD) in the clinic. To explore the hepatoprotective mechanism of GF for the treatment of NAFLD, we proposed a novel strategy that integrated in vivo efficacy evaluation, network pharmacology analysis, molecular docking, and experimental validation. A NAFLD animal model induced by high fat diet (HFD) feed was established, then orally administrated with or without GF. The results showed that GF significantly decreased the levels of serum total cholesterol (TC), lipoprotein cholesterol, triglyceride (TG), alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, free fatty acids, glucose, and insulin and the levels of liver TG, TC, and malondialdehyde compared with the nontreated HFD group. Network pharmacology studies showed that quercetin, oleanolic acid, kaempferol, and geniposide were the main biocompounds in GF that targeted the PPARα and PPARγ genes through regulating the PPAR and AMPK signal pathways to protect against NAFLD. The interactions between bioactive compounds and their corresponding target proteins were analyzed by molecular docking and subsequently confirmed using the qRT-PCR assay. Collectively, GF was a therapeutic drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Zhongyan Tang
- Department
of Emergency and Critical Care Medicine, Jin Shan Hospital, Fudan University, Shanghai 201508, China
| | - Lin Li
- Department
of Operative Dentistry and Endodontics, School and Hosipital of Stomatology,
Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
| | - Zhengxiang Xia
- Department
of Pharmacy, School and Hosipital of Stomatology, Shanghai Engineering
Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
- . Tel: +8621-66315500
| |
Collapse
|
8
|
Xu J, Zhou R, Luo L, Dai Y, Feng Y, Dou Z. Quality Evaluation of Decoction Pieces of Gardeniae Fructus Based on Qualitative Analysis of the HPLC Fingerprint and Triple-Q-TOF-MS/MS Combined with Quantitative Analysis of 12 Representative Components. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2219932. [PMID: 35256913 PMCID: PMC8898142 DOI: 10.1155/2022/2219932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 05/17/2023]
Abstract
In this study, quality evaluation (QE) of 40 batches of decoction pieces of Gardeniae Fructus (GF) produced by different manufacturers of herbal pieces was performed by qualitative analysis of the HPLC fingerprint and ultra-fast liquid chromatography (UFLC)-triple-Q-TOF-MS/MS combined with quantitative analysis of multiple components, which we established previously for QE of traditional medicine. First, HPLC fingerprints of 40 samples were determined, and the common peaks in the reference fingerprint were assigned. Second, the components of the common peaks in the HPLC fingerprints were identified by UFLC-triple-Q-TOF-MS/MS. Finally, the contents of the components confirmed by reference substances were measured. The results showed that there were 28 common peaks in the HPLC fingerprints of 40 samples. The components of these 28 common peaks were identified as 13 iridoids, 4 crocins, 7 monocyclic monoterpenoids, 3 organic acids, and 1 flavonoid. Of these, a total of 12 components, including 7 iridoids of geniposide, shanzhiside, geniposidic acid, deacetyl asperulosidic acid methyl ester, gardenoside, scandoside methyl ester, and genipin gentiobioside, 2 crocins such as crocin I and crocin II, 1 monocyclic monoterpenoid of jasminoside B, 1 organic acid of chlorogenic acid, and 1 flavonoid of rutin, were unambiguously identified by comparison with reference substances. There were certain differences in the contents of these 12 components among 40 samples. The geniposide content ranged from 37.917 to 72.216 mg/g, and the total content of the 7 iridoids ranged from 59.931 to 94.314 mg/g.
