1
|
Aliyeva-Schnorr L, Heise NV, Csuk R, Deising HB. Redox Status-Selective Imaging of Iron in Vegetative and Pathogenic Fungal Cells Using Fluorescent Dyes Synthesized Via Simple Chemical Reactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI09240111SC. [PMID: 39869149 DOI: 10.1094/mpmi-09-24-0111-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe2+ and Fe3+, the transition between which generates distinct reactive oxygen species (ROS) such as H2O2, OH- anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions. Therefore, spatially resolved visualization of Fe2+ and Fe3+ are essential to understand microbial pathogenesis. Here, we report a simple method for synthesis of the redox-state-selective dyes pyrene-tetramethyl piperidinyl oxyl (p-TEMPO) and 4-(4-methylpiperazine-1)-7-nitrobenz-2-oxa-1,3-diazole (MPNBD) for fluorescence microscopy-based imaging of Fe2+ and Fe3+ ions. Using these dyes, the occurrence and spatial distribution of Fe2+ and Fe3+ ions in vegetative and pathogenic hyphae of the hemibiotrophic maize anthracnose fungus Colletotrichum graminicola are shown. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lala Aliyeva-Schnorr
- Phytopathologie und Pflanzenschutz, Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Niels V Heise
- Organische Chemie, Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - René Csuk
- Organische Chemie, Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B Deising
- Phytopathologie und Pflanzenschutz, Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Fakhimahmadi A, Roth-Walter F, Hofstetter G, Wiederstein M, Jensen SA, Berger M, Szepannek N, Bianchini R, Pali-Schöll I, Jensen-Jarolim E, Hufnagl K. Mould allergen Alt a 1 spiked with the micronutrient retinoic acid reduces Th2 response and ameliorates Alternaria allergy in BALB/c mice. Allergy 2024. [PMID: 38818808 DOI: 10.1111/all.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND We investigated the biological function of the mould allergen Alt a 1 as a carrier of micronutrients, such as the vitamin A metabolite retinoic acid (RA) and the influence of RA binding on its allergenicity in vitro and in vivo. METHODS Alt a 1-RA complex formation was analyzed in silico and in vitro. PBMCs from Alternaria-allergic donors were stimulated with Alt a 1 complexed with RA (holo-Alt a 1) or empty apo-Alt a 1 and analyzed for cytokine production and CD marker expression. Serum IgE-binding and crosslinking assays to apo- and holo-protein were correlated to B-cell epitope analysis. Female BALB/c mice already sensitized to Alt a 1 were intranasally treated with apo-Alt a 1, holo-Alt a 1 or RA alone before measuring anaphylactic response, serum antibody levels, splenic cytokines and CD marker expression. RESULTS In silico docking calculations and in vitro assays showed that the extent of RA binding depended on the higher quaternary state of Alt a 1. Holo-Alt a 1 loaded with RA reduced IL-13 released from PBMCs and CD3+CD4+CRTh2 cells. Complexing Alt a 1 to RA masked its IgE B-cell epitopes and reduced its IgE-binding capacity. In a therapeutic mouse model of Alternaria allergy nasal application of holo-Alt a 1, but not of apo-Alt a 1, significantly impeded the anaphylactic response, impaired splenic antigen-presenting cells and induced IL-10 production. CONCLUSION Holo-Alt a 1 binding to RA was able to alleviate Th2 immunity in vitro, modulate an ongoing Th2 response and prevent anaphylactic symptoms in vivo, presenting a novel option for improving allergen-specific immunotherapy in Alternaria allergy.
