1
|
Kim J, Bustamante E, Sotonyi P, Maxwell N, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. eLife 2024; 13:RP97289. [PMID: 39046788 PMCID: PMC11268886 DOI: 10.7554/elife.97289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edwin Bustamante
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Nicholas Maxwell
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Julie K Kent
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - William C Wetsel
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Psychiatry and Behavioral Sciences, Duke University School of MedicineDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University School of MedicineDurhamUnited States
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
2
|
Kaizuka T, Takumi T. Alteration of synaptic protein composition during developmental synapse maturation. Eur J Neurosci 2024; 59:2894-2914. [PMID: 38571321 DOI: 10.1111/ejn.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
3
|
Chang YC, Yu MH, Huang HP, Chen DH, Yang MY, Wang CJ. Mulberry leaf extract inhibits obesity and protects against diethylnitrosamine-induced hepatocellular carcinoma in rats. J Tradit Complement Med 2024; 14:266-275. [PMID: 38707917 PMCID: PMC11068992 DOI: 10.1016/j.jtcme.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 05/07/2024] Open
Abstract
Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Dong-Hui Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| |
Collapse
|
4
|
Prospéri MT, Giordano C, Gomez-Duro M, Hurbain I, Macé AS, Raposo G, D’Angelo G. Extracellular vesicles released by keratinocytes regulate melanosome maturation, melanocyte dendricity, and pigment transfer. Proc Natl Acad Sci U S A 2024; 121:e2321323121. [PMID: 38607931 PMCID: PMC11032449 DOI: 10.1073/pnas.2321323121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular vesicles (EVs) facilitate the transfer of proteins, lipids, and genetic material between cells and are recognized as an additional mechanism for sustaining intercellular communication. In the epidermis, the communication between melanocytes and keratinocytes is tightly regulated to warrant skin pigmentation. Melanocytes synthesize the melanin pigment in melanosomes that are transported along the dendrites prior to the transfer of melanin pigment to keratinocytes. EVs secreted by keratinocytes modulate pigmentation in melanocytes [(A. Lo Cicero et al., Nat. Commun. 6, 7506 (2015)]. However, whether EVs secreted by keratinocytes contribute to additional processes essential for melanocyte functions remains elusive. Here, we show that keratinocyte EVs enhance the ability of melanocytes to generate dendrites and mature melanosomes and promote their efficient transfer. Further, keratinocyte EVs carrying Rac1 induce important morphological changes, promote dendrite outgrowth, and potentiate melanin transfer to keratinocytes. Hence, in addition to modulating pigmentation, keratinocytes exploit EVs to control melanocyte plasticity and transfer capacity. These data demonstrate that keratinocyte-derived EVs, by regulating melanocyte functions, are major contributors to cutaneous pigmentation and expand our understanding of the mechanism underlying skin pigmentation via a paracrine EV-mediated communication.
Collapse
Affiliation(s)
- Marie-Thérèse Prospéri
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| | - Cécile Giordano
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| | - Mireia Gomez-Duro
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| | - Ilse Hurbain
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (The Cell and Tissue Imaging Platform (PICT-IBiSA)), Paris Cedex 0575248, France
| | - Anne-Sophie Macé
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (The Cell and Tissue Imaging Platform (PICT-IBiSA)), Paris Cedex 0575248, France
| | - Graça Raposo
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (The Cell and Tissue Imaging Platform (PICT-IBiSA)), Paris Cedex 0575248, France
| | - Gisela D’Angelo
- Institut Curie, Paris Sciences & Letters Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris Cedex 0575248, France
| |
Collapse
|
5
|
Kim J, Bustamante E, Sotonyi P, Maxwell ND, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585488. [PMID: 38562715 PMCID: PMC10983896 DOI: 10.1101/2024.03.18.585488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory is selectively impaired following the expression of a genetically encoded Rac1-inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Edwin Bustamante
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Nicholas D Maxwell
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Julie K Kent