Collapse
Affiliation(s)
- Jing Xu
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Rongrong Zhou
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Ying Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaru Feng
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
| | - Zhihua Dou
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
- Nantong Third People's Hospital, Nantong University, Nantong 226006, Jiangsu, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
9
|
Jumaa RS, Abdulmajeed DI, Karim AJ. Evaluation of secondary metabolites of herbal plant extracts as an antiviral effect on infectious bursal disease virus isolates in embryonated chicken eggs. Vet World 2021; 14:2971-2978. [PMID: 35017846 PMCID: PMC8743771 DOI: 10.14202/vetworld.2021.2971-2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND AIM Infectious bursal disease attacks the poultry industry, mainly young chickens, causing immunosuppression, and death with high economic losses. This study aimed to evaluate the effects of the monoextract, diextracts, and triextracts of Quercus infectoria (QI), Citrus aurantifolia (CiA), and Coffea arabica (CoA) on infectious bursal disease virus (IBDV) in embryonated chicken eggs (ECEs). MATERIALS AND METHODS The experimental design consisted of three sets of ECEs at 11 days of age, and each set included seven groups (G1-G7). The extracts of QI, CiA, and CoA were inoculated to ECEs by the chorioallantoic membrane method before, in concomitant (mixed) with, and after IBDV infection to the first, second, and third sets, respectively. The monoextract, diextracts, and triextracts of QI, CiA, and CoA were given at 1%, 2%, 5%, and 10% concentrations to G1-G3, G4-G6, and G7, respectively. Real-time polymerase chain reaction identified and confirmed the virus in accordance with the pathological changes. RESULTS The monoextract (5-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas the monoextract (10% concentration) inhibited IBDV during mixed inoculation and post-inoculation. Diextracts (2-10% concentrations) inhibited IBDV and had no effect on viral infection preinoculation, whereas diextracts (5-10% concentrations) inhibited IBDV during mixed inoculation and post-inoculation. Triextracts (1%, 2%, 5%, and 10% concentrations) inhibited IBDV by ameliorating the pathological changes of the virus and preventing the death of ECEs. CONCLUSION The inoculation of herbal extracts, particularly triextracts, alleviates the pathological changes in ECEs infected with IBDV. This study recommends the oral route in evaluating plant extracts against IBDV in poultry.
Collapse
Affiliation(s)
- Rawaa Saladdin Jumaa
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Dhuha Ismael Abdulmajeed
- Department of Microbiology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Abdulkarim Jafar Karim
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
10
|
Das A, Pandita D, Jain GK, Agarwal P, Grewal AS, Khar RK, Lather V. Role of phytoconstituents in the management of COVID-19. Chem Biol Interact 2021; 341:109449. [PMID: 33798507 PMCID: PMC8008820 DOI: 10.1016/j.cbi.2021.109449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19, a severe global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as one of the most threatening transmissible disease. As a great threat to global public health, the development of treatment options has become vital, and a rush to find a cure has mobilized researchers globally from all areas. SCOPE AND APPROACH This review focuses on deciphering the potential of different secondary metabolites from medicinal plants as therapeutic options either as inhibitors of therapeutic targets of SARS-CoV-2 or as blockers of viral particles entry through host cell receptors. The use of medicinal plants containing specific phytomoieties could be seen in providing a safer and long-term solution for the population with lesser side effects. Key Findings and Conclusions: Considering the high cost and time-consuming drug discovery process, therapeutic repositioning of existing drugs was explored as treatment option in COVID-19, however several molecules have been retracted as therapeutics either due to no positive outcomes or the severe side effects. These effects call for exploring the alternate treatment options which are therapeutically effective as well as safe. Keeping this in mind, phytopharmaceuticals derived from medicinal plants could be explored as important resources in the development of COVID-19 treatment, as their role in the past for treatment of viral diseases like HIV, MERS-CoV, and influenza has been well reported. Considering this fact, different phytoconstituents such as flavonoids, alkaloids, tannins and glycosides etc. Possessing antiviral properties against coronaviruses and possessing potential against SARS-CoV-2 have been reviewed in the present work.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Roop K Khar
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
11
|
Shu P, Yu M, Zhu H, Luo Y, Li Y, Li N, Zhang H, Zhang J, Liu G, Wei X, Yi W. Two new iridoid glycosides from Gardeniae Fructus. Carbohydr Res 2021; 501:108259. [PMID: 33610932 DOI: 10.1016/j.carres.2021.108259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Two new iridoid glycosides, genipin 1,10-di-O-α-l-rhamnoside (1) and genipin 1,10-di-O-β-d-xylopyranoside (2), along with thirteen known compounds (3-15) were isolated from Gardeniae Fructus. Their structures were elucidated by physical data analyses such as NMR, UV, IR, HR-ESI-MS, as well as chemical hydrolysis. All compounds were tested for their tyrosinase inhibitory and antioxidant activities. At a concentration of 25 μM, compound 13 showed obvious mushroom tyrosinase inhibition activity with % inhibition value of 36.52 ± 1.98%, with kojic acid used as the positive control (46.09 ± 1.29%). At a concentration of 1 mM, compounds 8 and 9 exhibited considerable DPPH radical scavenging activities, with radical scavenging rates of 48.54 ± 0.47%, 58.59 ± 0.39%, respectively, with l-ascorbic acid used as the positive control (59.02 ± 0.77%).