Collapse
Affiliation(s)
- Aila Fakhimahmadi
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerlinde Hofstetter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Markus Wiederstein
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Sebastian A Jensen
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- AllergyCare Allergy Diagnosis Center, Private Clinic Döbling, Vienna, Austria
| | - Markus Berger
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Nathalie Szepannek
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rodolfo Bianchini
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Isabella Pali-Schöll
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- AllergyCare Allergy Diagnosis Center, Private Clinic Döbling, Vienna, Austria
- Biomedical International R+D GmbH, Vienna, Austria
| | - Karin Hufnagl
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- AllergyCare Allergy Diagnosis Center, Private Clinic Döbling, Vienna, Austria
| |
Collapse
|
3
|
Wu PC, Choo YL, Wei SY, Yago JI, Chung KR. Contribution of Autophagy to Cellular Iron Homeostasis and Stress Adaptation in Alternaria alternata. Int J Mol Sci 2024; 25:1123. [PMID: 38256200 PMCID: PMC10816921 DOI: 10.3390/ijms25021123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The tangerine pathotype of Alternaria alternata produces the Alternaria citri toxin (ACT), which elicits a host immune response characterized by the increase in harmful reactive oxygen species (ROS) production. ROS detoxification in A. alternata relies on the degradation of peroxisomes through autophagy and iron acquisition using siderophores. In this study, we investigated the role of autophagy in regulating siderophore and iron homeostasis in A. alternata. Our results showed that autophagy positively influences siderophore production and iron uptake. The A. alternata strains deficient in autophagy-related genes 1 and 8 (ΔAaatg1 and ΔAaatg8) could not thrive without iron, and their adaptability to high-iron environments was also reduced. Furthermore, the ability of autophagy-deficient strains to withstand ROS was compromised. Notably, autophagy deficiency significantly reduced the production of dimerumic acid (DMA), a siderophore in A. alternata, which may contribute to ROS detoxification. Compared to the wild-type strain, ΔAaatg8 was defective in cellular iron balances. We also observed iron-induced autophagy and lipid peroxidation in A. alternata. To summarize, our study indicates that autophagy and maintaining iron homeostasis are interconnected and contribute to the stress resistance and the virulence of A. alternata. These results provide new insights into the complex interplay connecting autophagy, iron metabolism, and fungal pathogenesis in A. alternata.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Yen-Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Sian-Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| | - Jonar I. Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong 3700, Philippines;
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402202, Taiwan; (P.-C.W.); (Y.-L.C.); (S.-Y.W.)
| |
Collapse
|
4
|
Fernandes C, Casadevall A, Gonçalves T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol Rev 2023; 47:fuad061. [PMID: 37884396 DOI: 10.1093/femsre/fuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Wolfe Street, Room E5132, Baltimore, Maryland 21205, USA
| | - Teresa Gonçalves
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
5
|
Fonseca-Guerra IR, Beltrán Pineda ME, Benavides Rozo ME. Characterization of Alternaria alternata and Alternaria scrophulariae Brown Spot in Colombian quinoa ( Chenopodium quinoa). J Fungi (Basel) 2023; 9:947. [PMID: 37755055 PMCID: PMC10532934 DOI: 10.3390/jof9090947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Alternaria is a saprophytic and opportunistic fungus with a worldwide distribution that can affect the quality of various agricultural products, such as fruits, cereals, and pseudocereals. This research was carried out to investigate the population of this genus associated with quinoa cultivation in plots located in the Boyacá department (Colombia), the country's third-largest quinoa-producing department. The present study found 17 Alternaria isolates, of which 13 were identified as A. alternata and 4 as A. scrophulariae (formerly A. conjuncta) employed molecular markers of internal transcribed spacer (ITS) region and translation elongation factor 1α (TEF-1α). In the pathogenicity test under greenhouse conditions, all the Alternaria isolates showed some degree of pathogenicity on Piartal quinoa cultivar plants although no significant differences were found in isolates. The severity indices ranged from 2 to 5, and the percentage of affected leaves per plant ranged between 15% and 40%. This fungus affected the foliar tissue of quinoa, resulting in chlorotic and necrotic spots, symptoms that can generate a reduction in the quality and productivity of crops. This is the first time that the pathogenicity of Alternaria spp. in the Piartal variety has been described and the first report of this genera in quinoa crops of Colombia.
Collapse
Affiliation(s)
- Ingrid Rocío Fonseca-Guerra
- Enviromental Management Investigation Group, Universidad de Boyacá, Tunja 150003, Colombia; (M.E.B.P.); (M.E.B.R.)
| | | | | |
Collapse
|
6
|
Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem 2023; 67:829-842. [PMID: 37313590 PMCID: PMC10500206 DOI: 10.1042/ebc20220252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Iron is an essential trace element that is limiting in most habitats including hosts for fungal pathogens. Siderophores are iron-chelators synthesized by most fungal species for high-affinity uptake and intracellular handling of iron. Moreover, virtually all fungal species including those lacking siderophore biosynthesis appear to be able to utilize siderophores produced by other species. Siderophore biosynthesis has been shown to be crucial for virulence of several fungal pathogens infecting animals and plants revealing induction of this iron acquisition system during virulence, which offers translational potential of this fungal-specific system. The present article summarizes the current knowledge on the fungal siderophore system with a focus on Aspergillus fumigatus and its potential translational application including noninvasive diagnosis of fungal infections via urine samples, imaging of fungal infections via labeling of siderophores with radionuclides such as Gallium-68 for detection with positron emission tomography, conjugation of siderophores with fluorescent probes, and development of novel antifungal strategies.