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
6
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Ugarte G, Piña R, Contreras D, Godoy F, Rubio D, Rozas C, Zeise M, Vidal R, Escobar J, Morales B. Attention Deficit-Hyperactivity Disorder (ADHD): From Abnormal Behavior to Impairment in Synaptic Plasticity. BIOLOGY 2023; 12:1241. [PMID: 37759640 PMCID: PMC10525904 DOI: 10.3390/biology12091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Attention deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high incidence in children and adolescents characterized by motor hyperactivity, impulsivity, and inattention. Magnetic resonance imaging (MRI) has revealed that neuroanatomical abnormalities such as the volume reduction in the neocortex and hippocampus are shared by several neuropsychiatric diseases such as schizophrenia, autism spectrum disorder and ADHD. Furthermore, the abnormal development and postnatal pruning of dendritic spines of neocortical neurons in schizophrenia, autism spectrum disorder and intellectual disability are well documented. Dendritic spines are dynamic structures exhibiting Hebbian and homeostatic plasticity that triggers intracellular cascades involving glutamate receptors, calcium influx and remodeling of the F-actin network. The long-term potentiation (LTP)-induced insertion of postsynaptic glutamate receptors is associated with the enlargement of spine heads and long-term depression (LTD) with spine shrinkage. Using a murine model of ADHD, a delay in dendritic spines' maturation in CA1 hippocampal neurons correlated with impaired working memory and hippocampal LTP has recently reported. The aim of this review is to summarize recent evidence that has emerged from studies focused on the neuroanatomical and genetic features found in ADHD patients as well as reports from animal models describing the molecular structure and remodeling of dendritic spines.
Collapse
Affiliation(s)
- Gonzalo Ugarte
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Ricardo Piña
- Department of Biology, Faculty of Sciences, Metropolitan University of Education Sciences, Santiago 7760197, Chile;
- Department of Human Sciences, Faculty of Human Science, Bernardo O’Higgins University, Santiago 8370854, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Felipe Godoy
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - David Rubio
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Jorge Escobar
- Institute of Chemistry, Pontifical Catholic University of Valparaíso, Valparaíso 2340000, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| |
Collapse
|
8
|
Minegishi T, Kastian RF, Inagaki N. Mechanical regulation of synapse formation and plasticity. Semin Cell Dev Biol 2023; 140:82-89. [PMID: 35659473 DOI: 10.1016/j.semcdb.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/28/2023]
Abstract
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Research Center for Genetic Engineering, National Research and Innovation Agency Republic of Indonesia, Cibinong, Bogor, Indonesia
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
9
|
Sakai J, Yang J, Chou CK, Wu WW, Akkoyunlu M. B cell receptor-induced IL-10 production from neonatal mouse CD19 +CD43 - cells depends on STAT5-mediated IL-6 secretion. eLife 2023; 12:83561. [PMID: 36735294 PMCID: PMC9934864 DOI: 10.7554/elife.83561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Newborns are unable to reach the adult-level humoral immune response partly due to the potent immunoregulatory role of IL-10. Increased IL-10 production by neonatal B cells has been attributed to the larger population of IL-10-producting CD43+ B-1 cells in neonates. Here, we show that neonatal mouse CD43- non-B-1 cells also produce substantial amounts of IL-10 following B cell antigen receptor (BCR) activation. In neonatal mouse CD43- non-B-1 cells, BCR engagement activated STAT5 under the control of phosphorylated forms of signaling molecules Syk, Btk, PKC, FAK, and Rac1. Neonatal STAT5 activation led to IL-6 production, which in turn was responsible for IL-10 production in an autocrine/paracrine fashion through the activation of STAT3. In addition to the increased IL-6 production in response to BCR stimulation, elevated expression of IL-6Rα expression in neonatal B cells rendered them highly susceptible to IL-6-mediated STAT3 phosphorylation and IL-10 production. Finally, IL-10 secreted from neonatal mouse CD43- non-B-1 cells was sufficient to inhibit TNF-α secretion by macrophages. Our results unveil a distinct mechanism of IL-6-dependent IL-10 production in BCR-stimulated neonatal CD19+CD43- B cells.