Collapse
Affiliation(s)
- Penghua Shu
- Food and Pharmacy College, Xuchang University, Xuchang, China.
| | - Mengzhu Yu
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Huiqing Zhu
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Yuehui Luo
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Yamin Li
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Nianci Li
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Hui Zhang
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Jialong Zhang
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Guangwei Liu
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Xialan Wei
- School of Information Engineering, Xuchang University, Xuchang, China
| | - Wenhan Yi
- Communist Youth League Committee, Xuchang University, Xuchang, China.
| |
Collapse
|
12
|
8- O-( E- p-methoxycinnamoyl)harpagide Inhibits Influenza A Virus Infection by Suppressing Intracellular Calcium. Molecules 2021; 26:molecules26041029. [PMID: 33672072 PMCID: PMC7919648 DOI: 10.3390/molecules26041029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
Calcium (Ca2+) dependent signaling circuit plays a critical role in influenza A virus (IAV) infection. The 8-O-(E-p-methoxycinnamoyl)harpagide (MCH) exhibits pharmacological activities that exert neuroprotective, hepatoprotective, anti-inflammatory and other biological effects. However, not have reports of antiviral effects. To investigate the antiviral activity of MCH on IAV-infected human lung cells mediated by calcium regulation. We examined the inhibitory effect of MCH on IAV infections and measured the level of viral proteins upon MCH treatment using Western blotting. We also performed molecular docking simulation with MCH and IAV M2 protein. Finally, we analyzed MCH’s suppression of intracellular calcium and ROS (reactive oxygen species) in IAV-infected human lung cells using a flow cytometer. The results shown that MCH inhibited the infection of IAV and increased the survival of the infected human lung cells. The levels of IAV protein M1, M2, NS1 and PA were inhibited in MCH-treated human lung cells compared to that in infected and untreated cells. Also, docking simulation suggest that MCH interacted with M2 on its hydrophobic wall (L40 and I42) and polar amino acids (D44 and R45), which formed intermolecular contacts and were a crucial part of the channel gate along with W41. Lastly, MCH inhibited IAV infection by reducing intracellular calcium and mitochondrial Ca2+/ROS levels in infected human lung cells. Taken together, these data suggest that MCH inhibits IAV infection and increases the survival of infected human lung cells by suppressing calcium levels. These results indicate that MCH is useful for developing IAV treatments.