Collapse
Affiliation(s)
- Isidor Happacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Annie Yap
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Vijay K, Shibasini M, Sivasakthivelan P, Kavitha T. Microbial siderophores as molecular shuttles for metal cations: sources, sinks and application perspectives. Arch Microbiol 2023; 205:322. [PMID: 37644212 DOI: 10.1007/s00203-023-03644-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Iron is one of the highly abundant elements on the earth's crust, an essential micronutrient for a majority of life forms, and exists in two frequent oxidation states such as ferrous (Fe2+) and ferric (Fe3+). These two oxidation states are interconvertible by redox reactions and form complexes with a wide range of siderophores. At neutral pH in soil, Fe2+ is highly soluble upto 100 mM but have less biological value, whereas Fe3+ is less soluble upto 10-9 M. This reduced bioavailability of Fe3+ induces competition among microorganisms. As many microorganisms need at least 10-6 M of Fe3+ form of iron for their growth, siderophores from these microbes readily withdraw Fe3+ iron from a variety of habitats for their survival. In this review, we bring into light the several recent investigations related to diverse chemistry of microbial siderophores, mechanisms of siderophore uptake, biosynthetic gene clusters in microbial genomes, various sources of heavy metal cations in soil, siderophore-binding protein receptors and commercialisation perspectives of siderophores. Besides, this review unearths the recent advancements in the characterisation of novel siderophores and its heavy metal complexes alongside the interaction kinetics with receptors.
Collapse
Affiliation(s)
- Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Murugan Shibasini
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Panneerselvam Sivasakthivelan
- Department of Agricultural Microbiology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
8
|
Shen Y, Zhao J, Zou X, Shi Z, Liao Y, He Y, Wang H, Chen Q, Yang P, Li M. Differential Responses of Bacterial and Fungal Communities to Siderophore Supplementation in Soil Affected by Tobacco Bacterial Wilt ( Ralstonia solanacearum). Microorganisms 2023; 11:1535. [PMID: 37375037 DOI: 10.3390/microorganisms11061535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores secreted by microorganisms can promote ecological efficiency and could be used to regulate the unbalanced microbial community structure. The influence of the siderophore activity of Trichoderma yunnanense strain 2-14F2 and Beauveria pseudobassiana strain (2-8F2) on the physiological/biochemical functions and community structure of soil microbes affected by tobacco bacterial wilt (TBW) was studied. DNS Colorimetry and Biolog-eco plates were used to quantify the impacts of strain siderophores on soil enzyme activities and microbial metabolism. Based on Illumina MiSeq high-throughput sequencing, the soil 16S rDNA and ITS sequences were amplified to dissect the response characteristics of alpha/beta diversity and the structure/composition of a soil microbial community toward siderophores. The KEGG database was used to perform the PICRUSt functional prediction of the microbial community. We found that siderophores of 2-14F2 and 2-8F2, at certain concentrations, significantly increased the activities of sucrase (S-SC) and urease (S-UE) in the TBW soil and enhanced the average well color development (AWCD, carbon source utilization capacity) of the microbial community. The metabolic capacity of the diseased soil to amino acids, carbohydrates, polymers, aromatics, and carboxylic acids also increased significantly. The response of the bacterial community to siderophore active metabolites was more significant in alpha diversity, while the beta diversity of the fungal community responded more positively to siderophores. The relative abundance of Actinobacteria, Chloroflexi, and Acidobacteria increased and was accompanied by reductions in Proteobacteria and Firmicutes. LEfSe analysis showed that Pseudonocardiaceae, Gemmatimonas, Castellaniella, Chloridiumand and Acrophialophora altered the most under different concentrations of siderophore active metabolites. The PICRUSt functional prediction results showed that siderophore increased the abundance of the redox-related enzymes of the microbial community in TBW soil. The BugBase phenotypic prediction results showed that the siderophore activity could decrease the abundance of pathogenic bacteria. The study concludes that siderophore activity could decrease the abundance of pathogenic bacteria and regulate the composition of the microbial community in TBW soil. The activities of sucrase (S-SC) and urease (S-UE) in TBW soil were significantly increased. Overall, the siderophore regulation of community structures is a sustainable management strategy for soil ecosystems.