Collapse
Affiliation(s)
- Jiro Sakai
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, The US Food and Drug AdministrationSilver SpringUnited States
| | - Jiyeon Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, The US Food and Drug AdministrationSilver SpringUnited States
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringUnited States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, United States Food and Drug AdministrationSilver SpringUnited States
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, The US Food and Drug AdministrationSilver SpringUnited States
| |
Collapse
|
10
|
Ramón-Landreau M, Sánchez-Puelles C, López-Sánchez N, Lozano-Ureña A, Llabrés-Mas AM, Frade JM. E2F4DN Transgenic Mice: A Tool for the Evaluation of E2F4 as a Therapeutic Target in Neuropathology and Brain Aging. Int J Mol Sci 2022; 23:ijms232012093. [PMID: 36292945 PMCID: PMC9603043 DOI: 10.3390/ijms232012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
E2F4 was initially described as a transcription factor with a key function in the regulation of cell quiescence. Nevertheless, a number of recent studies have established that E2F4 can also play a relevant role in cell and tissue homeostasis, as well as tissue regeneration. For these non-canonical functions, E2F4 can also act in the cytoplasm, where it is able to interact with many homeostatic and synaptic regulators. Since E2F4 is expressed in the nervous system, it may fulfill a crucial role in brain function and homeostasis, being a promising multifactorial target for neurodegenerative diseases and brain aging. The regulation of E2F4 is complex, as it can be chemically modified through acetylation, from which we present evidence in the brain, as well as methylation, and phosphorylation. The phosphorylation of E2F4 within a conserved threonine motif induces cell cycle re-entry in neurons, while a dominant negative form of E2F4 (E2F4DN), in which the conserved threonines have been substituted by alanines, has been shown to act as a multifactorial therapeutic agent for Alzheimer’s disease (AD). We generated transgenic mice neuronally expressing E2F4DN. We have recently shown using this mouse strain that expression of E2F4DN in 5xFAD mice, a known murine model of AD, improved cognitive function, reduced neuronal tetraploidization, and induced a transcriptional program consistent with modulation of amyloid-β (Aβ) peptide proteostasis and brain homeostasis recovery. 5xFAD/E2F4DN mice also showed reduced microgliosis and astrogliosis in both the cerebral cortex and hippocampus at 3-6 months of age. Here, we analyzed the immune response in 1 year-old 5xFAD/E2F4DN mice, concluding that reduced microgliosis and astrogliosis is maintained at this late stage. In addition, the expression of E2F4DN also reduced age-associated microgliosis in wild-type mice, thus stressing its role as a brain homeostatic agent. We conclude that E2F4DN transgenic mice represent a promising tool for the evaluation of E2F4 as a therapeutic target in neuropathology and brain aging.
Collapse
Affiliation(s)
- Morgan Ramón-Landreau
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Cristina Sánchez-Puelles
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Anna Lozano-Ureña
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Aina M. Llabrés-Mas
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - José M. Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Cajal International Neuroscience Center, Consejo Superior de Investigaciones Científicas, UAH Science and Technology Campus, Avenida León 1, 28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-91-585-4740
| |
Collapse
|
11
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Aihara S, Fujimoto S, Sakaguchi R, Imai T. BMPR-2 gates activity-dependent stabilization of primary dendrites during mitral cell remodeling. Cell Rep 2021; 35:109276. [PMID: 34161760 DOI: 10.1016/j.celrep.2021.109276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Developing neurons initially form excessive neurites and then remodel them based on molecular cues and neuronal activity. Developing mitral cells in the olfactory bulb initially extend multiple primary dendrites. They then stabilize single primary dendrites while eliminating others. However, the mechanisms underlying selective dendrite remodeling remain elusive. Using CRISPR-Cas9-based knockout screening combined with in utero electroporation, we identify BMPR-2 as a key regulator for selective dendrite stabilization. Bmpr2 knockout and its rescue experiments show that BMPR-2 inhibits LIMK without ligands and thereby permits dendrite destabilization. In contrast, the overexpression of antagonists and agonists indicates that ligand-bound BMPR-2 stabilizes dendrites, most likely by releasing LIMK. Using genetic and FRET imaging experiments, we demonstrate that free LIMK is activated by NMDARs via Rac1, facilitating dendrite stabilization through F-actin formation. Thus, the selective stabilization of primary dendrites is ensured by concomitant inputs of BMP ligands and neuronal activity.