Collapse
|
13
|
Umeoguaju FU, Ephraim-Emmanuel BC, Patrick-Iwuanyanwu KC, Zelikoff JT, Orisakwe OE. Plant-Derived Food Grade Substances (PDFGS) Active Against Respiratory Viruses: A Systematic Review of Non-clinical Studies. Front Nutr 2021; 8:606782. [PMID: 33634160 PMCID: PMC7900554 DOI: 10.3389/fnut.2021.606782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Human diet comprises several classes of phytochemicals some of which are potentially active against human pathogenic viruses. This study examined available evidence that identifies existing food plants or constituents of edible foods that have been reported to inhibit viral pathogenesis of the human respiratory tract. SCOPUS and PUBMED databases were searched with keywords designed to retrieve articles that investigated the effect of plant-derived food grade substances (PDFGS) on the activities of human pathogenic viruses. Eligible studies for this review were those done on viruses that infect the human respiratory tract. Forty six (46) studies met the specified inclusion criteria from the initial 5,734 hits. The selected studies investigated the effects of different PDFGS on the infectivity, proliferation and cytotoxicity of different respiratory viruses including influenza A virus (IAV), influenza B virus (IBV), Respiratory syncytial virus (RSV), human parainfluenza virus (hPIV), Human coronavirus NL63 (HCoV-NL63), and rhinovirus (RV) in cell lines and mouse models. This review reveals that PDFGS inhibits different stages of the pathological pathways of respiratory viruses including cell entry, replication, viral release and viral-induced dysregulation of cellular homeostasis and functions. These alterations eventually lead to the reduction of virus titer, viral-induced cellular damages and improved survival of host cells. Major food constituents active against respiratory viruses include flavonoids, phenolic acids, tannins, lectins, vitamin D, curcumin, and plant glycosides such as glycyrrhizin, acteoside, geniposide, and iridoid glycosides. Herbal teas such as guava tea, green and black tea, adlay tea, cistanche tea, kuding tea, licorice extracts, and edible bird nest extracts were also effective against respiratory viruses in vitro. The authors of this review recommend an increased consumption of foods rich in these PDFGS including legumes, fruits (e.g berries, citrus), tea, fatty fish and curcumin amongst human populations with high prevalence of respiratory viral infections in order to prevent, manage and/or reduce the severity of respiratory virus infections.
Collapse
Affiliation(s)
- Francis U. Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Benson C. Ephraim-Emmanuel
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Dental Health Sciences, Ogbia, Bayelsa State College of Health Technology, Otakeme, Nigeria
| | - Kingsley C. Patrick-Iwuanyanwu
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Judith T. Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Orish Ebere Orisakwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
14
|
Huang ST, Lai HC, Lin YC, Huang WT, Hung HH, Ou SC, Lin HJ, Hung MC. Principles and treatment strategies for the use of Chinese herbal medicine in patients at different stages of coronavirus infection. Am J Cancer Res 2020; 10:2010-2031. [PMID: 32774998 PMCID: PMC7407358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, human-infecting β-coronavirus enveloped, positive-sense single-stranded RNA viruses, similar to the severe acute respiratory syndrome (SARS) infection that emerged in November 2002. In traditional Chinese medicine (TCM), the epidemic disease concepts of "febrile epidemics" (wenyi) or "warm diseases" (wenbing) are based on geographic and cultural aspects, and Chinese herbal medicine (CHM) played an important role in the treatment of epidemic diseases. CHM was widely used to treat patients suffered with SARS almost two decades ago during outbreak of SARS, with proven safety and potential benefits. TCM has also been widely used to treat cancer patients for a long history and much of them associate with immunomodulatory activity and are used to treat coronavirus-related diseases. We propose the use of CHM treatment principles for clinical practice, based on four main stages of COVID-19 infection: early, intermediate, severe, and convalescence. We suggest corresponding decoctions that exhibit antiviral activity and anti-inflammatory effects in the early stage of infection; preventing the disease from progressing from an intermediate to severe stage of infection; restoring normal lung function and improving consciousness in the severe stage; and ameliorating pulmonary and vascular injury in the convalescent stage. We summarize the pharmaceutical mechanisms of CHM for treating coronavirus via antiviral, anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- An-Nan Hospital, China Medical UniversityTainan, Taiwan
| | - Hsiang-Chun Lai
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Yu-Chun Lin
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wei-Te Huang
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hao-Hsiu Hung
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Hung-Jen Lin
- School of Chinese Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chinese Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|