Collapse
Affiliation(s)
- Yunxin Shen
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Jiangyuan Zhao
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650106, China
| | - Xuefeng Zou
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Zhufeng Shi
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Yongqin Liao
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Yonghong He
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
| | - Hang Wang
- National Plateau Wetlands Research Center, Wetlands College, Southwest Forestry University, Kunming 650233, China
| | - Qibin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 655508, China
| | - Peiweng Yang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Minggang Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650106, China
| |
Collapse
|
9
|
Li H, Dai J, Shi Y, Zhu X, Jia L, Yang Z. Molecular Regulatory Mechanism of the Iron-Ion-Promoted Asexual Sporulation of Antrodia cinnamomea in Submerged Fermentation Revealed by Comparative Transcriptomics. J Fungi (Basel) 2023; 9:jof9020235. [PMID: 36836349 PMCID: PMC9959139 DOI: 10.3390/jof9020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Antrodia cinnamomea is a precious edible and medicinal fungus with activities of antitumor, antivirus, and immunoregulation. Fe2+ was found to promote the asexual sporulation of A. cinnamomea markedly, but the molecular regulatory mechanism of the effect is unclear. In the present study, comparative transcriptomics analysis using RNA sequencing (RNA-seq) and real time quantitative PCR (RT-qPCR) were conducted on A. cinnamomea mycelia cultured in the presence or absence of Fe2+ to reveal the molecular regulatory mechanisms underlying iron-ion-promoted asexual sporulation. The obtained mechanism is as follows: A. cinnamomea acquires iron ions through reductive iron assimilation (RIA) and siderophore-mediated iron assimilation (SIA). In RIA, ferrous iron ions are directly transported into cells by the high-affinity protein complex formed by a ferroxidase (FetC) and an Fe transporter permease (FtrA). In SIA, siderophores are secreted externally to chelate the iron in the extracellular environment. Then, the chelates are transported into cells through the siderophore channels (Sit1/MirB) on the cell membrane and hydrolyzed by a hydrolase (EstB) in the cell to release iron ions. The O-methyltransferase TpcA and the regulatory protein URBS1 promote the synthesis of siderophores. HapX and SreA respond to and maintain the balance of the intercellular concentration of iron ions. Furthermore, HapX and SreA promote the expression of flbD and abaA, respectively. In addition, iron ions promote the expression of relevant genes in the cell wall integrity signaling pathway, thereby accelerating the cell wall synthesis and maturation of spores. This study contributes to the rational adjustment and control of the sporulation of A. cinnamomea and thereby improves the efficiency of the preparation of inoculum for submerged fermentation.
Collapse
Affiliation(s)
- Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jianing Dai
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yu Shi
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, China
| | - Luqiang Jia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
10
|
Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. STRESSES 2023. [DOI: 10.3390/stresses3010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fruit diseases brought on by fungus infestation leads to postharvest losses of fresh fruit. Approximately 30% of harvested fruits do not reach consumers’ plates due to postharvest losses. Fungal pathogens play a substantial part in those losses, as they cause the majority of fruit rots and consumer complaints. Understanding fungal pathogenic processes and control measures is crucial for developing disease prevention and treatment strategies. In this review, we covered the presented pathogen entry, environmental conditions for pathogenesis, fruit’s response to pathogen attack, molecular mechanisms by which fungi infect fruits in the postharvest phase, production of mycotoxin, virulence factors, fungal genes involved in pathogenesis, and recent strategies for protecting fruit from fungal attack. Then, in order to investigate new avenues for ensuring fruit production, existing fungal management strategies were then assessed based on their mechanisms for altering the infection process. The goal of this review is to bridge the knowledge gap between the mechanisms of fungal disease progression and numerous disease control strategies being developed for fruit farming.