Collapse
Affiliation(s)
- Shuhei Aihara
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Richi Sakaguchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Zaręba-Kozioł M, Bartkowiak-Kaczmarek A, Roszkowska M, Bijata K, Figiel I, Halder AK, Kamińska P, Müller FE, Basu S, Zhang W, Ponimaskin E, Włodarczyk J. S-Palmitoylation of Synaptic Proteins as a Novel Mechanism Underlying Sex-Dependent Differences in Neuronal Plasticity. Int J Mol Sci 2021; 22:ijms22126253. [PMID: 34200797 PMCID: PMC8230572 DOI: 10.3390/ijms22126253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Anup Kumar Halder
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Paulina Kamińska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Franziska E. Müller
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1/A9, 48149 Munster, Germany;
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| |
Collapse
|
14
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
15
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
16
|
Yao ZH, Wang J, Shen BZ, Li YT, Yao XL, Zhang SF, Zhang Y, Hu JC, Xie YC. Identification of a hippocampal lncRNA-regulating network in cognitive dysfunction caused by chronic cerebral hypoperfusion. Aging (Albany NY) 2020; 12:19520-19538. [PMID: 33040050 PMCID: PMC7732294 DOI: 10.18632/aging.103901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 01/24/2023]
Abstract
Cognitive dysfunction caused by chronic cerebral hypoperfusion is a common underlying cause of many cognition-related neurodegenerative diseases. The mechanisms of cognitive dysfunction caused by CCH are not clear. Long non-coding RNA is involved in synaptic plasticity and cognitive function, but whether lncRNA is involved in cognitive dysfunction caused by CCH has not yet been reported. In the present study, we identified the altered lncRNAs and mRNAs by deep RNA sequencing. A total of 128 mRNAs and 91 lncRNAs were up-regulated, and 108 mRNAs and 98 lncRNAs were down-regulated. Real-time reverse transcription-polymerase chain reaction verified the reliability of the lncRNA and mRNA sequencing. Gene Ontology and KEGG pathway analyses showed that differentially-expressed mRNAs were related to peptide antigen binding, the extracellular space, the monocarboxylic acid transport, and tryptophan metabolism. The co-expression analysis showed that 161 differentially expressed lncRNAs were correlated with DE mRNAs. By predicting the miRNA in which both DE lncRNAs and DE mRNAs bind together, we constructed a competitive endogenous RNA network. In this lncRNAs-miRNAs-mRNAs network, 559 lncRNA-miRNA-mRNA targeted pairs were identified, including 83 lncRNAs, 67 miRNAs, and 108 mRNAs. Through GO and KEGG pathway analysis, we further analyzed and predicted the regulatory function and potential mechanism of ceRNA network regulation. Our results are helpful for understanding the pathogenesis of cognitive dysfunction caused by CCH and provide direction for further research.
Collapse
Affiliation(s)
- Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Zhen Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Tong Li
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Li Yao
- Department of Neurology, Central Hospital of Zhengzhou, Zhengzhou, China
| | - Shao-Feng Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji-Chang Hu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Chun Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Suratkal SS, Yen YH, Nishiyama J. Imaging dendritic spines: molecular organization and signaling for plasticity. Curr Opin Neurobiol 2020; 67:66-74. [PMID: 32942126 DOI: 10.1016/j.conb.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity and, ultimately, learning and memory. The process is mediated by signaling pathways that promote the reorganization of the actin cytoskeleton and subsynaptic structures, which in turn cause structural and functional changes in dendritic spines. Recent advances in optical technologies have started to reveal the fine molecular structures and dynamic signaling occurring inside spines, providing significant insights into the molecular regulation of spines. Here, we highlight recent studies to resolve the molecular mechanisms underlying the spine actin cytoskeleton and plasticity with high spatiotemporal resolution. Moreover, we discuss new genome editing-based approaches in imaging the molecular structure and plasticity of dendritic spines.
Collapse
Affiliation(s)
- Swathi Shivaram Suratkal
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yu-Hsin Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
18
|
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Palmitoylated Proteins in Dendritic Spine Remodeling. Front Synaptic Neurosci 2020; 12:22. [PMID: 32655390 PMCID: PMC7325885 DOI: 10.3389/fnsyn.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|