1
|
Azizoglu U, Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, Ibal JC, Sharafi R, Salehi Jouzani G, Ortiz A, Vaca J, Sansinenea E. Natural Products Produced by the Species of Bacillus cereus Group: Recent Updates. J Basic Microbiol 2024:e2400666. [PMID: 39569545 DOI: 10.1002/jobm.202400666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Bacillus cereus group produces diverse antimicrobial compounds through different metabolic pathways, including amino acid-based compounds, sugar derivatives, volatile and miscellaneous compounds. These antimicrobial compounds exhibit antibacterial and antifungal activities against various plant pathogens, promoting plant growth and enhancing tolerance to abiotic stresses. They also exhibit nematicidal activities against plant nematodes and antagonistic effects against pathogens in aquatic animals, promoting growth and inducing immune responses. Moreover, B. cereus group bacteria play a significant role in bioremediation by breaking down or neutralizing environmental pollutants, such as plastics, petroleum products, heavy metals, and insecticides. They produce enzymes like laccases, lipases, proteases, and various oxidases, contributing to the degradation of these pollutants. In the food industry, they can cause food poisoning due to their production of enterotoxins. However, they are also utilized in various industrial applications, such as producing environmentally friendly bio-based materials, biofertilizers, and nanoparticles. Notably, B. cereus transforms selenite into selenium nanoparticles, which have health benefits, including cancer prevention. In summary, B. cereus group bacteria have diverse applications in agriculture, bioremediation, industry, and medicine, contributing to sustainable and eco-friendly solutions across multiple fields. In this review, we have revised B. cereus group and the characteristics of every species; we have also highlighted the more important compounds secreted by the species of B. cereus group and the applications of these compounds. The aim is to explain the available secondary metabolites to classify the species from this group, increasing the knowledge about taxonomy of this group.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye
| | | | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, Bácum, Sonora, Mexico
| | | | - Jerald Conrad Ibal
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | - Reza Sharafi
- National Center for Genetic Resource of Agriculture and Natural Resources, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| |
Collapse
|
2
|
Shi X, Zhou W, Lu X, Cao C, Sheng D, Ren X, Jin N, Zhang Y, Guo Z, Cao S, Ye S. Screening of Antagonistic Bacteria against Three Aquatic Pathogens and Characterization of Lipopeptides in Bacillus cereus BA09. J Microbiol Biotechnol 2024; 34:2023-2032. [PMID: 39462613 PMCID: PMC11540599 DOI: 10.4014/jmb.2404.04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/29/2024]
Abstract
Screening for antagonistic bacteria on aquatic pathogens and identification of antagonistic ingredients are essential to reduce the use of chemicals in aquaculture. In this study, strain BA09, subsequently identified as Bacillus cereus, simultaneously displayed strong antagonistic effects on Edwardsiella tarda, Vibrio harveyi, and Streptococcus anisopliae in the initial screening and rescreening. In addition, the methanol extract of BA09 was subjected to antibacterial activity verification and one-dimensional (1D) reversed-phase liquid chromatography (RPLC) preparation. A total of 27 fractions were collected, 6 of which were subjected to two-dimensional (2D) RPLC separation and tracked as antibacterial. A total of 14 lipopeptides that included 9 fengycin homologs, 3 bacillomycin homologs, and 2 surfactin homologs were identified by tandem high-resolution mass spectrometry. Through characterization of the antibacterial substance in Bacillus cereus BA09, which simultaneously inhibited E. tarda, V. harveyi, and S. agalactiae, the current study provides a theoretical basis for the development of antibacterial drugs in aquaculture.
Collapse
Affiliation(s)
- Xinran Shi
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Weijia Zhou
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Xiaocen Lu
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Cuiyan Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, P.R. China
| | - Dong Sheng
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Xu Ren
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Nanlin Jin
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Yu Zhang
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Zhixin Guo
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Shengnan Cao
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| | - Shigen Ye
- Aquatic Animal Hospital of Dalian Ocean University, Dalian Ocean University, Dalian 116023, P.R. China
| |
Collapse
|
3
|
Ji Y, Sun C, Wu S. Transcriptomic and Biochemical Analysis of the Antimicrobial Mechanism of Lipopeptide Iturin W against Staphylococcus aureus. Int J Mol Sci 2024; 25:9949. [PMID: 39337437 PMCID: PMC11432370 DOI: 10.3390/ijms25189949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is one of the most serious pathogens threatening food safety and public health. We have previously showed that iturin W exhibited obvious antifungal activity on plant pathogens. In the present study, we found iturin W, especially C14 iturin W, showed strong antimicrobial activity against S. aureus, and the antimicrobial mechanism of C14 iturin W was further investigated by transcriptomic analysis and a related biochemical experiment. The results showed that C14 iturin W can reduce the expression levels of genes associated with the reactive oxygen species (ROS) scavenging enzyme and genes involved in arginine biosynthesis, thus leading to the increase in ROS levels of S. aureus. Furthermore, C14 iturin W can also interfere with proton dynamics, which is crucial for cells to regulate various biological possesses. Therefore, ROS accumulation and change in proton motive force are import ways for C14 iturin W to exert the antimicrobial activity. In addition, C14 iturin W can also reduce the expression levels of genes related to virulence factors and decrease the production of enterotoxins and hemolysins in S. aureus, indicating that C14 iturin W has a good potential in food and pharmaceutical fields to reduce the harm caused by S. aureus in the future.
Collapse
Affiliation(s)
- Yingyu Ji
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
4
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|