Collapse
|
11
|
Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023; 40:158-173. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covering: up to May 2022Fungal genetics has transformed natural product research by enabling the elucidation of cryptic metabolites and biosynthetic steps. The enhanced capability to add, subtract, modulate, and rewrite genes via CRISPR/Cas technologies has opened up avenues for the manipulation of biosynthetic gene clusters across diverse filamentous fungi. This review discusses the innovative and diverse strategies for fungal natural product discovery and engineering made possible by CRISPR/Cas-based tools. We also provide a guide into multiple angles of CRISPR/Cas experiment design, and discuss current gaps in genetic tool development for filamentous fungi and the promising opportunities for natural product research.
Collapse
Affiliation(s)
- Clara Woodcraft
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
12
|
Genetic Engineering of Talaromyces marneffei to Enhance Siderophore Production and Preliminary Testing for Medical Application Potential. J Fungi (Basel) 2022; 8:jof8111183. [DOI: 10.3390/jof8111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Siderophores are compounds with low molecular weight with a high affinity and specificity for ferric iron, which is produced by bacteria and fungi. Fungal siderophores have been characterized and their feasibility for clinical applications has been investigated. Fungi may be limited in slow growth and low siderophore production; however, they have advantages of high diversity and affinity. Hence, the purpose of this study was to generate a genetically modified strain in Talaromyces marneffei that enhanced siderophore production and to identify the characteristics of siderophore to guide its medical application. SreA is a transcription factor that negatively controls iron acquisition mechanisms. Therefore, we deleted the sreA gene to enhance the siderophore production and found that the null mutant of sreA (ΔsreA) produced a high amount of extracellular siderophores. The produced siderophore was characterized using HPLC-MS, HPLC-DAD, FTIR, and 1H- and 13C-NMR techniques and identified as a coprogen B. The compound showed a powerful iron-binding activity and could reduce labile iron pool levels in iron-loaded hepatocellular carcinoma (Huh7) cells. In addition, the coprogen B showed no toxicity to the Huh7 cells, demonstrating its potential to serve as an ideal iron chelator. Moreover, it inhibits the growth of Candida albicans and Escherichia coli in a dose-dependent manner. Thus, we have generated the siderophore-enhancing strain of T. marneffei, and the coprogen B isolated from this strain could be useful in the development of a new iron-chelating agent or other medical applications.
Collapse
|
13
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
14
|
Zhang J, Zhang P, Zeng G, Wu G, Qi L, Chen G, Fang W, Yin WB. Transcriptional Differences Guided Discovery and Genetic Identification of Coprogen and Dimerumic Acid Siderophores in Metarhizium robertsii. Front Microbiol 2021; 12:783609. [PMID: 34899665 PMCID: PMC8656255 DOI: 10.3389/fmicb.2021.783609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Siderophores are small molecular iron chelators and participate in the multiple cellular processes in fungi. In this study, biosynthesis gene clusters of coprogens and dimerumic acids were identified by transcriptional level differences of genes related to iron deficiency conditions in Metarhizium robertsii. This leads to the characterization of new coprogen metachelin C (1) and five known siderophores metachelin A (2), metachelin A-CE (3), metachelin B (4), dimerumic acid 11-mannoside (5), and dimerumic acid (6). The structure of metachelin C (1) was elucidated by NMR spectroscopy and HR-ESI-MS analysis. Genetic deletions of mrsidA, and mrsidD abolished the production of compounds 1–6 that implied their involvement in the biosynthesis of coprogen and dimerumic acid. Interestingly, NRPS gene mrsidD is responsible for biosynthesis of both coprogen and dimerumic acid, thus we proposed plausible biosynthetic pathways for the synthesis of coprogen and dimerumic acid siderophores. Therefore, our study provides the genetic basis for understanding the biosynthetic pathway of coprogen and dimerumic acid in Metarhizium robertsii.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guohong Zeng
- College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Guangwei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Landa Qi
- Henan Academy of Science Institute of Biology, Zhengzhou, China
| | - Guocan Chen
- Henan Academy of Science Institute of Biology, Zhengzhou, China
| | - Weiguo Fang
- College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Yu X, Hu X, Pop M, Wernet N, Kirschhöfer F, Brenner-Weiß G, Keller J, Bunzel M, Fischer R. Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat Commun 2021; 12:5462. [PMID: 34526503 PMCID: PMC8443565 DOI: 10.1038/s41467-021-25535-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.
Collapse
Affiliation(s)
- Xi Yu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xiaodi Hu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Frank Kirschhöfer
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Gerald Brenner-Weiß
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Julia Keller
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Mirko Bunzel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
16
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
17
|
Igbalajobi O, Gao J, Fischer R. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1405-1410. [PMID: 33104446 DOI: 10.1094/mpmi-06-20-0165-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black mold Alternaria alternata causes dramatic losses in agriculture due to postharvest colonization and mycotoxin formation and is a weak pathogen on living plants. Fungal signaling processes are crucial for successful colonization of a host plant. Because the mitogen-activated protein kinase HogA is important for the expression of stress-associated genes, we tested a ∆hogA-deletion strain for pathogenicity. When conidia were used as inoculum, the ∆hogA-deletion strain was largely impaired in colonizing tomato and apple. In comparison, hyphae as inoculum colonized the fruit very well. Hence, HogA appears to be important only in the initial stages of plant colonization. A similar difference between conidial inoculum and hyphal inoculum was observed on artificial medium in the presence of different stress agents. Whereas wild-type conidia adapted well to different stresses, the ∆hogA-deletion strain failed to grow under the same conditions. With hyphae as inoculum, the wild type and the ∆hogA-deletion strain grew in a very similar way. At the molecular level, we observed upregulation of several catalase (catA, -B, and -D) and superoxide dismutase (sodA, -B, and -E) genes in germlings but not in hyphae after exposure to 4 mM hydrogen peroxide. The upregulation required the high osmolarity glycerol (HOG) pathway. In contrast, in mycelia, catD, sodA, sodB, and sodE were upregulated upon stress in the absence of HogA. Several other stress-related genes behaved in a similar way.
Collapse
Affiliation(s)
- Olumuyiwa Igbalajobi
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Jia Gao
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)-South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4,D-76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea. mBio 2020; 11:mBio.01379-20. [PMID: 32753496 PMCID: PMC7407086 DOI: 10.1128/mbio.01379-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The plant-pathogenic fungus B. cinerea causes enormous economic losses, estimated at anywhere between $10 billion and $100 billion worldwide, under both pre- and postharvest conditions. Here, we present the characterization of a loss-of-function mutant in a component involved in iron acquisition that displays hypervirulence. While in different microbial systems iron uptake mechanisms appear to be critical to achieve full pathogenic potential, we found that the absence of the ferroxidase that is part of the reductive iron assimilation system leads to hypervirulence in this fungus. This is an unusual and rather underrepresented phenotype, which can be modulated by iron levels in the plant and provides an unexpected link between iron acquisition, reactive oxygen species (ROS) production, and pathogenesis in the Botrytis-plant interaction. The plant pathogen Botrytis cinerea is responsible for gray-mold disease, which infects a wide variety of species. The outcome of this host-pathogen interaction, a result of the interplay between plant defense and fungal virulence pathways, can be modulated by various environmental factors. Among these, iron availability and acquisition play a crucial role in diverse biological functions. How B. cinerea obtains iron, an essential micronutrient, during infection is unknown. We set out to determine the role of the reductive iron assimilation (RIA) system during B. cinerea infection. This system comprises the BcFET1 ferroxidase, which belongs to the multicopper oxidase (MCO) family of proteins, and the BcFTR1 membrane-bound iron permease. Gene knockout and complementation studies revealed that, compared to the wild type, the bcfet1 mutant displays delayed conidiation, iron-dependent sclerotium production, and significantly reduced whole-cell iron content. Remarkably, this mutant exhibited a hypervirulence phenotype, whereas the bcftr1 mutant presents normal virulence and unaffected whole-cell iron levels and developmental programs. Interestingly, while in iron-starved plants wild-type B. cinerea produced slightly reduced necrotic lesions, the hypervirulence phenotype of the bcfet1 mutant is no longer observed in iron-deprived plants. This suggests that B. cinerea bcfet1 knockout mutants require plant-derived iron to achieve larger necrotic lesions, whereas in planta analyses of reactive oxygen species (ROS) revealed increased ROS levels only for infections caused by the bcfet1 mutant. These results suggest that increased ROS production, under an iron sufficiency environment, at least partly underlie the observed infection phenotype in this mutant.
Collapse
|